L波段可调谐环形腔掺铒光纤激光器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各种数据业务对传输带宽需求的不断增长,如何利用现有的光纤传输系统,进一步提高通信容量,满足日益膨胀的需求,已成为光通信领域研究的热点。当前光传送网中波分复用( WDM)技术主要在光纤的C-波段(1530~1565 nm)使用。随着L-波段掺铒光纤放大器( EDFA) 的日趋成熟,将WDM 系统由传统的C-波段延伸到L-波段(1570~1610nm) 已经是大势所趋。与此同时,可用作L-波段通信用光源的光纤激光器也逐渐成为研究热点。
    本文提出了一种波长调谐范围达41nm(1569 nm 到1610nm)的L-波段可调谐环形腔掺铒光纤激光器设计方案。波长选择部分由偏振控制器和偏极器构成,其理论依据是光的偏振特性以及单模光纤中的双折射效应。通过调整环形腔内偏振控制器, 改变腔内不同波长的偏振态以获得可变波长输出。通过选择高浓度的掺铒光纤,使用环形光学谐振腔结构并采用二次泵浦技术大大缩小了结构尺寸,提高了光源的稳定性和输出特性。高双折射光纤的引入,能够极大的压缩线宽,3dB 线宽≤0.12nm,在1590nm 的斜率效率为0.246, 波长稳定性优于0.02nm,边模抑制比≥45dB,最大输出光功率为17mW。以上指标均优于迄今国内有文献报到的同类结果。
It has been over two decades since the first experiment of fibercommunication was operated in 1978. Fiber-optic communicationtechnologies have been put into commerce step by step. The speed offiber-optic communication has been growing from 45Mbits/s to 40Gbit/s.How to use the exiting communication system to widen the communicationcapability to meet increasingly demands has have become the hotspot ofthe optical communication realm research, when all kinds of data servicesrequire more and more transmission bandwidth. The current WavelengthDivision Multiplexing(WDM) applications and systems mainly useconventional wavelength band(1530-1565nm). As the erbium-doped fiberamplifier(EDFA) is gradually mature,WDM system from C-band toL-band(1570-1610nm) is necessary trend. Meanwhile, L-bandcommunication transmitter has also become research hotspot.
    Under this background , the author develops a tunable L-bandErbium-doped fiber ring laser instructed by Processor Guo Yubin duringthe postgraduate study. The tunable bandwidth of the fiber laser is from1569nm to 1610nm, covered the whole L-band. Using high density EDFAcan shorten the fiber availably, contracted the structure size consumedly,raise the stability and output characteristic of the light source. Highperformance erbium-doped fiber laser which has bright applied foregroundare acquired by the way of choosing reasonable parameters, such ascoupling ratio of output coupler and optimizing the structure of theresonance cavity. Literature search shows that there are not achievementsand research in this area is in vogue. Consequently, this thesis will unfoldthe study focus on this point, in the expectation of offering the theory andexperiment reference for the methods of L-band fiber laser.
    Firstly, the thesis introduced the creation principle of the laser and the
    basic structure and the work principle of the fiber-optic laser machines.Pump laser, gain medium and optical resonance cavity as three componentsof fiber lasers are analyzed theoretically in details, especially inerbium-doped fiber laser.
    Secondly, the thesis detailedly introduced the develop process oftunable L-band Erbium-doped fiber ring laser. Pump source chooses980nm semiconductor laser. In order that amplified spontaneous emission(ASE) move to L-band, we adopt high density erbium-doped fiber(11m+1.8m), ring cavity structure and second pump technology. Mostpopular schemes of tunable filter are summarized and compared, such asFabry-Perot interferometer filter, thin file interferometer filter, tunablefiber grating and so on. A feasible wavelength selection mechanism isformed by the combination of a polarization controller and a polarizer isdemonstrated. The theoretical basis is polirization characteristic of the lightand birefraction in single mode fiber. When line polirization lights frompolarimeter transmit in cavity, their polirizaton state will be change.Polirization direction of some line polarization light is not consistent withthe polirization direction of line polorization by adjusting polirizationcontroller. Its loss is least and it is easiest to form laser. By this way,wavelength is tunable. By importing an high birefraction polirization fibercan improve birefraction effort. After transporting one loop, it can makethe polirization direction of different light different greater and loss is most.Therefore, it can reduse the mode compete and compress lineband oflaser .This equipment has four strongpoint, simple structure, low insertionloss , wide tunable range and low cost .
    Finally, on the basis of theoretical design, the apparatus andcomponents for the experiment were actively prepared and set up.Debugged the experiment and measured the main technological indexes.The main technological indexes of the scheme test and verification
引文
[1] 薛亦元, 安宏林, 傅立斌, 林祥芝, 刘弘度, 单频窄线宽分布布拉格反射光纤激光器研究, 光学学报, 2000, 20(9): 1251~1254.
    [2] Gong Yandong, Shum Ping, Tang Dingyuan etc, Bound Soliton Pulse with FWHM Duration of 326 fs and Separation of 938 fs in a Passively Mode Locked Fiber Laser, OFC’2002, ThGG32
    [3] Nobuhide Yamada, Nobukazu Banjo, Hiroshi Ohta etc, 320Gb/s eye measurement by optical sampling system using a passively mode-locked fiber laser, OFC’2002, ThU3
    [4] Ono H , Yamada M, Kanamori T et al . . 1. 582μm band gain-flattened erbium2doped fiber amplifiers for WDM transmission systems. IEEE J . Lightwave Technol . , 1999 , 17 (3) :490~496
    [5] Flood F A. L2band erbium2doped fiber amplifiers. Proc. OFC′00 , Baltimore , Maryland , 2000 , paper WG1
    [6] YAMASHITA S NISHIHARA M. L-band erbium-doped fiber amplifier incorporating an inline fiber grating laser[J]. Selected Topics in Quantum Electronics 2001 7(1) 44–48.
    [7] HARUN S W POOPALAN P AHMAD H. Gain enhancement in L-band EDFA through a double-pass technique[J]. IEEE Photonics Technology Letters 2002 14(3) 296–297.
    [8 ] Tabuchi H , Ishikawa H. External grating tunable MQW laser with tuning rang of 240 nm. Electron. Lett . , 1990 , 26 (11) : 742~743
    [9 ] Oh J M, Choi H B , Lee D et al . . Efficient tunable fiber ring laser for 1580 nm band with a fiber Bragg grating. Proc. OFC′01 , Anaheim , California , 2001 , paper WA6
    [10] Yamashita S , Nishihara M. Widely tunable erbium2doped fiber ring laser covering both C2band and L2band. IEEE J . Selected Topics in Quant . Electron. , 2001 , 7 (1) :41~43
    [11] Bellemare A , Karasek M, Riviere C et al . . A broadly tunable erbium2doped fiber ring laser : Experimentation and modeling. IEEE J . Selected Topics in Quant . Electron. , 2001 , 7 (1) : 22~2
    [12] F.A.Flood.L Band erbium doped fiber amplifers[C]. Proc.of OFC 2000
    [13] 宁提纲, 张劲松, 裴丽, 简水生, 光纤光栅激光器, 光通信研究, 2000, 3: 38~42.
    [14] 杨明涛, 崔国琪, 董孝义, 盛秋琴, 掺铒光纤激光器理论与实验研究, 红外与激光技术, 1995, 24(2): 42~46.
    [15] 贾宝华, 盛秋琴, 陈凯, 韩军, 董孝义, 一种实用化的高功率低噪声波长连续可调光纤激光器, 中国激光, 2004, 31(2): 133~136.
    [16] Morkel P R , Cowle G J , Payne D N ,Travelling-wave erbium fiber ring laser with 60 KHz linewidth Electron Lett.1990, 26(10): 632~634.
    [17] Lees G P, Newson T P. Diode pumped high power simultaneously Q-switched and self mode-locked erbium doped fiber laser(J).Electro Lett, 1996,32(4):332~333
    [18] 俞本立,钱景仁等.线宽小于0.5 kHz 稳态的单颇光纤环形腔激光器(J). 量子电子学报,2001,18(4):345~348
    [19] 张宝富等全光网络(M).北京:人民邮电出版杜,2001
    [20] Hinduer A, Chartier T, Brunel M et al.Generation of high energy femtosecond pulses from a side-pumped Yb-doped double-clad fiber taser(J). Appl Phys Lett, 2001, 79(21):3389~3391
    [21] Kim S K, Chu M J, Lee D H et al. Wideband multiwavelength erbiuun-doped fiber ring laser(A).OFC 2000, ThA3-2
    [22] Yamashita S, Baba T. Multiwavelength fiber lasers with tunable wavelength spacing(A). OFC 2001,WA8-L
    [23] Rank J K,Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm(J). Opt Lett, 2000, 25:25~27
    [24] Takara H, Ohara T, Mori K et al. Over 1000 channel optical frequency chain generation from a single supercontinuum source with 12.5 GHz channel spacing for DWDM and frequency standard(A) ECOC 2000,PD3.1
    [25] Prabhu M, Saitou T, Taniguchi A et al.Higheficiency broadband supercontinuum generation centered at 1483.4 nm using Raman fiber laser(A).OFC 2001,WP3-1
    [26] 聂秋华, 光纤激光器和放大器技术, 电子工业出版社, 1997.
    [27] 董孝义, 王廷尧, 新一代光纤通信系统与同步网—原理与发展, 天津科学 技术出版社, 1994.
    [28] 侯国付, 李乙钢, 付成鹏, 吕福云, 吕可诚, 掺稀土元素光纤超压光光源, 激光杂志,2002, 23(1): 17~20.
    [29] 杨淑雯, 全光光纤通信网, 科学出版社, 2004. 213~216
    [30] S.V.卡塔洛颇罗斯,〔美〕朗讯科技有限公司, 密集波分复用技术导论, 人民 邮电出版社, 2001. P42
    [31] J . Lee , Uh-Chan Ryu , S. J . Ahn et al . . Enhancement of power conversion efficiency for an L2band EDFA with secondary pumping effect in the unpumped EDF section [J ]. IEEE Photon. Technol . Lett . , 1999 , 11 (1) :42~45
    [32] Hirotaka Ono , Makoto Yamada , Terutoshi Kanamori et al . . 1. 582μm band gan2flattened erbium2doped fiber amplifiers for WDM transmission systems [ J ] . J .L ightw ave Technol . , 1999 , 17 (3) :490~496
    [33] Giles C R, Desurvire E. Modeling erbium-doped fiber amplifiers [J]. J. Lightwave Technol.,1991, 9(2): 271~283.
    [34] Franco P, Midrio M, Tozzato A et al. Characterization and optimization criteria for filterless erbium-doped fiber lasers. J. Opt. Soc. Am. B, 1994, 11(6): 1090~1097.
    [35] Piotr Mysliski, Dung Nguyen, Jacek Chrostowski. Effects of Concentration on the Performance of Erbium-Doped Fiber Amplifiers[J]. J Lightwave Technol, 1997, 15(1): 112~120.
    [36] 黄文财,明海,谢建平,吴云霞.L 波段掺铒光纤超荧光和放大器研究.光电 工程, 2002, 29(6): 50~52.
    [37] 董孝义, 王廷尧, 新一代光纤通信系统与同步网—原理与发展, 天津科学 技术出版社, 1994.
    [38] J . L. Zyskind, J.W. Sulhoff, J. Stone, D. J. Digiovanni, L.W. Stulz, H. M. Presby, A. Piccirilli, and P. E. Pramayon, “Electrically tunable, diodepumped erbium-doped fiber ring laser with fiber Fabry–Perot etalon,”Electon. Lett., vol. 27, pp. 1950–1951, 1991.
    [39] S. Yamashita and M. Nishihara, “Widely tunable erbium-doped fiber ring laser covering both C-band and L-band,”IEEE J. Select. Topics Quantum Electron., vol. 7, pp. 41–43, 2001.
    [40] A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He,V. Roy, and G.W. Schinn, “A broadly tunable erbium-doped ring laser: Experimentation and modeling,”IEEE J. Select. Topics Quantum Electron., vol. 7, pp. 22–29, 2001
    [41] N. Park , J . W. Dawson , K. J . Vahala. All fiber , low threshold widely tunable single-frequency , erbium-doped fiber ring laser with a tandem fiber Fabry-Perot filter [J ] . Appl . Phys. Lett . , 1991 , 59 (19) :2369~ 2371
    [42] G. A. Ball andW.W. Morey, “Continuously tunable single-mode Er fiber laser,” Opt. Lett., vol. 2, pp. 420–422, 1992.
    [43] “Compression-tuned single-frequency Bragg grating fiber laser,”Opt. Lett., vol. 19, pp. 1979–1981, 1994.
    [44] Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single mode operation using a highly stretchable FBG,”IEEE Photon. Technol. Lett., vol. 13, pp. 1167–1169, 2001.
    [45] B. O. Guan, H. Y. Tam, H. L. W. Chan, X. Y. Dong, C. L. Choy, and M. S. Demokan, “Temperature-tuned erbium-doped fiber ring laser with polymer-coated fiber grating,”Opt. Commun., vol. 202, pp. 331–334, 2002.
    [46] T. Inui, T. Komukai, and M. Nakazawa, “Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers,”Opt. Commun., vol.