有机光伏器件的界面修饰对其光学、电学和形貌调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机太阳能电池因为其成本低,可采用大规模的卷对卷柔性制备等优势而受到了广泛关注,但是其较低的性能制约了其应用前景。为了提高有机太阳能电池的性能,一方面是设计新型光敏材料和电池结构,另一方面就是从器件中的界面处进行改进,这也是影响器件性能参数的重要环节。在活性层中的电子给体与受体之间界面,影响活性层薄膜的微观形貌和载流子的产生,传输与复合;而另外一类界面通常是指器件和活性层之间的界面,它决定了电极的功函数,两者之间的能级是否形成欧姆接触,电极和活性层之间界面的电荷选择和收集能力,器件对水和氧的稳定性等。本论文围绕有机太阳能电池中的各个界面进行研究,包括合成新型活性层材料来调控给受体的异质结界面,设计新型界面材料来修饰活性层和电极之间的缓冲层界面,最终达到提高器件效率和稳定性的目的。
     活性层中我们通过合成新型具有自组装性能的活性层材料,包括液晶自组装和氢键自组装两类,来调控活性层中给受体材料的接触界面。设计合成了一种以芴和苯并噻二唑共聚物为主连,以氰基联苯基团为液晶侧链的新型液晶共聚物PFcbpDTBTo在相应的液晶态对聚合物薄膜PFcbpDTBT进行热处理,可以使得聚合物主链和侧链都采取有序排列的方式。而取向有序的结构给聚合物带来了很多新的特性,包括其光学吸收能力增强,边带红移,荧光强度增强,和LUMO(?)级的降低。液晶聚合物的取向排列不但可以使得整个活性层薄膜中形成良好的纳米相分离,还能够诱导富勒烯受体采取较为有序的堆积方式分布在活性层中。液晶聚合物有序的自组装排列为有机光伏提供了一种控制活性层形貌的简单易处理优化方法。器件在液晶态(200℃)下退火后,光电转换效率提高了两倍左右达到了1.1%。另外一类为合成聚噻吩烷基末端带咪唑基团的共聚物P3HTM,可以与含羧基的富勒烯衍生物PCBA形成分子间的O-H…N氢键。通过溶液极性调控和热退火,不但可以调控自组装排列,还可以诱导富勒烯也随之取向堆砌,并影响聚噻吩和P3HTM:PCBA活性层的光吸收范围和强度。活性层薄膜形成双分子的自组装体系,该纳米有序形貌为激子的分离提供了更多界面并且为载流子的传输提供了传输通道。因此,P3HTM:PCBA为活性层器件的光电转换效率提升至3.2%。此外P3HTM中多余的Br基团还可以用于紫外交联而提高器件的稳定性。
     在缓冲层中我们首先研究了通过界面材料来调控界面的电学性能,通过分子设计分别合成了以聚噻吩为主链的电子传输层和空穴传输层。新型带铵基的离子聚噻吩P3HTN可作为阴极缓冲材料,P3HNT的引入可以降低金属Al的功函数,保证阴极和活性层之间形成良好的欧姆接触,器件在空气中热退火后以P3HTN为缓冲层的器件的PCE从1.8%提高到了3.3%。通过比较不同主链的离子聚合物缓冲材料,我们发现P3HNT离子聚合物不仅可以修饰阴极金属的能级,还能与活性层相互作用从而提高活性层和阴极金属的接触,减少载流子在界面的损失并提高电子的收集能力。同时设计并合成一类可以作为空穴传输材料的新型嵌段共聚物P3HT-b-P3FAT,该嵌段聚噻吩合物由烷基段和氟取代烷基段组成。由于F烷基链低的表面能,其可以在旋涂成膜时在界面自组装形成一层单分子。对于不同比例的嵌段聚噻吩,我们观察到形成单分子层所需的嵌段聚合物浓度也不同。嵌段聚合物中氟烷基段可以修饰界面的费米能级,烷基段能增强活性层和电极之间的接触,提高空穴的收集效果,以饱和浓度的PFT-3HT(1.5mg mL-1)为缓冲层时,器件的PCE提高到了4.6%。要优于采用PEDOT:PSS的器件性能(2.9%),此外,相对于吸湿性和酸性的PEDOT:PSS,嵌段聚噻吩具有良好的稳定性,是一类新型有效并且简易的空穴传输材料。
     此外,研究了反向器件中双层缓冲材料的杂化组合对器件界面的优化。在电子传输层ZnO中,在能级调控方面,以PEIE/ZnO为双层缓冲层组合时能得到最低的功函数,ZnO的功函数减小了0.7eV,适用于高LUMO能级的非富勒烯受体材料PIDSe-DFBT,可增加电子的传输和收集。然而以富勒烯衍生物PCBM-COOH修饰ZnO得到了双层缓冲层,不但可以修饰去除ZnO表面缺陷,还可以增加其与活性的作用,可能更适合以PCBM为受体的有机太阳能电池。在空穴传输层方面,本文设计了新型的组合双层空穴传输材料GO/MoO3, GO的引入可以使得整个空穴传输层更加的连续均匀分布,而且GO可以通过表面掺杂的形式来提高界面的电导率。通过各层缓冲层界面的优化,我们证明了器件在反向结构中可以取得和正向结构相当的器件效率,而且不同的缓冲层组合可以适用不同的体系,对有机太阳能电池结构的多样化发展提供了更多可行路线。
     最后,除了电学方面的作用,界面缓冲层的修饰同样可以改善有机太阳能电池的光学性能。本文中设计采用高效的等离子体效应把两种尺寸不同的三角银纳米柱双掺杂入不同的缓冲层中。分析双掺杂纳米粒子后的等离子体器件的吸收光谱增加和外量子效率光谱的增加,发现选用两类消光吸收不同的三角银纳米可以取得相互补充的效果。更重要的是,缓冲层中掺杂三角银纳米柱的方法具有很好的普遍性,使用于多种不同结构的聚合物有机光伏器件,性能都取得了16-18%的增加。其中以PIDTT-DFBT:PC71BM为活性层的器件的最高效率从原本的7.7%提高到9.0%。本文的研究表明通过优化纳米粒子的形状和尺寸大小,可以使得缓冲层中掺杂金属纳米粒子的等离子体方法可以适用于多种活性层材料体系。
Organic photovoltaic (OPV) cells have attracted extensive research and development due to their low cost and compatibility with large-scale, flexible, and high throughput roll-to-roll production. To achieve high efficiencies and long lifetime, advances in the design of new absorber materials and device structures are required. Moreover, interface engineering also plays an important role in determining the efficiency of an organic photovoltaic cell and determines different device parameters. Interface, between the electron donor and electron acceptor in activelayer, are responsible for the film morphology and the carrier generation, transporting and recombination; while the interface layer, between the activelayer and the electrodes are responsible for forming ohmic contact, the internal electric field, the film morphology, the carrier recombination rate and device stability. In this dissertation, new approaches for controlling donor/acceptor interface are presented and the development of new interfacial materials in charge transporting layers is presented, for high efficiency and air stability OPVs.
     In the activelayer interface, two self-organization approaches, liquid-crystalline and intermolecular hydrogen bonds, are used to control the molecular packing and develop easy-to-process bulk heteroj unction films with nanoscale morphologies for organic photovoltaics. First, we report a novel donor-acceptor type liquid-crystalline copolymer, PFcbpDTBT, which contains both electron-donating fluorene and electron-accepting benzothiadiazole units. The films with structural anisotropy can endow the PFcbpDTBT with special features, including absorption band red-shift, fluorescence enhancement and lower lying LUMO level. When blended with fullerene PCBM, the polymer enables PCBM to adopt the preferential well-oriented arrangement in the bulk. From the device annealed at200℃, the power conversion efficiency values reaches1.1%without extensive optimization. Then, a regioregular polythiophene (P3HTM) containing imidazole rings and acceptor including carboxylic acids is synthesized for the intermolecular interaction. The results from red-shifted absorption and enhanced quenching photoluminescence of the P3HTM:PCBA in solvents with polar additives indicate the building blocks through hydrogen bonding interactions. Processing of P3HTM and PCBA complexes with heat-annealing, constructed from cooperative self-assembly, show optimized photovoltaic performance, with PCE reached3.2%. Besides, the achieved optimum nanomorphology after annealing can be freeze using photocrosslinking method to preserve long term performance.
     For the interface materials between activelayer and electrodes, we developed and synthesized a new thiophene polymer for charge transporting layer. Water-soluble HT-poly[3-(6'-N,N,N-trimethylammonium)-hexyl thiophene](P3HTN) is simply inserted between activelayer and cathode as an interfacial dipole layer by spin-coating, the power conversion efficiency (PCE) of the devices annealed in air is enhanced from1.8%to3.3%, resulting from a reduction of the metal work-function and improved electron extraction efficiency. In particularly, the analogue of active layer as buffer layer could improve interchain interactions between the P3HT and the P3HTN to modify interfacial contact, consequently obtaining an unattainable enhancement Jsc, with respect to the interlayer polymer replaced with unanalogous conjugated polymer. In comparison with P3HTN, fluoroalkyl side-chain diblock copolymers,(P3HT-b-P3FAT) were used as hole transporting layer in inverted device. Driven by the low surface energy of fluoro alkyl side chains, the fluorinated polymers can spontaneously segregate on the surface of activelayer (P3HT:PCBM) during spin-coating processes. Required concentrations of fluoro-polymers to form the self-assembled monolayer on surface are related with block ratios. The fluorinated part forms an interfacial dipole that shifts the work function of the anode metal while the P3HT block can interact with the P3HT donor for hole transport. Overall, devices prepared with copolymer PFT-3HT (3:1ratio of P3HT to P3FAT block) in the activelayer solution displayed PCE values of4.6%(50%increase over a PEDOT: PSS control device) and showed a significant long-term stability in air.
     Moreover, to meet the requirement of different activelayer, we represent interface optimization work by using hybrid materials. For the acceptor system with high position LUMO level (non-fullerene), the electron transporting layer ZnO modified with PEIE can cause a vacuum level shift up to0.7eV. The reduced work function of ZnO can facilitate the electron transfer from PIDSe-DFBT and achieve higher Voc. However, for inverted solar cells using fullerene as electron acceptor, fullerene-SAM modified ZnO showed the best device performance compared with other polyelectrolyte. Because the fullerene based materials not only passivate the inorganic surface traps but also enhance the electronic coupling at the ZnO-organic interface. Meanwhile, we developed a new GO/MoO3bilayer film as the hole transporting layer, which provides a more continuous and high conductive surface. The device therefore showed significantly improved Jsc, Voc, and FF with PCE up to7.3%in optimized devices. These results indicate that hybrid bilayer interfacial material can take the full advantage of each compound to get the best device performance for various activelayer systems.
     Lastly, interface modification can also enhance light harvesting in devices. We provide a powerful, general, and tunable means to increased light absorption at desired wavelength bands in existing and emerging OPV materials by embedding various types of colloidal silver nanoprisms into both interfacial layers. By permitting incorporation of the plasmonic particles into layers on both sides of the bulk heterojunction, our method enables universal cooperative optical enhancement up to16-18%in the best cases, with maximum power conversion efficiency from7.7%to9.0%in devices based on PIDTT-DFBT:PC71BM. We show that the method can be applied to various bulk heteroj unction systems with various types of nanoparticles (size and shape), all without compromising the active layer morphology.
引文
[1]Lipomi D J, Tee B C, Vosgueritchian M, et al. Stretchable organic solar cells [J]. Adv. Mater.,2011,23(15):1771-1775.
    [2]Hubler A, Trnovec B, Zillger T, et al. Printed Paper Photovoltaic Cells [J]. Adv. Energy Mater,2011,1(6):1018-1022.
    [3]Delgado J L, Bouit P-A, Filippone S, et al. Organic photovoltaics:a chemical approach [J]. Chem. Commun.,2010,46(27):4853.
    [4]Wiirthner F, Meerholz K. Systems Chemistry Approach in Organic Photovoltaics [J]. Chem. Eur. J.,2010,16(31):9366-9373.
    [5]You J, Dou L, Yoshimura K, et al. A polymer tandem solar cell with10.6%power conversion efficiency [J]. Nat. Commun.,2013,4:1446-1455.
    [6]Hains A W, Liang Z, Woodhouse M A, et al. Molecular Semiconductors in Organic Photovoltaic Cells [J]. Chem. Rev.,2010,110(11):6689-6735.
    [7]Schlenker C W, Thompson M E. The molecular nature of photovoltage losses in organic solar cells [J]. Chem. Commun.,2011,47(13):3702-3716.
    [8]Hiramoto M, Fujiwara H, Yokoyama M. p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments [J]. J. Appl. Phys.,1992,72(8):3781-3787.
    [9]Tang C W. Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett.,1986,48(2):183-185.
    [10]Granstrom M, Petritsch K, Arias A C, et al. Laminated fabrication of polymeric photovoltaic diodes [J]. Nature,1998,395(6699):257-260.
    [11]Yu G, Gao J, Hummelen J C, et al. Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions [J]. Science,1995,270(5243):1789-1791.
    [12]Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene [J]. Science,1992,258(5087):1474-1476.
    [13]Kraus A, Kohler A, dos Santos D A, et al. Charge separation in localized and delocalized electronic states in polymeric semiconductors [J]. Nature,1998,392(6679):903-906.
    [14]Veldman D, Ipek O, Meskers S C, et al. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends [J]. J. Am. Chem. Soc.,2008,130(24):7721-7735.
    [15]Hummelen J C, Knight B W, LePeq F, et al. Preparation and Characterization of Fulleroid and Methanofullerene Derivatives [J]. J. Org. Chem.,1995,60(3):532-538.
    [16]Gunes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells [J]. Chem. Rev.,2007,107(4):1324-1338.
    [17]Dennler G, Scharber M C, Brabec C J. Polymer-Fullerene Bulk-Heterojunction Solar Cells [J]. Adv. Mater,2009,21(13):1323-1338.
    [18]Bredas J L, Norton J E, Cornil J, et al. Molecular understanding of organic solar cells:the challenges [J]. Ace. Chem. Res.,2009,42(11):1691-1699.
    [19]Vandewal K, Tvingstedt K, Gadisa A, et al. On the origin of the open-circuit voltage of polymer-fullerene solar cells [J]. Nat. Mater,2009,8(11):904-909.
    [20]Liang Y, Yu L. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance [J]. Ace. Chem. Res.,2010,43(9):1227-1236.
    [21]Benson-Smith J J, Goris L, Vandewal K, et al. Formation of a Ground-State Charge-Transfer Complex in Polyfluorene//[6,6]-Phenyl-C61Butyric Acid Methyl Ester (PCBM) Blend Films and Its Role in the Function of Polymer/PCBM Solar Cells [J]. Adv. Funct. Mater.,2007,17(3):451-457.
    [22]Li G, Zhu R, Yang Y Polymer solar cells [J]. Nat. Photonics,2012,6(3):153-161.
    [23]Roncali J. Synthetic Principles for Bandgap Control in Linear π-Conjugated Systems [J]. Chem. Rev.,1997,97(1):173-206.
    [24]Roncali J. Molecular Engineering of the Band Gap of π-Conjugated Systems:Facing Technological Applications [J]. Macromol. Rapid. Comm.,2007,28(17):1761-1775.
    [25]Huo L, Hou J, Chen H-Y, et al. Bandgap and Molecular Level Control of the Low-Bandgap Polymers Based on3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward Highly Efficient Polymer Solar Cells [J]. Macromolecules,2009,42(17):6564-6571.
    [26]Uy R L, Price S C, You W. Structure-Property Optimizations in Donor Polymers via Electronics, Substituents, and Side Chains Toward High Efficiency Solar Cells [J]. Macromol. Rapid. Commun,2012,33(14),1162-1177.
    [27]Kitamura C, Tanaka S, Yamashita Y Design of Narrow-Bandgap Polymers. Syntheses and Properties of Monomers and Polymers Containing Aromatic-Donor and o-Quinoid-Acceptor Units [J]. Chem. Mater.,1996,8(2):570-578.
    [28]InganAs O, Zhang F, Andersson M R. Alternating Polyfluorenes Collect Solar Light in Polymer Photovoltaics [J]. Ace. Chem. Res.,2009,42(11):1731-1739.
    [29]Beaupre S, Boudreault P L, Leclerc M. Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives [J]. Adv. Mater.,2010,22(8): E6-E27.
    [30]Blouin N, Michaud A, Leclerc M. A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells [J]. Adv. Mater.,2007,19(17):2295-2300.
    [31]Park S H, Roy A, Beaupre S, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching100%[J]. Nat. Photonics,2009,3(5):297-302.
    [32]Price S C, Stuart A C, Yang L, et al. Fluorine substituted conjugated polymer of medium band gap yields7%efficiency in polymer-fullerene solar cells [J]. J. Am. Chem. Soc.,2011,133(12):4625-4631.
    [33]Wang M, Hu X, Liu P, et al. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells [J]. J. Am. Chem. Soc.,2011,133(25):9638-9641.
    [34]Yang T, Wang M, Duan C, et al. Inverted polymer solar cells with8.4%efficiency by conjugated polyelectrolyte [J]. Energ. Environ. Sci.,2012,5(8):8208-8214.
    [35]Liang Y, Xu Z, Xia J, et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of7.4%[J]. Adv. Mater.,2010,22(20):E135-138.
    [36]Chen H-Y, Hou J, Zhang S, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nat. Photonics,2009,3(11):649-653.
    [37]Dou L, Chen C-C, Yoshimura K, et al. Synthesis of5H-Dithieno[3,2-b:2',3'-d]pyran as an Electron-Rich Building Block for Donor-Acceptor Type Low-Bandgap Polymers [J]. Macromolecules,2013,46(9):3384-3390.
    [38]Guo X, Zhou N, Lou S J, et al. Polymer solar cells with enhanced fill factors [J]. Nat. Photonics,2013,7(10):825-833.
    [39]Zhang X, Bronstein H, Kronemeijer A J, et al. Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer [J]. Nat. Commun.,2013,4:2238.
    [40]Chen Y-C, Yu C-Y, Fan Y-L, et al. Low-bandgap conjugated polymer for high efficient photovoltaic applications [J]. Chem. Commun.,2010,46(35):6503.
    [41]Xu Y X, Chueh C C, Yip H L, et al. Improved charge transport and absorption coefficient in indacenodithieno[3,2-b]thiophene-based ladder-type polymer leading to highly efficient polymer solar cells [J]. Adv. Mater.,2012,24(47):6356-6361.
    [42]Mas-Torrent M, Rovira C. Role of molecular order and solid-state structure in organic field-effect transistors [J]. Chem. Rev.,2011,111(8):4833-4856.
    [43]Tsao H N, Mullen K. Improving polymer transistor performance via morphology control [J]. Chem. Soc. Rev.,2010,39(7):2372-2386.
    [44]Vandeleene S, Van den Bergh K, Verbiest T, et al. Influence of the Polymerization Methodology on the Regioregularity and Chiroptical Properties of Poly(alkylthiothiophene)s [J]. Macromolecules,2008,41(14):5123-5131.
    [45]Kim Y, Cook S, Tuladhar S M, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells [J]. Nat. Mater.,2006,5(3):197-203.
    [46]Berson S, De Bettignies R, Bailly S, et al. Poly(3-hexylthiophene) Fibers for Photovoltaic Applications [J]. Adv. Funct. Mater.,2007,17(8):1377-1384.
    [47]Giacalone F, Martin N. Fullerene polymers:synthesis and properties [J]. Chem. Rev.,2006,106(12):5136-5190.
    [48]He Y, Li Y. Fullerene derivative acceptors for high performance polymer solar cells [J]. Phys. Chem. Chem. Phys.,2011,13(6):1970-1983.
    [49]He Y, Chen H-Y, Hou J, et al. Indene-C60Bisadduct:A New Acceptor for High-Performance Polymer Solar Cells [J]. J. Am. Chem. Soc.,2010,132(4):1377-1382.
    [50]Cheng Y J, Hsieh C H, He Y, et al. Combination of indene-C60bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells [J]. J. Am. Chem. Soc.,2010,132(49):17381-17383.
    [51]Facchetti A. Polymer donor-polymer acceptor (all-polymer) solar cells [J]. Mater. Today,2013,16(4):123-132.
    [52]Mishra A, Bauerle P. Small Molecule Organic Semiconductors on the Move:Promises for Future Solar Energy Technology [J]. Angew. Chem. Int. Edit.,2012,51(9):2020-2067.
    [53]Schubert M, Dolfen D, Frisch J, et al. Influence of Aggregation on the Performance of All-Polymer Solar Cells Containing Low-Bandgap Naphthalenediimide Copolymers [J]. Adv. Energy Mater.,2012,2(3):369-380.
    [54]Terao J, Wadahama A, Matono A, et al. Design principle for increasing charge mobility of pi-conjugated polymers using regularly localized molecular orbitals [J]. Nat. Commun.,2013,4:1691.
    [55]Zhu X Y, Yang Q, Muntwiler M. Charge-transfer excitons at organic semiconductor surfaces and interfaces [J]. Ace. Chem. Res.,2009,42(11):1779-1787.
    [56]Mihailetchi V, Koster L, Hummelen J, et al. Photocurrent Generation in Polymer-Fullerene Bulk Heterojunctions [J]. Phys. Rev. Lett.,2004,93(21),216601/1-4.
    [57]Murthy D H K, Melianas A, Tang Z, et al. Origin of Reduced Bimolecular Recombination in Blends of Conjugated Polymers and Fullerenes [J]. Adv. Funct. Mater.,2013,23(34),4262-4268..
    [58]Lenes M, Morana M, Brabec C J, et al. Recombination-Limited Photocurrents in Low Bandgap Polymer/Fullerene Solar Cells [J]. Adv. Funct. Mater.,2009,19(7):1106-1111.
    [59]Nagarjuna G, Venkataraman D. Strategies for controlling the active layer morphologies in OPVs [J]. J. Polym. Sci., Part B:Polym. Phys.,2012,50(15):1045-1056.
    [60]Ramanathan M, Darling S B. Mesoscale morphologies in polymer thin films [J]. Prog. Polym. Sci.,2011,36(6):793-812.
    [61]Liu F, Gu Y, Jung J W, et al. On the morphology of polymer-based photovoltaics [J]. J. Polym. Sci., Part B:Polym. Phys.,2012,50(15):1018-1044.
    [62]Rice A H, Giridharagopal R, Zheng S X, et al. Controlling vertical morphology within the active layer of organic photovoltaics using poly(3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester [J]. ACS Nano,2011,5(4):3132-3140.
    [63]Lee C-K, Pao C-W. Solubility of [6,6]-Phenyl-C61-butyric Acid Methyl Ester and Optimal Blending Ratio of Bulk Heterojunction Polymer Solar Cells [J]. J. Phys. Chem. C,2012:116(23),12455-12461..
    [64]Ohkita H, Cook S, Astuti Y, et al. Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy [J]. J. Am. Chem. Soc.,2008,130(10):3030-3042.
    [65]Rispens M T, Meetsma A, Rittberger R, et al. Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM 'plastic' solar cells [J]. Chem. Commun.,2003,(17),2116-2118.
    [66]Shaheen S E, Brabec C J, Sariciftci N S, et al.2.5%efficient organic plastic solar cells [J]. Appl. Phys. Lett.,2001,78(6):841-843.
    [67]Lee J K, Ma W L, Brabec C J, et al. Processing additives for improved efficiency from bulk heterojunction solar cells [J]. J. Am. Chem. Soc.,2008,130(11):3619-3623.
    [68]Hoven C V, Dang X D, Coffin R C, et al. Improved performance of polymer bulk heterojunction solar cells through the reduction of phase separation via solvent additives [J]. Adv. Mater.,2010,22(8):E63-66.
    [69]Ho V, Boudouris B W, Segalman R A. Tuning Polythiophene Crystallization through Systematic Side Chain Functionalization [J]. Macromolecules,2010,43(19):7895-7899.
    [70]Erb T, Zhokhavets U, Gobsch G, et al. Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells [J]. Adv. Funct. Mater.,2005,15(7):1193-1196.
    [71]Savenije T J, Kroeze J E, Yang X, et al. The Effect of Thermal Treatment on the Morphology and Charge Carrier Dynamics in a Polythiophene-Fullerene Bulk Heterojunction [J]. Adv. Funct. Mater,2005,15(8):1260-1266.
    [72]Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J]. Nat. Mater.,2005,4(11):864-868.
    [73]Ruderer M A, Guo S, Meier R, et al. Solvent-Induced Morphology in Polymer-Based Systems for Organic Photovoltaics [J]. Adv. Funct. Mater.,2011,21(17):3382-3391.
    [74]Stranks S D, Yong C K, Alexander-Webber J A, et al. Nanoengineering Coaxial Carbon Nanotube-Dual-Polymer Heterostructures [J]. ACS Nano,2012,6(7):6058-6066.
    [75]He X, Gao F, Tu G, et al. Formation of nanopatterned polymer blends in photovoltaic devices [J]. Nano Lett.,2010,10(4):1302-1307.
    [76]Cai W, Gong X, Cao Y Polymer solar cells:Recent development and possible routes for improvement in the performance [J]. Sol. Energy Mater. Sol. Cells,2010,94(2):114-127.
    [77]Hau S K, Yip H-L, Jen A K Y A Review on the Development of the Inverted Polymer Solar Cell Architecture [J]. Polym. Rev.,2010,50(4):474-510.
    [78]Yip H-L, Jen A K Y Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells [J]. Energ. Environ. Sci.,2012,5(3):5994-6011.
    [79]Hau S K, Yip H-L, Acton O, et al. Interfacial modification to improve inverted polymer solar cells [J]. J. Mater. Chem.,2008,18(42):5113-5119.
    [80]Gao D, Helander M G, Wang Z B, et al. C60:LiF blocking layer for environmentally stable bulk heterojunction solar cells [J]. Adv. Mater.,2010,22(47):5404-5408.
    [81]Sun Y, Seo J H, Takacs C J, et al. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer [J]. Adv. Mater,2011,23(14):1679-1683.
    [82]Kim J Y, Kim S H, Lee H H, et al. New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer [J]. Adv. Mater,2006,18(5):572-576.
    [83]Huang F, Wu H, Cao Y Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices [J]. Chem. Soc. Rev.,2010,39(7):2500-2521.
    [84]Sun J, Zhu Y, Xu X, et al. High Efficiency and High Voc Inverted Polymer Solar Cells Based on a Low-Lying HOMO Polycarbazole Donor and a Hydrophilic Polycarbazole Interlayer on ITO Cathode [J]. J. Phys. Chem. C,2012,116(27),14188-14198.
    [85]Liao S H, Li Y L, Jen T H, et al. Multiple functionalities of polyfluorene grafted with metal ion-intercalated crown ether as an electron transport layer for bulk-heterojunction polymer solar cells:optical interference, hole blocking, interfacial dipole, and electron conduction [J]. J. Am. Chem. Soc.,2012,134(35):14271-14274.
    [86]Oh S-H, Na S-I, Jo J, et al. Water-Soluble Polyfluorenes as an Interfacial Layer Leading to Cathode-Independent High Performance of Organic Solar Cells [J]. Adv. Funct. Mater,2010,20(12):1977-1983.
    [87]Seo J H, Gutacker A, Sun Y, et al. Improved High-Efficiency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer [J]. J. Am. Chem. Soc.,2011,133(22):8416-8419.
    [88]He Z, Zhong C, Huang X, et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells [J]. Adv. Mater,2011,23(40):4636-4643.
    [89]He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure [J]. Nat. Photonics,2012,6(9):593-597.
    [90]Liu S, Zhang K, Lu J, et al. High-Efficiency Polymer Solar Cells via the Incorporation of an Amino-Functionalized Conjugated Metallopolymer as a Cathode Interlayer [J]. J. Am. Chem. Soc,2013,135(41):15326-15329.
    [91]Wei Q, Nishizawa T, Tajima K, et al. Self-Organized Buffer Layers in Organic Solar Cells [J]. Adv. Mater,2008,20(11):2211-2216.
    [92]Li C-Z, Yip H-L, Jen A K Y Functional fullerenes for organic photovoltaics [J]. J. Mater. Chem.,2012,22(10):4161.
    [93]O'Malley K M, Li C-Z, Yip H-L, et al. Enhanced Open-Circuit Voltage in High Performance Polymer/Fullerene Bulk-Heterojunction Solar Cells by Cathode Modification with a C60Surfactant [J]. Adv. Energy Mater,2012,2(1):82-86.
    [94]Norrman K, Madsen M V, Gevorgyan S A, et al. Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cell [J]. J. Am. Chem. Soc.,2010,132(47):16883-16892.
    [95]Zilberberg K, Trost S, Meyer J, et al. Inverted Organic Solar Cells with Sol-Gel Processed High Work-Function Vanadium Oxide Hole-Extraction Layers [J]. Adv. Funct. Mater,2011,21(24):4776-4783.
    [96]Irwin M D, Buchholz D B, Hains A W, et al. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells [J]. Proc. Natl. Acad. Sci. USA,2008,105(8):2783-2787.
    [97]Steirer K X, Ndione P F, Widjonarko N E, et al. Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers [J]. Adv. Energy Mater,2011,1(5):813-820.
    [98]Kroger M, Hamwi S, Meyer J, et al. Role of the deep-lying electronic states of MoO3in the enhancement of hole-injection in organic thin films [J]. Appl Phys Lett,2009,95(12),123301-123303.
    [99]Yang T, Wang M, Cao Y, et al. Polymer Solar Cells with a Low-Temperature-Annealed Sol-Gel-Derived MoOx Film as a Hole Extraction Layer [J]. Adv. Energy Mater,2012,2(5)523-527.
    [100]Eda G, Chhowalla M. Chemically derived graphene oxide:towards large-area thin-film electronics and optoelectronics [J]. Adv. Mater,2010,22(22):2392-2415.
    [101]Pang S, Hernandez Y, Feng X, et al. Graphene as transparent electrode material for organic electronics [J]. Adv. Mater,2011,23(25):2779-2795.
    [102]Li S-S, Tu K-H, Lin C-C, et al. Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells [J]. ACS Nano,2010,4(6):3169-3174.
    [103]Gao Y, Yip H L, Chen K S, et al. Surface doping of conjugated polymers by graphene oxide and its application for organic electronic devices [J]. Adv. Mater.,2011,23(16):1903-1908.
    [104]Tersoff J. Schottky Barrier Heights and the Continuum of Gap States [J]. Phys. Rev. Lett.,1984,52(6):465-468.
    [105]He Z, Wu H, Cao Y Recent Advances in Polymer Solar Cells:Realization of High Device Performance by Incorporating Water/Alcohol-Soluble Conjugated Polymers as Electrode Buffer Layer [J]. Adv. Mater,2014,26(7):1006-1024.
    [106]Ishii H, Sugiyama K, Ito E, et al. Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces [J]. Adv. Mater,1999,11(8):605-625.
    [107]Ellison D J, Lee B, Podzorov V, et al. Surface Potential Mapping of SAM-Functionalized Organic Semiconductors by Kelvin Probe Force Microscopy [J]. Adv. Mater.,2011,23(4):502-507.
    [108]Ko D-H, Tumbleston J R, Gadisa A, et al. Light-trapping nano-structures in organic photovoltaic cells [J]. J. Mater. Chem.,2011,21(41):16293-16303.
    [109]Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science,2007,317(5835):222-225.
    [110]Joannopoulos J D, Villeneuve P R, Fan S. Photonic crystals:putting a new twist on light [J]. Nature,1997,386(6621),143-149.
    [111]Schlenker C W, Barlier V S, Chin S W, et al. Cascade Organic Solar Cells [J]. Chem. Mater.,2011,23(18):4132-4140.
    [112]K.R. Catchpole A P. Plasmonic solar cells [J]. Opt. Express,2008,16:21793-21800.
    [113]Huang J-S, Goh T, Li X, et al. Polymer bulk heterojunction solar cells employing Forster resonance energy transfer [J]. Nat. Photonics,2013,7(6):479-485.
    [114]Yang L, Yan L, You W. Organic Solar Cells beyond One Pair of Donor-Acceptor:Ternary Blends and More [J]. J. Phys. Chem. Lett.,2013,4(11):1802-1810.
    [115]Zhang C, Tong S W, Jiang C, et al. Simple tandem organic photovoltaic cells for improved energy conversion efficiency [J]. Appl. Phys. Lett.,2008,92(8):083310.
    [116]Sherry L J, Jin R, Mirkin C A, et al. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms [J]. Nano Lett.,2006,6(9):2060-2065.
    [117]Kelly K L, Coronado E, Zhao L L, et al. The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment [J]. J. Phys. Chem. B,2003,107(3):668-677.
    [118]Atwater H A, Polman A. Plasmonics for improved photovoltaic devices [J]. Nat. Mater.,2010,9(3):205-213.
    [119]Gan Q, Bartoli F J, Kafafi Z H. Plasmonic-enhanced organic photovoltaics:breaking the10%efficiency barrier [J]. Adv. Mater.,2013,25(17):2385-2396.
    [120]Stratakis E, Kymakis E. Nanoparticle-based plasmonic organic photovoltaic devices [J]. Mater Today,2013,16(4):133-146.
    [121]Wu J L, Chen F C, Hsiao Y S, et al. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells [J]. ACS Nano,2011,5(2):959-967.
    [122]Zhang D, Choy W C H, Xie F, et al. Plasmonic Electrically Functionalized TiO2for High-Performance Organic Solar Cells [J]. Adv. Funct. Mater.,2013,23(34):4255-4261.
    [123]Kang S J, Ahn S, Kim J B, et al. Using self-organization to control morphology in molecular photovoltaics [J]. J. Am. Chem. Soc.,2013,135(6):2207-2212.
    [124]Schmidt-Mende L. Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics [J]. Science,2001,293(5532):1119-1122.
    [125]McCulloch I, Heeney M, Bailey C, et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility [J]. Nat. Mater.2006,5(4):328-333.
    [126]Sun Q, Park K, Dai L. Liquid Crystalline Polymers for Efficient Bilayer-Bulk-Heterojunction Solar Cells [J]. J. Phys. Chem. C,2009,113(18):7892-7897.
    [127]Farinhas J, Ferreira Q, Di Paolo R E, et al. Nanostructured donor/acceptor interfaces in photovoltaic cells using columnar-grain films of a cross-linked poly(fluorene-alt-bithiophene)[J]. J. Mater. Chem.,2011,21(33):12511-12519.
    [128]Kim do H, Lee B L, Moon H, et al. Liquid-crystalline semiconducting copolymers with intramolecular donor-acceptor building blocks for high-stability polymer transistors [J]. J. Am. Chem. Soc.,2009,131(17):6124-6132.
    [129]Zhang X, Hudson S D, DeLongchamp D M, et al. In-Plane Liquid Crystalline Texture of High-Performance Thienothiophene Copolymer Thin Films [J]. Adv. Funct. Mater.,2010,20(23):4098-4106.
    [130]Yamamoto T, Kokubo H, Kobashi M, et al. Alignment and Field-Effect Transistor Behavior of an Alternative π-Conjugated Copolymer of Thiophene and4-Alkylthiazole [J]. Chem. Mater,2004,16(23):4616-4618.
    [131]Lei T, Cao Y, Fan Y, et al. High-Performance Air-Stable Organic Field-Effect Transistors: Isoindigo-Based Conjugated Polymers [J]. J. Am. Chem. Soc.,2011,133(16):6099-6101.
    [132]Iovu M C, Jeffries-El M, Sheina E E, et al. Regioregular poly(3-alkylthiophene) conducting block copolymers [J]. Polymer,2005,46(19):8582-8586.
    [133]Charvet R, Acharya S, Hill J P, et al. Block-Copolymer-Nanowires with Nanosized Domain Segregation and High Charge Mobilities as Stacked p/n Heterojunction Arrays for Repeatable Photocurrent Switching [J]. J. Am. Chem. Soc.,2009,131(50):18030-18031.
    [134]Wong H M P, Wang P, Abrusci A, et al. Donor and Acceptor Behavior in a Polyfluorene for Photovoltaics [J]. J. Phys. Chem. C,2007,111(13):5244-5249.
    [135]Dong Y, Lam J W Y, Peng H, et al. Syntheses and Mesomorphic and Luminescent Properties of Disubstituted Polyacetylenes Bearing Biphenyl Pendants [J]. Macromolecules,2004,37(17):6408-6417.
    [136]Olsen B D, Gu X, Hexemer A, et al. Liquid Crystalline Orientation of Rod Blocks within Lamellar Nanostructures from Rod-Coil Diblock Copolymers [J]. Macromolecules,2010,43(16):6531-6534.
    [137]Tsao H N, Cho D, Andreasen J W, et al. The Influence of Morphology on High-Performance Polymer Field-Effect Transistors [J]. Adv. Mater.,2009,21(2):209-212.
    [138]Ko S, Mondal R, Risko C, et al. Tuning the Optoelectronic Properties of Vinylene-Linked Donor-Acceptor Copolymers for Organic Photovoltaics [J]. Macromolecules,2010,43(16):6685-6698.
    [139]Ma W, Yang C, Gong X, et al. Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology [J]. Adv. Funct. Mater,2005,15(10):1617-1622.
    [140]Chan S-H, Hsiao Y-S, Hung L-I, et al. Morphology Evolution of Spin-Coated Films of Poly(thiophene-phenylene-thiophene) and [6,6]-Phenyl-C71-butyric Acid Methyl Ester by Solvent Effect [J]. Macromolecules,2010,43(7):3399-3405.
    [141]De S, Pascher T, Maiti M, et al. Geminate Charge Recombination in Alternating Polyfluorene Copolymer/Fullerene Blends [J]. J. Am. Chem. Soc.,2007,129(27):8466-8472.
    [142]Po R, Maggini M, Camaioni N. Polymer Solar Cells:Recent Approaches and Achievements [J]. J. Phys. Chem. C,2010,114(2):695-706.
    [143]Wang T, Pearson A J, Dunbar A D F, et al. Correlating Structure with Function in Thermally Annealed PCDTBT:PC70BM Photovoltaic Blends [J]. Adv. Funct. Mater,2012,22(7):1399-1408.
    [144]Chen F-C, Lin Y-K, Ko C-J. Submicron-scale manipulation of phase separation in organic solar cells [J]. Appl. Phys. Lett.,2008,92(2):023307.
    [145]Chang C Y, Wu C E, Chen S Y, et al. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods [J]. Angew. Chem. Int. Edit.,2011,50(40):9386-9390.
    [146]Miyanishi S, Tajima K, Hashimoto K. Morphological Stabilization of Polymer Photovoltaic Cells by Using Cross-Linkable Poly(3-(5-hexenyl)thiophene)[J]. Macromolecules,2009,42(5):1610-1618.
    [147]Cheng Y-J, Hsieh C-H, Li P-J, et al. Morphological Stabilization by In Situ Polymerization of Fullerene Derivatives Leading to Efficient, Thermally Stable Organic Photovoltaics [J]. Adv. Funct. Mater.,2011,21(9):1723-1732.
    [148]Kim B J, Miyamoto Y, Ma B, et al. Photocrosslinkable Polythiophenes for Efficient, Thermally Stable, Organic Photovoltaics [J]. Adv. Funct. Mater,2009,19(14):2273-2281.
    [149]Kim H J, Han A R, Cho C-H, et al. Solvent-Resistant Organic Transistors and Thermally Stable Organic Photovoltaics Based on Cross-linkable Conjugated Polymers [J]. Chem. Mater,2012,24(1):215-221.
    [150]Tao C, Aljada M, Shaw P E, et al. Controlling Hierarchy in Solution-processed Polymer Solar Cells Based on Crosslinked P3HT [J]. Adv. Energy Mater.,2013,3(1):105-112.
    [151]Gonzalez-Rodriguez D, Schenning A P H J. Hydrogen-bonded Supramolecular^-Functional Materials [J]. Chem. Mater.,2011,23(3):310-325.
    [152]Lin Y, Lim J A, Wei Q, et al. Cooperative Assembly of Hydrogen-Bonded Diblock Copolythiophene/Fullerene Blends for Photovoltaic Devices with Well-Defined Morphologies and Enhanced Stability [J]. Chem. Mater.,2012,24(3):622-632.
    [153]Zhai L, Pilston R L, Zaiger K L, et al. A Simple Method to Generate Side-Chain Derivatives of Regioregular Polythiophene via the GRIM Metathesis and Post-polymerization Functionalization [J]. Macromolecules,2003,36(1):61-64.
    [154]McCullough R D, Ewbank P C, Loewe R S. Self-Assembly and Disassembly of Regioregular, Water Soluble Polythiophenes:Chemoselective Ionchromatic Sensing in Water [J]. J. Am. Chem. Soc.,1997,119(3):633-634.
    [155]Salinas-Castillo A, Camprubi-Robles M, Mallavia R. Synthesis of a new fluorescent conjugated polymer microsphere for chemical sensing in aqueous media [J]. Chem. Commun,2010,46(8):1263-1265.
    [156]Yokoyama D, Sasabe H, Furukawa Y, et al. Molecular Stacking Induced by Intermolecular C-H…N Hydrogen Bonds Leading to High Carrier Mobility in Vacuum-Deposited Organic Films [J]. Adv. Funct. Mater.,2011,21(8):1375-1382.
    [157]Jonkheijm P, Stutzmann N, Chen Z, et al. Control of Ambipolar Thin Film Architectures by Co-Self-Assembling Oligo(p-phenylenevinylene)s and Perylene Bisimides [J]. J. Am. Chem. Soc.,2006,128(29):9535-9540.
    [158]Lee E, Hammer B, Kim J-K, et al. Hierarchical Helical Assembly of Conjugated Poly(3-hexylthiophene)-block-poly(3-triethylene glycol thiophene) Diblock Copolymers [J]. J. Am. Chem. Soc.,2011,133(27):10390-10393.
    [159]Chen D, Liu F, Wang C, et al. Bulk Heterojunction Photovoltaic Active Layers via Bilayer Interdiffusion [J]. Nano Lett.,2011,11(5):2071-2078.
    [160]Chen D, Nakahara A, Wei D, et al. P3HT/PCBM Bulk Heterojunction Organic Photovoltaics: Correlating Efficiency and Morphology [J]. Nano Lett.,2010,11(2):561-567.
    [161]Chiu M-Y, Jeng U S, Su M-S, et al. Morphologies of Self-Organizing Regioregular Conjugated Polymer/Fullerene Aggregates in Thin Film Solar Cells [J]. Macromolecules,2009,43(1):428-432.
    [162]Zhang F, Meng Y, Gu D, et al. An Aqueous Cooperative Assembly Route To Synthesize Ordered Mesoporous Carbons with Controlled Structures and Morphology [J]. Chem. Mater.,2006,18(22):5279-5288.
    [163]Chen C-H, Hsieh C-H, Dubosc M, et al. Synthesis and Characterization of Bridged Bithiophene-Based Conjugated Polymers for Photovoltaic Applications:Acceptor Strength and Ternary Blends [J]. Macromolecules,2009,43(2):697-708.
    [164]Westenhoff S, Howard I A, Hodgkiss J M, et al. Charge Recombination in Organic Photovoltaic Devices with High Open-Circuit Voltages [J]. J. Am. Chem. Soc.,2008,130(41):13653-13658.
    [165]Okano K, Mikami Y, Hidaka M, et al. Photoresponsive Liquid-Crystalline Polymers Containing a Block Mesogenic Side Chain:Systematic Studies on Structural Parameters for Nanophase-Separated Structures [J]. Macromolecules,2011,44(14):5605-5611.
    [166]Blom P W M, Mihailetchi V D, Koster L J A, et al. Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells [J]. Adv. Mater.,2007,19(12):1551-1566.
    [167]Po R, Carbonera C, Bernardi A, et al. The role of buffer layers in polymer solar cells [J]. Energ. Environ. Sci.,2011,4(2):285-310.
    [168]Reinhard M, Hanisch J, Zhang Z, et al. Inverted organic solar cells comprising a solution-processed cesium fluoride interlayer [J]. Appl. Phys. Lett.,2011,98(5):053303.
    [169]Brabec C J, Shaheen S E, Winder C, et al. Effect of LiF/metal electrodes on the performance of plastic solar cells [J]. Appl. Phys. Lett.,2002,80(7):1288-1290.
    [170]Park J H, Lee T-W, Chin B-D, et al. Roles of Interlayers in Efficient Organic Photovoltaic Devices [J]. Macromol. Rapid. Comm.,2010,31(24):2095-2108.
    [171]Zhang F, Ceder M, Inganas O. Enhancing the Photovoltage of Polymer Solar Cells by Using a Modified Cathode [J]. Adv. Mater.,2007,19(14):1835-1838.
    [172]He C, Zhong C, Wu H, et al. Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes [J]. J. Mater. Chem.,2010,20(13):2617-2622.
    [173]Na S-I, Oh S-H, Kim S-S, et al. Efficient organic solar cells with polyfluorene derivatives as a cathode interfacial layer [J]. Org. Electron.,2009,10(3):496-500.
    [174]Cho S, Seo J H, Park S H, et al. A Thermally Stable Semiconducting Polymer [J]. Adv. Mater.,2010,22(11):1253-1257.
    [175]Knaapila M, Evans R C, Garamus V M, et al. Structure and "Surfactochromic" Properties of Conjugated Polyelectrolyte (CPE):Surfactant Complexes between a Cationic Polythiophene and SDS in Water [J]. Langmuir,2010,26(19):15634-15643.
    [176]Loewe R S, Khersonsky S M, McCullough R D. A Simple Method to Prepare Head-to-Tail Coupled, Regioregular Poly(3-alkylthiophenes) Using Grignard Metathesis [J]. Adv. Mater,1999,11(3):250-253.
    [177]Liu B, Bazan G C. Optimization of the Molecular Orbital Energies of Conjugated Polymers for Optical Amplification of Fluorescent Sensors [J]. J. Am. Chem. Soc.,2006,128(4):1188-1196.
    [178]Liang C-W, Su W-F, Wang L. Enhancing the photocurrent in poly(3-hexylthiophene)/[6,6]-phenyl C61butyric acid methyl ester bulk heterojunction solar cells by using poly(3-hexylthiophene) as a buffer layer [J]. Appl. Phys. Lett.,2009,95(13):133303.
    [179]Sun Y, Wang M, Gong X, et al. Polymer bulk heterojunction solar cells:function and utility of inserting a hole transport and electron blocking layer into the device structure [J]. J. Mater. Chem.,2011,21(5):1365-1367.
    [180]Yip H-L, Hau S K, Baek N S, et al. Polymer Solar Cells That Use Self-Assembled-Monolayer-Modified ZnO/Metals as Cathodes [J]. Adv. Mater.,2008,20(12):2376-2382.
    [181]Luo J, Wu H, He C, et al. Enhanced open-circuit voltage in polymer solar cells [J]. Appl. Phys. Lett.,2009,95(4):043301.
    [182]Luo J, Wu H, He C, et al. Enhanced open-circuit voltage in polymer solar cells [J]. Appl. Phys. Lett.,2009,95(4):043301.
    [183]Ma W, Iyer P K, Gong X, et al. Water/Methanol-Soluble Conjugated Copolymer as an Electron-Transport Layer in Polymer Light-Emitting Diodes [J]. Adv. Mater,2005,17(3):274-277.
    [184]Hong Z R, Huang Z H, Zeng X T. Utilization of copper phthalocyanine and bathocuproine as an electron transport layer in photovoltaic cells with copper phthalocyanine/buckminster fullerene heterojunctions:Thickness effects on photovoltaic performances [J]. Thin Solid Films,2007,515(5):3019-3023.
    [185]Feng Z, Hou Y, Lei D. The influence of electrode buffer layers on the performance of polymer photovoltaic devices [J]. Renew. Energ.,2010,35(6):1175-1178.
    [186]Braun S, Salaneck W R, Fahlman M. Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces [J]. Adv. Mater.,2009,21(14-15):1450-1472.
    [187]de Boer B, Hadipour A, Mandoc M M, et al. Tuning of Metal Work Functions with Self-Assembled Monolayers [J]. Adv. Mater.,2005,17(5):621-625.
    [188]van Bavel S S, Barenklau M, de With G, et al. P3HT/PCBM Bulk Heterojunction Solar Cells: Impact of Blend Composition and3D Morphology on Device Performance [J]. Adv. Funct. Mater,2010,20(9):1458-1463.
    [189]Dou L, You J, Hong Z, et al.25th Anniversary Article:A Decade of Organic/Polymeric Photovoltaic Research [J]. Adv. Mater.,2013,25(46):6642-6671.
    [190]Heeger A J.25th Anniversary Article:Bulk Heterojunction Solar Cells:Understanding the Mechanism of Operation [J]. Adv. Mater.,2014,26(1):10-28.
    [191]Lai T-H, Tsang S-W, Manders J R, et al. Properties of interlayer for organic photovoltaics [J]. Mater. Today,2013,16(11):424-432.
    [192]Liao S H, Jhuo H J, Cheng Y S, et al. Fullerene Derivative-Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low-Bandgap Polymer (PTB7-Th) for High Performance [J]. Adv. Mater.,2013,25(34):4766-4771.
    [193]Yuan Y, Reece T J, Sharma P, et al. Efficiency enhancement in organic solar cells with ferroelectric polymers [J]. Nat. Mater.,2011,10(4):296-302.
    [194]Worfolk B J, Hauger T C, Harris K D, et al. Work Function Control of Interfacial Buffer Layers for Efficient and Air-Stable Inverted Low-Bandgap Organic Photovoltaics [J]. Adv. Energy Mater.,2012,2(3):361-368.
    [195]Zhou Y, Fuentes-Hernandez C, Shim J, et al. A universal method to produce low-work function electrodes for organic electronics [J]. Science,2012,336(6079):327-332.
    [196]Kang H, Hong S, Lee J, et al. Electrostatically self-assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells [J]. Adv. Mater.,2012,24(22):3005-3009,2938.
    [197]Chen F-C, Chien S-C. Nanoscale functional interlayers formed through spontaneous vertical phase separation in polymer photovoltaic devices [J]. J. Mater. Chem.,2009,19(37):6865-6869.
    [198]Rider D A, Worfolk B J, Harris K D, et al. Stable Inverted Polymer/Fullerene Solar Cells Using a Cationic Polythiophene Modified PEDOT:PSS Cathodic Interface [J]. Adv. Funct. Mater,2010,20(15):2404-2415.
    [199]Norrman K, Madsen M V, Gevorgyan S A, et al. Degradation patterns in water and oxygen of an inverted polymer solar cell [J]. J. Am. Chem. Soc.,2010,132(47):16883-16892.
    [200]Hammond S R, Meyer J, Widjonarko N E, et al. Low-temperature, solution-processed molybdenum oxide hole-collection layer for organic photovoltaics [J]. J. Mater. Chem.,2012,22(7):3249.
    [201]Tromholt T, Manor A, Katz E A, et al. Reversible degradation of inverted organic solar cells by concentrated sunlight [J]. Nanotechnology,2011,22(22):225401.
    [202]Tada A, Geng Y, Nakamura M, et al. Interfacial modification of organic photovoltaic devices by molecular self-organization [J]. Phys. Chem. Chem. Phys.,2012,14(11):3713-3724.
    [203]Tada A, Geng Y, Wei Q, et al. Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices [J]. Nat. Mater,2011,10(6):450-455.
    [204]Yang L, Sontag S K, LaJoie T W, et al. Surface-initiated poly(3-methylthiophene) as a hole-transport layer for polymer solar cells with high performance [J]. ACS Appl Mater Interfaces,2012,4(10):5069-5073.
    [205]Wang J-C, Lu C-Y, Hsu J-L, et al. Efficient inverted organic solar cells without an electron selective layer [J]. J. Mater. Chem.,2011,21(15):5723.
    [206]Tahar-Djebbar I, Nekelson F, Heinrich B, et al. Lamello-Columnar Mesophase Formation in a Side-Chain Liquid Crystal π-Conjugated Polymer Architecture [J]. Chem. Mater.,2011,23(21):4653-4656.
    [207]Geng Y, Tajima K, Hashimoto K. Synthesis and characterizations of regioregular poly(3-alkylthiophene) with alternating dodecyl/1H,1H,2H,2H-perfluorooctyl side chains [J]. Macromol. Rapid. Commun.,2011,32(18):1478-1483.
    [208]Lu C, Wu H C, Chiu Y C, et al. Biaxially Extended Quaterthiophene-and Octithiophene-Vinylene Conjugated Polymers for High Performance Field Effect Transistors and Photovoltaic Cells [J]. Macromolecules,2012,45(7):3047-3056..
    [209]Geng Y, Wei Q, Hashimoto K, et al. Dipole Layer Formation by Surface Segregation of Regioregular Poly(3-alkylthiophene) with Alternating Alkyl/Semifluoroalkyl Side Chains [J]. Chem. Mater,2011,23(18):4257-4263.
    [210]Bulliard X, Ihn S-G, Yun S, et al. Enhanced Performance in Polymer Solar Cells by Surface Energy Control [J]. Adv. Funct. Mater.,2010,20(24):4381-4387.
    [211]Heimel G, Salzmann I, Duhm S, et al. Intrinsic Surface Dipoles Control the Energy Levels of Conjugated Polymers [J]. Adv. Funct. Mater.,2009,19(24):3874-3879.
    [212]Wu K Y, Yu S Y, Tao Y T. Continuous modulation of electrode work function with mixed self-assembled monolayers and its effect in charge injection [J]. Langmuir,2009,25(11):6232-6238.
    [213]Ma H, Yip H-L, Huang F, et al. Interface Engineering for Organic Electronics [J]. Adv. Funct. Mater,2010,20(9):1371-1388.
    [214]Lobez J M, Andrew T L, Bulovic V, et al. Improving the performance of P3HT-fullerene solar cells with side-chain-functionalized poly(thiophene) additives:a new paradigm for polymer design [J]. ACS Nano,2012,6(4):3044-3056.
    [215]Zhong Y, Ma J, Hashimoto K, et al. Electric field-induced dipole switching at the donor/acceptor interface in organic solar cells [J]. Adv. Mater,2013,25(7):1071-1075.
    [216]Cheng Y-J, Cao F-Y, Lin W-C, et al. Self-Assembled and Cross-Linked Fullerene Interlayer on Titanium Oxide for Highly Efficient Inverted Polymer Solar Cells [J]. Chem. Mater,2011,23(6):1512-1518.
    [217]Hau S K, Yip H-L, Ma H, et al. High performance ambient processed inverted polymer solar cells through interfacial modification with a fullerene self-assembled monolayer [J]. Appl. Phys. Lett.,2008,93(23):233304.
    [218]Intemann J J, Yao K, Yip H-L, et al. Molecular Weight Effect on the Absorption, Charge Carrier Mobility, and Photovoltaic Performance of an Indacenodiselenophene-Based Ladder-Type Polymer [J]. Chem. Mater,2013,25(15):3188-3195.
    [219]McNeill C R, Abrusci A, Zaumseil J, et al. Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes [J]. Appl. Phys. Lett.,2007,90(19):193506.
    [220]Kietzke T, Horhold H-H, Neher D. Efficient Polymer Solar Cells Based on M3EH-PPV [J]. Chem. Mater,2005,17(26):6532-6537.
    [221]Kyaw A K, Wang D H, Gupta V, et al. Efficient solution-processed small-molecule solar cells with inverted structure [J]. Adv. Mater,2013,25(17):2397-2402.
    [222]Lee B R, Kim J-w, Kang D, et al. Highly Efficient Polymer Light-Emitting Diodes Using Graphene Oxide as a Hole Transport Layer [J]. ACS Nano,2012,6(4):2984-2991.
    [223]Mori D, Benten H, Kosaka J, et al. Polymer/polymer blend solar cells with2.0%efficiency developed by thermal purification of nanoscale-phase-separated morphology [J]. ACS Appl Mater Interfaces,2011,3(8):2924-2927.
    [224]McNeill C R. Morphology of all-polymer solar cells [J]. Energ. Environ. Sci.,2012,5(2):5653.
    [225]Holcombe T W, Woo C H, Kavulak D F, et al. All-polymer photovoltaic devices of poly(3-(4-n-octyl)-phenylthiophene) from Grignard Metathesis (GRIM) polymerization [J]. J. Am. Chem. Soc.,2009,131(40):14160-14161.
    [226]Mihailetchi V D, Blom P W M, Hummelen J C, et al. Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells [J]. J. Appl. Phys.,2003,94(10):6849.
    [227]Garcia-Belmonte G, Guerrero A, Bisquert J. Elucidating Operating Modes of Bulk-Heterojunction Solar Cells from Impedance Spectroscopy Analysis [J]. J. Phys. Chem. Lett.,2013,4(6):877-886.
    [228]Treat N D, Brady M A, Smith G, et al. Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend [J]. Adv. Energy Mater,2011,1(1):82-89.
    [229]Swaraj S, Wang C, Yan H, et al. Nanomorphology of Bulk Heterojunction Photovoltaic Thin Films Probed with Resonant Soft X-ray Scattering [J]. Nano Lett.,2010,10(8):2863-2869.
    [230]Hau S K, Cheng Y-J, Yip H-L, et al. Effect of Chemical Modification of Fullerene-Based Self-Assembled Monolayers on the Performance of Inverted Polymer Solar Cells [J]. ACS Appl. Mater. Interfaces,2010,2(7):1892-1902.
    [231]Liu J, Xue Y, Gao Y, et al. Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High-Performance Bulk Heterojunction Solar Cells [J]. Adv. Mater,2012,24(17):2228-2233.
    [232]Chao Y-H, Wu J-S, Wu C-E, et al. Solution-Processed (Graphene Oxide)-(d0Transition Metal Oxide) Composite Anodic Buffer Layers toward High-Performance and Durable Inverted Polymer Solar Cells [J]. Adv. Energy Mater,2013,3(10):1279-1285.
    [233]Kim M S, Kim B G, Kim J. Effective variables to control the fill factor of organic photovoltaic cells [J]. ACS Appl. Mater. Interfaces,2009,1(6):1264-1269.
    [234]Boix P P, Garcia-Belmonte G, Munecas U, et al. Determination of gap defect states in organic bulk heterojunction solar cells from capacitance measurements [J]. Appl. Phys. Lett.,2009,95(23):233302.
    [235]Boix P P, Wienk M M, Janssen R A J, et al. Open-Circuit Voltage Limitation in Low-Bandgap Diketopyrrolopyrrole-Based Polymer Solar Cells Processed from Different Solvents [J]. J. Phys. Chem. C,2011,115(30):15075-15080.
    [236]Zou J, Yip H-L, Zhang Y, et al. High-Performance Inverted Polymer Solar Cells:Device Characterization, Optical Modeling, and Hole-Transporting Modifications [J]. Adv. Funct. Mater,2012,22(13):2804-2811.
    [237]Hains A W, Liang Z, Woodhouse M A, et al. Molecular semiconductors in organic photovoltaic cells [J]. Chem. Rev.,2010,110(11):6689-6735.
    [238]Mihailetchi V D, Xie H X, de Boer B, et al. Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene):Methanofullerene Bulk-Heterojunction Solar Cells [J]. Adv. Funct. Mater,2006,16(5):699-708.
    [239]Ko D H, Tumbleston J R, Zhang L, et al. Photonic crystal geometry for organic solar cells [J]. Nano Lett.,2009,9(7):2742-2746.
    [240]Wang D H, Kim do Y, Choi K W, et al. Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles [J]. Angew. Chem. Int. Edit.,2011,50(24):5519-5523.
    [241]Pillai S, Catchpole K R, Trupke T, et al. Surface plasmon enhanced silicon solar cells [J]. J. Appl. Phys.,2007,101(9):093105.
    [242]Linic S, Christopher P, Ingram D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy [J]. Nat. Mater,2011,10(12):911-921.
    [243]Standridge S D, Schatz G C, Hupp J T. Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2009,131(24):8407-8409.
    [244]Salvador M, MacLeod B A, Hess A, et al. Electron accumulation on metal nanoparticles in plasmon-enhanced organic solar cells [J]. ACS Nano,2012,6(11):10024-10032.
    [245]Jankovic V, Yang Y M, You J, et al. Active layer-incorporated, spectrally tuned Au/SiO2core/shell nanorod-based light trapping for organic photovoltaics [J]. ACS Nano,2013,7(5):3815-3822.
    [246]Yang X, Chueh C-C, Li C-Z, et al. High-Efficiency Polymer Solar Cells Achieved by Doping Plasmonic Metallic Nanoparticles into Dual Charge Selecting Interfacial Layers to Enhance Light Trapping [J]. Adv. Energy Mater,2013,3(5):666-673.
    [247]Aherne D, Ledwith D M, Gara M, et al. Optical Properties and Growth Aspects of Silver Nanoprisms Produced by a Highly Reproducible and Rapid Synthesis at Room Temperature [J]. Adv. Funct. Mater,2008,18(14):2005-2016.
    [248]Xue C, Mirkin C A. pH-switchable silver nanoprism growth pathways [J]. Angew. Chem. Int. Edit,2007,46(12):2036-2038.
    [249]Wu B, Wu X, Guan C, et al. Uncovering loss mechanisms in silver nanoparticle-blended plasmonic organic solar cells [J]. Nat. Commun.,2013,4,2004.
    [250]Girard C, Dujardin E, Baffou G, et al. Shaping and manipulation of light fields with bottom-up plasmonic structures [J]. New J Phys,2008,10(10):105016.
    [251]F. J. Beck E V, S. Mokkapati, A. Polman, K. R. Catchpole. Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates [J]. Opt. Express,2011,19: A146-A156.
    [252]Wang D H, Park K H, Seo J H, et al. Enhanced Power Conversion Efficiency in PCDTBT/PC70BM Bulk Heterojunction Photovoltaic Devices with Embedded Silver Nanoparticle Clusters [J]. Adv. Energy Mater.,2011,1(5):766-770.
    [253]Kulkarni A P, Noone K M, Munechika K, et al. Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms [J]. Nano Lett.,2010,10(4):1501-1505.
    [254]Bredas J L, Street G B. Polarons, bipolarons, and solitons in conducting polymers [J]. Ace. Chem. Res.,1985,18(10):309-315.
    [255]Li X, Choy W C H, Lu H, et al. Efficiency Enhancement of Organic Solar Cells by Using Shape-Dependent Broadband Plasmonic Absorption in Metallic Nanoparticles [J]. Adv. Funct. Mater,2013,23(21):2728-2735.
    [256]Rycenga M, Cobley C M, Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications [J]. Chem. Rev.,2011,111(6):3669-3712.
    [257]Yang J, You J, Chen C C, et al. Plasmonic polymer tandem solar cell [J]. ACS Nano,2011,5(8):6210-6217.
    [258]Cheng P-P, Zhou L, Li J-A, et al. Light trapping enhancement of inverted polymer solar cells with a nanostructured scattering rear electrode [J]. Org. Electron.,2013,14(9):2158-2163.
    [259]Lim D C, Kim K-D, Park S-Y, et al. Towards fabrication of high-performing organic photovoltaics:new donor-polymer, atomic layer deposited thin buffer layer and plasmonic effects [J]. Energ. Environ. Sci.,2012,5(12):9803.
    [260]Baek S W, Noh J, Lee C H, et al. Plasmonic forward scattering effect in organic solar cells:a powerful optical engineering method [J]. Sci Rep,2013,3:1726.
    [261]Lu L, Luo Z, Xu T, et al. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells [J]. Nano Lett.,2013,13(1):59-64.
    [262]Choi H, Lee J P, Ko S J, et al. Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells [J]. Nano Lett.,2013,13(5):2204-2208.
    [263]Cowan S R, Roy A, Heeger A J. Recombination in polymer-fullerene bulk heterojunction solar cells [J]. Phys. Rev. B,2010,82(24):245207.
    [264]Mihailetchi V, Wildeman J, Blom P. Space-Charge Limited Photocurrent [J]. Phys. Rev. Lett.,2005,94(12):126602.
    [265]Li X, Choy W C, Huo L, et al. Dual plasmonic nanostructures for high performance inverted organic solar cells [J]. Adv. Mater,2012,24(22):3046-3052.
    [266]Choi H, Ko S J, Choi Y, et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices [J]. Nat. Photonics,2013,7(9):732-738.
    [267]Zhang Y, Zou J, Yip H-L, et al. Indacenodithiophene and Quinoxaline-Based Conjugated Polymers for Highly Efficient Polymer Solar Cells [J]. Chem. Mater,2011,23(9):2289-2291.