光学天线共振耦合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学天线能够实现局域光频电磁能量与远场传播光场能量之间的高效、定向性转换。由于金属局域表面等离激元共振的影响,光学天线在近场能量馈入,工作波长以及耦合方式等方面与微波天线有很大不同。基于这些特点,光学天线在增强分子荧光辐射,纳米尺度光束方向调制,突破衍射极限的光学成像等方面表现出优异的性质,被认为是现代光学发展的重要方向之一。本论文针对光学天线体系中共振耦合特性进行研究分析,重点开展了天线结构对于荧光分子发光增强,荧光分子辐射方向控制,类量子效应等方面的研究。
     本论文主要研究成果如下:
     1.研究了荧光分子与不同光学天线结构相互耦合的荧光增强,以及辐射方向的调控,设计了超小型耦合金属棒纳米光学天线,在荧光分子激发和辐射波长具有局域等离子体双共振特性,并进一步探讨了其对荧光分子激发和辐射方向性的影响,以及组阵天线结构对天线方向性的增强特性。
     2.基于并矢格林函数理论方法,系统研究了不同偏振的偶极子点源与不同材料的半无限大介面相互作用的机理过程,分析了水平和垂直方向偶极子场对称性不同对于辐射效应的影响,并基于此设计了一种可主动调控辐射方向的光学天线结构。
     3.通过对圆偏振偶极子角谱特性研究,发现该偏振的偶极子能够很好地单向激发导波模式,基于此设计了一种产生涡旋场的简单光学天线,其作用与圆偏振偶极子类似,可有效地用以激发高定向性的导波模式。
     4.利用金属光学天线结构中的明、暗模式相互叠加,数值分析研究了T型纳米颗粒中的Fano共振效应,并通过谐振子模型给出了对应解释。研究了不同耦合点对应的模式耦合强度的区别,发现了T型耦合结构具有更大的耦合强度,同时这种构型对光谱和位置信息都可以提供更高的折射率传感灵敏度。
     5.使用数值算法研究了表面等离子体法珀腔模和局域纳米线磁模式的强耦合过程,并与经典原子-腔强耦合体系中的极子模型(Polariton Model)获得的结果一致。利用这种结构得到了845倍的局域磁场增强和280meV的Rabi分裂。
     本论文的创新点和特色:
     1.提出了基于调制偶极子偏振特性的纳米尺度光束操控结构。通过改变圆偏振偶极子和金属衬底之间的相互距离,可以获得单向性较好并且辐射方向可调的远场出射光;通过构造合适的纳米天线结构,模拟圆偏振偶极子的作用,实现定向激发导波模式。
     2.设计了一种可用于荧光分子探测的双共振光学天线结构。该天线的两个共振峰可通过改变天线结构尺寸独立调节,以适应不同荧光分子的激发和辐射能级。同时,该结构也可对荧光分子激发光和辐射光的远场方向进行独立调节,空间上将激发光散射噪声和荧光分子辐射的信号有效分离,可用于高性噪比的荧光探测。
     3.基于光学天线模式特点与原子能级结构的相似性,数值上通过设计相应光学天线结构实现了Fano共振和强耦合这两种量子效应。提出了一种对光谱和位置信息都敏感的局域折射率传感方法。获得了280meV的Rabi分裂。为传统的量子效应提供了光学天线这一新的研究平台。
Optical antennas can serve as an effective tool for efficient and directive conversion between localized energy and far-field radiation at optical frequency. Influenced by the Localized Surface Plasmon Resonance(LSPR), optical antennas exhibit great differences with microwave antennas in the case of feeding, working wavelength and coupling characteristics. Based on these, optical antennas have important applications ranging from antenna assisted fluorescence enhancement, nano scale light beaming and direction control, optical imaging beyond diffraction limit and is believed to be a promising direction in future developments in the field of optics. This thesis mainly focuses on the resonant and coupling phenomena inside optical antenna system, with a special emphasize on the antenna-assisted fluorescent enhancement, the control over the emission direction using optical antennas and quasi-quantum effect inside the optical antenna system.
     The main research achievements of this thesis can be summarized as follows:
     1. The radiation enhancement as well as radiation directional control are studied using different optical antenna systems. In specific, an ultra-compact optical antenna aims at spatial isolation of emission and excitation is developed. The enhancement of the directivity using antenna arrays is also studied.
     2. Based dyadic Green's function method, the interaction between dipoles of different polarizations as well as different materials is studied in detail. The asymmetry of induced field pattern by vertically and horizontally oriented dipoles is considered to design an optical antenna structure with dynamically controlled emission direction.
     3. Through analysis of the angular spectrum of circularly polarized dipole, a mechanism of unidirectional excitation of guided mode is developed. An optical antenna is designed to have a similar function.
     4. Fano-like resonance in plasmonic system is explained in terms of the interaction of bight mode and dark mode. The effect of coupling strength on the lineshape, sensitivity is studied to develop a plasmonic sensor to monitor local changes in refractive index change both spatially and spectrally.
     5. Strong coupling between magnetic plasmons and Farbry-Perot cavity plasmons is studied in detail. A polariton theory is applied to describe the coupling behavior. A field enhancement of845times and280meV Rabi splitting is observed in numerical simulation.
     The highlights of the thesis are as following:
     1. A new way of controlling the far-field emission pattern is presented in this thesis. By utilizing the interference between different dipole components, the emission of the circularly polarized dipole can be actively controlled. Also, an optical antenna is designed to mimic the role of circularly polarized dipole as a tool to unidirectional launching of guided modes.
     2. A two-resonance optical antenna is proposed. This antenna utilizes the two plasmonic resonances covering both the excitation and the emission of the fluorescent molecule to control the direction of the excitation laser beam as well as the emission of the fluorescent molecule independently.
     3. Plasmonic analog of two quantum effects are discussed using optical antennas based on similarity between modes in optical antennas and energy levels in atom structure. A plasmonic sensor to monitor refractive index changes both spectrally and spatially is proposed. A large Rabi splitting of280meV is achieved. This offers a new platform to study traditional quantum effects.
引文
1. Kraus, J.D., Antennas.1988.
    2. Balanis, C.A., Antenna theory:analysis and design.2012:John Wiley & Sons.
    3. Novotny, L., From near-field optics to optical antennas. Physics Today,2011.64(7):p.47-52.
    4. Novotny, L. and N. van Hulst, Antennas for light. Nature Photonics,2011.5(2):p.83-90.
    5. Novotny, L., Nano-optics:Optical antennas tuned to pitch. Nature,2008.455(7215):p.887-887.
    6. Alda, J., et al., Optical antennas for nano-photonic applications. Nanotechnology,2005.16(5): p. S230.
    7. Agio, M., Optical antennas as nanoscale resonators. Nanoscale,2012.4(3):p.692-706.
    8. Park, Q.-H., Optical antennas and plasmonics. Contemporary Physics,2009.50(2):p.407-423.
    9. Bharadwaj, P., B. Deutsch, and L. Novotny, Optical antennas. Advances in Optics and Photonics,2009.1(3):p.438-483.
    10. Agio, M. and A. Alu, Optical antennas.2013:Cambridge University Press.
    11. Jackson, J.D., Classical electrodynamics. Classical Electrodynamics,3rd Edition, by John David Jackson, pp.832. ISBN 0-471-30932-X. Wiley-VCH, July 1998.,1998.1.
    12. Farahani, J.N., et al., Single quantum dot coupled to a scanning optical antenna:a tunable superemitter. Physical Review Letters,2005.95(1):p.017402.
    13. Kinkhabwala, A., et al., Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics,2009.3(11):p.654-657.
    14. Schuller, J.A. and M.L. Brongersma, General properties of dielectric optical antennas. Optics express,2009.17(26):p.24084-24095.
    15. Krasnok, A.E., et al., All-dielectric optical nanoantennas. Optics express,2012.20(18):p. 20599-20604.
    16. Fu, Y.H., et al., Directional visible light scattering by silicon nanoparticles. Nature communications,2013.4:p.1527.
    17. Staude, I., et al., Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS nano,2013.7(9):p.7824-7832.
    18. Rolly, B., et al., Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer. Scientific reports,2013.3.
    19. Krasnok, A, et al., Superdirective dielectric nanoantenna. Nanoscale,2014.
    20. Krasnok, A.E., et al., Experimental demonstration of superdirective dielectric antenna. Applied Physics Letters,2014.104(13):p.133502.
    21. Novotny, L., Effective wavelength scaling for optical antennas. Physical Review Letters,2007. 98(26):p.266802.
    22. Maier, S.A., Plasmonics:Fundamentals and Applications:Fundamentals and Applications. 2007:Springer.
    23. Naik, G. V. and A. Boltasseva, Semiconductors for plasmonics and metamaterials. physica status solidi (RRL)-Rapid Research Letters,2010.4(10):p.295-297.
    24. Murray, W.A. and W.L. Barnes, Plasmonic materials. Advanced Materials,2007.19(22):p. 3771-3782.
    25. West, P.R., et al., Searching for better plasmonic materials. Laser & Photonics Reviews,2010. 4(6):p.795-808.
    26. Boltasseva, A. and H. A. Atwater, Low-loss plasmonic metamaterials. Science,2011.
    27. Naik, G.V., J. Kim, and A. Boltasseva, Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Optical Materials Express,2011.1(6):p.1090-1099.
    28. Ferry, V.E., J.N. Munday, and H.A. Atwater, Design considerations for plasmonic photovoltaics. Advanced materials,2010.22(43):p.4794-4808.
    29. Palik, E.D., Handbook of optical constants of solids. Vol.3.1998:Academic press.
    30. Grzela, G., et al., Nanowire antenna emission. Nano letters,2012.12(11):p.5481-5486.
    31. Dorfmuller,J.,et al.,Plasmonic Nanowire Antennas:Experiment, Simulation, and Theory. Nano Letters,2010.10(9):p.3596-3603.
    32. Schmidt, M.K., et al., Dielectric antennas-a suitable platform for controlling magnetic dipolar emission. Optics express,2012.20(13):p.13636-13650.
    33. Colas des Francs, G., et al., Mie plasmons:modes volumes, quality factors, and coupling strengths (Purcell factor) to a dipolar emitter. International Journal of Optics,2012.2012.
    34. Novotny, L. and B. Hecht, Principles of nano-optics.2012:Cambridge university press.
    35. van de Hulst, H.C., Light scattering by small particles.2012:Courier Dover Publications.
    36. Loudon, R., The quantum theory of light.2000:Oxford university press.
    37. Scully, M.O., Quantum optics.1997:Cambridge university press.
    38. Cohen-Tannoudji, C., J. Dupont-Roc, and G. Grynberg, Atom-photon interactions:basic processes and applications.1992:Wiley Online Library.
    39. Purcell, E.M., Spontaneous emission probabilities at radio frequencies. Physical Review,1946. 69:p.681.
    40. Kuhn, H., Classical aspects of energy transfer in molecular systems. The Journal of Chemical Physics,2003.53(1):p.101-108.
    41. Yeung, M.S. and T.K. Gustafson, Spontaneous emission near an absorbing dielectric surface. Physical Review A,1996.54(6):p.5227-5242.
    42. Giannini, V., et al., Plasmonic nanoantennas:fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev,2011.111(6):p.3888-912.
    43. Yariv, A., Quantum electronics,3rd. Edn.(John WieLy & Sons, New York,1988) p,1989.389.
    44. Mohammadi, A., V. Sandoghdar, and M. Agio, Gold nanorods and nanospheroids for enhancing spontaneous emission. New Journal of Physics,2008.10(10):p.105015.
    45. Mabuchi, H. and A. Doherty, Cavity quantum electrodynamics:coherence in context. Science, 2002.298(5597):p.1372-1377.
    46. Vahala, K.J., Optical microcavities. Nature,2003.424(6950):p.839-846.
    47. Giannini, V., et al., Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape:nanoantenna-enhanced fluorescence. Journal of the Optical Society of America B,2009.26(8):p.1569-1577.
    48. Muskens, O.L., et al., Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas. Nano Letters,2007.7(9):p.2871-2875.
    49. Giannini, V., et al., Controlling light localization and light-matter interactions with nanoplasmonics. Small,2010.6(22):p.2498-2507.
    50. Lee, K.-S. and M.A. El-Sayed, Dependence of the Enhanced Optical Scattering Efficiency Relative to That of Absorption for Gold Metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index. The Journal of Physical Chemistry B,2005.109(43):p.20331-20338.
    51. Curto, A.G.,et al., Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 2010.329(5994):p.930-933.
    52. Berman, P.R., Cavity quantum electrodynamics.1994.
    53. Li, J., A. Salandrino, and N. Engheta, Shaping light beams in the nanometer scale:A Yagi-Uda nanoantenna in the optical domain. Physical Review B,2007.76(24):p,245403.
    54. Chang, D.E., et al., Strong coupling of single emitters to surface plasmons. Physical Review B, 2007.76(3):p.035420.
    55. Akimov, A., et al., Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature,2007.450(7168):p.402-406.
    56. Chen, Y., et al., Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides. Physical Review B,2010.81(12):p.125431.
    57. Liu, M., et al., Excitation of dark plasmons in metal nanoparticles by a localized emitter. Physical review letters,2009.102(10):p.107401.
    58. Lakowicz, J.R., Principles of fluorescence spectroscopy.2007:Springer.
    59. Luk'yanchuk, B., et al., The Fano resonance in plasmonic nanostructures and metamaterials. Nature materials,2010.9(9):p.707-715.
    60. Miroshnichenko, A.E., S. Flach, and Y.S. Kivshar, Fano resonances in nanoscale structures. Reviews of Modern Physics,2010.82(3):p.2257.
    61. Ye, J., et al., Plasmonic nanoclusters:near field properties of the Fano resonance interrogated with SERS. Nano letters,2012.12(3):p.1660-1667.
    62. Maier, S.A., et al., Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature materials,2003.2(4):p.229-232.
    63. Solis Jr, D., et al., Electromagnetic energy transport in nanoparticle chains via dark plasmon modes. Nano letters,2012.12(3):p.1349-1353.
    64. Nehl, C.L., H. Liao, and J.H. Hafner, Optical properties of star-shaped gold nanoparticles. Nano letters,2006.6(4):p.683-688.
    65. Skrabalak, S.E., et al., Gold nanocages for biomedical applications. Advanced Materials,2007. 19(20):p.3177-3184.
    66. Wiley, B. J., et al., Synthesis and optical properties of silver nanobars and nanorice. Nano letters, 2007.7(4):p.1032-1036.
    67. Jana, N.R., L. Gearheart, and C.J. Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. The Journal of Physical Chemistry B,2001.105(19):p.4065-4067.
    68. Deng, H., et al., Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes. Chemistry-A European Journal,2005.11(22):p.6519-6524.
    69. Washio, I., et al., Reduction by the end groups of poly (vinyl pyrrolidone):a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials, 2006.18(13):p.1745-1749.
    70. Zhang, Q., et al., Reconstruction of silver nanoplates by UV irradiation:tailored optical properties and enhanced stability. Angewandte Chemie,2009.121(19):p.3568-3571.
    71. Long, N.N., et al. Synthesis and optical properties of colloidal gold nanoparticles. in Journal of Physics:Conference Series.2009. IOP Publishing.
    72. Alivisatos, A.P., et al., Organization of nanocrystal molecules'using DNA.1996.
    73. Elghanian, R., et al., Selective colorimetric detection ofpolynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997.277(5329):p.1078-1081.
    74. Loweth, C.J., et al., DNA-based assembly of gold nanocrystals. Angewandte Chemie International Edition,1999.38(12):p.1808-1812.
    75. Lee, J.S., M.S. Han, and C.A. Mirkin, Colorimetric Detection of Mercuric Ion (Hg2+) in Aqueous Media using DNA-Functionalized Gold Nanoparticles. Angewandte Chemie,2007. 119(22):p.4171-4174.
    76. Sonnichsen, C., et al., A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature biotechnology,2005.23(6):p.741-745.
    77. Lin, X., et al., Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. The journal of physical chemistry B,2001.105(17):p.3353-3357.
    78. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem.,2007.58:p.267-297.
    79. Yang, S.M., et al., Nanomachining by colloidal lithography. Small,2006.2(4):p.458-475.
    80. Boltasseva, A., et al., Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons. Journal of Lightwave Technology,2005.23(1):p.413.
    81. PREWETT, P., D., FOCUSED ION BEAMS IN MICROFABRICATION. J. Phys. Colloques, 1989.50(C8):p. C8-179-C8-190.
    82. Boltasseva, A., Plasmonic components fabrication via nanoimprint. Journal of Optics A:Pure and Applied Optics,2009.11(11):p.114001.
    83. Pelton, M., J. Aizpurua, and G. Bryant, Metal-nanoparticle plasmonics. Laser & Photonics Reviews,2008.2(3):p.136-159.
    84. Sonnichsen, C., et al., Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Applied Physics Letters,2000.77(19):p.2949-2951.
    85. Yang, S.-C., et al., Plasmon hybridization in individual gold nanocrystal dimers:direct observation of bright and dark modes. Nano letters,2010.10(2):p.632-637.
    86. Ash, E. and G. Nicholls, Super-resolution aperture scanning microscope.1972.
    87. Hecht, B., et al., Scanning near-field optical microscopy with aperture probes:Fundamentals and applications. The Journal of Chemical Physics,2000.112(18):p.7761-7774.
    88. Mikhailovsky, A., et al., Broadband near-field interference spectroscopy of metal nanoparticles using a femtosecond white-light continuum. Optics letters,2003.28(18):p.1686-1688.
    89. Bouhelier, A., et al., Surface plasmon interference excited by tightly focused laser beams. Optics letters,2007.32(17):p.2535-2537.
    90. Sigle, W., et al., Electron energy losses in Ag nanoholes-from localized surface plasmon resonances to rings of fire. Optics letters,2009.34(14):p.2150-2152.
    91. De Abajo, F.G., Optical excitations in electron microscopy. Reviews of modern physics,2010. 82(1):p.209.
    92. Hell, S.W. and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics letters,1994.19(11):p.780-782.
    93. Westphal, V. and S.W. Hell, Nanoscale resolution in the focal plane of an optical microscope. Physical review letters,2005.94(14):p.143903.
    94. Betzig, E., Proposed method for molecular optical imaging. Optics letters,1995.20(3):p.237-239.
    95. Betzig, E., et al., Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006.313(5793):p.1642-1645.
    96. Rust, M.J., M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature methods,2006.3(10):p.793-796.
    97. Frey, H.G., et al., High-Resolution Imaging of Single Fluorescent Molecules with the Optical Near-Field of a Metal Tip. Physical Review Letters,2004.93(20):p.200801.
    98. Sanchez, E.J., L. Novotny, and X.S. Xie, Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips. Physical Review Letters,1999.82(20):p.4014-4017.
    99. Hartschuh, A., et al., High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Physical Review Letters,2003.90(9):p.095503.
    100. Hecht, B. Near-field optics seen as an antenna problem, in Conference on Lasers and Electro-Optics/Pacific Rim.2007. Optical Society of America.
    101. Anger, P., P. Bharadwaj, and L. Novotny, Enhancement and quenching of single-molecule fluorescence. Physical review letters,2006.96(11):p.113002.
    102. Happener, C. and L. Novotny, Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. Nano letters,2008.8(2):p.642-646.
    103. Taminiau, T.H., et al., λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano letters,2007.7(1):p.28-33.
    104. van Zanten, T.S., M.J. Lopez-Bosque, and M.F. Garcia-Parajo, Imaging Individual Proteins and Nanodomains on Intact Cell Membranes with a Probe-Based Optical Antenna. Small, 2010.6(2):p.270-275.
    105. Weber-Bargioni, A., et al., Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography. Nanotechnology,2010.21(6):p.065306.
    106. Palomba, S. and L. Novotny, Near-field imaging with a localized nonlinear light source. Nano letters,2009.9(11):p.3801-3804.
    107. Rodriguez-Lorenzo, L., et al., Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. Journal of the American Chemical Society,2009.131(13):p.4616-4618.
    108. Renger, J., et al., Surface-enhanced nonlinear four-wave mixing. Physical review letters,2010. 104(4):p.046803.
    109. Danckwerts, M. and L. Novotny, Optical frequency mixing at coupled gold nanoparticles. Physical review letters,2007.98(2):p.026104.
    110. Bouhelier, A., et al., Near-field second-harmonic generation induced by local field enhancement. Physical review letters,2003.90(1):p.013903.
    111. Lippitz, M., M.A. van Dijk, and M. Orrit, Third-harmonic generation from single gold nanoparticles. Nano letters,2005.5(4):p.799-802.
    112. Kim, S., et al., High-harmonic generation by resonant plasmon field enhancement. Nature,2008. 453(7196):p.757-760.
    113. Ghenuche, P., et al., Spectroscopic mode mapping of resonant plasmon nanoantennas. Physical review letters,2008.101(11):p.116805.
    114. Bouhelier, A., M.R. Beversluis, and L. Novotny, Characterization of nanoplasmonic structures by locally excited photoluminescence. Applied physics letters,2003.83(24):p.5041-5043.
    115. Schuck, P., et al., Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Physical Review Letters,2005.94(1):p.017402.
    116. Miller, D.A., Fundamental limit for optical components. JOSA B,2007.24(10):p. A1-A18.
    1. Aouani, H., et al., Multiresonant Broadband Optical Antennas As Efficient Tunable Nanosources of Second Harmonic Light. Nano Letters,2012.12(9):p.4997-5002.
    2. Kinkhabwala, A., et al., Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics,2009.3(11):p.654-657.
    3. Giannini, V. and J.A. Sanchez-Gil, Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas. Optics letters,2008.33(9):p.899-901.
    4. Maksymov, I.S., et al., Optical Yagi-Uda nanoantennas.2012.
    5. Kraus, J.D., Antennas.1988.
    6. Prodan, E., et al., A hybridization model for the plasmon response of complex nanostructures. Science,2003.302(5644):p.419-422.
    7. Rigneault, H., et al., Enhancement of single-molecule fluorescence detection in subwavelength apertures. Physical review letters,2005.95(11):p.117401.
    8. Kuhn, S., et al., Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Physical review letters,2006.97(1):p.017402.
    9. Farahani, J.N., et al., Single quantum dot coupled to a scanning optical antenna:a tunable superemitter. Physical Review Letters,2005.95(1):p.017402.
    10. Nie, S. and S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, science,1997.275(5303):p.1102-1106.
    11. Wang, D., et al., Directional raman scattering from single molecules in the feed gaps of optical antennas. Nano letters,2013.13(5):p.2194-2198.
    12. Thyagarajan, K., et al., Enhanced second-harmonic generation from double resonant plasmonic antennae. Optics express,2012.20(12):p.12860-12865.
    13. Harutyunyan, H., et al., Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Physical review letters,2012.108(21):p.217403.
    14. Aouani, H., et al., Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas. ACS nano,2012.7(1):p.669-675.
    15. Moerner, W. and D.P. Fromm, Methods of single-molecule fluorescence spectroscopy and microscopy. Review of Scientific Instruments,2003.74(8):p.3597-3619.
    16. Curto, A.G., et al., Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 2010.329(5994):p.930-933.
    17. Kosako, T., Y. Kadoya, and H.F. Hofinann, Directional control of light by a nano-optical Yagi-Uda antenna. Nature Photonics,2010.4(5):p.312-315.
    18. Rolly, B., et al., Crucial role of the emitter-particle distance on the directivity of optical antennas. Optics letters,2011.36(17):p.3368-3370.
    19. Bonod, N., et al., Ultracompact and unidirectional metallic antennas. Physical Review B,2010. 82(11):p.115429.
    20. Person, S., et al., Demonstration of zero optical backscattering from single nanoparticles. Nano letters,2013.13(4):p.1806-1809.
    21. Fu, Y.H., et al., Directional visible light scattering by silicon nanoparticles. Nature communications,2013.4:p.1527.
    22. Geffrin, J.-M., et al., Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nature communications, 2012.3:p.1171.
    23. Joo, C., et al., Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem.,2008.77:p.51-76.
    24. Weiss, S., Fluorescence spectroscopy of single biomolecules. Science,1999.283(5408):p. 1676-1683.
    1. Barnes, W., Fluorescence near interfaces:the role of photonic mode density, journal of modern optics,1998.45(4):p.661-699.
    2. Gersen, H., et al., Influencing the angular emission of a single molecule. Physical review letters, 2000.85(25):p.5312.
    3. Enderlein, J., Single-molecule fluorescence near a metal layer. Chemical physics,1999.247(1): p.1-9.
    4. Sommerfeld, A., Ober die Ausbreitung der Wellen in der drahtlosen Telegraphie. Annalen der Physik,1909.333(4):p.665-736.
    5. Kiebitz, F., Versuche fiber drahtlose Telegraphie mit veschiedenen Antennenformen. Annalen der Physik,1910.337(10):p.941-978.
    6. Weyl, H., Ausbreitung elektromagnetischer Wellen uber einem ebenen Letter. Annalen der Physik,1919.365(21):p.481-500.
    7. Novotny, L. and B. Hecht, Principles of nano-optics.2012:Cambridge university press.
    8. Palik, E.D., Handbook of optical constants of solids. Vol.3.1998:Academic press.
    9. Mueller, J.B. and F. Capasso, Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface. Physical Review B,2013.88(12):p.121410.
    10. Rodriguez-Fortuno, F.J., et al., Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science,2013.340(6130):p.328-330.
    11. Curto, A.G., et al., Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 2010.329(5994):p.930-933.
    12. Taminiau, T., et al., Optical antennas direct single-molecule emission. Nature Photonics,2008. 2(4):p.234-237.
    13. Kosako, T., Y. Kadoya, and H.F. Hofmann, Directional control of light by a nano-optical Yagi-Uda antenna. Nature Photonics,2010.4(5):p.312-315.
    14. Lee, S.-Y., et al., Comments on" Near-field interference for the unidirectional excitation of electromagnetic guided modes". arXiv preprint arXiv:1306.5068,2013.
    15. Rodriguez-Fortuno, F.J., et al., Regarding the "Comments on 'Near-field interference for the unidirectional excitation of electromagnetic guided modes'" by Lee et al.
    1. Fano, U., Effects of configuration interaction on intensities and phase shifts. Physical Review, 1961.124(6):p.1866.
    2. Wood, R., XLⅡ. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1902.4(21):p.396-402.
    3. Joe, Y.S., A.M. Satanin, and C.S. Kim, Classical analogy of Fano resonances. Physica Scripta, 2006.74(2):p.259.
    4. Luk'yanchuk, B., et al., The Fano resonance in plasmonic nanostructures and metamaterials. Nature materials,2010.9(9):p.707-715.
    5. Miroshnichenko, A.E., S. Flach, and Y.S. Kivshar, Fano resonances in nanoscale structures. Reviews of Modern Physics,2010.82(3):p.2257.
    6. Rahmani, M., B. Luk'yanchuk, and M. Hong, Fano resonance in novel plasmonic nanostructures. Laser & Photonics Reviews,2013.7(3):p.329-349.
    7. Halas, N.J., et al., Plasmons in strongly coupled metallic nanostructures. Chemical reviews, 2011.111(6):p.3913-3961.
    8. Zhang, S., et al., Plasmon-induced transparency in metamaterials. Physical Review Letters, 2008.101(4):p.47401.
    9. Liu, N., et al., Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature materials,2009.8(9):p.758-762.
    10. KG, A.T., et al., Path to achieve sub-10-nm half-pitch using electron beam lithography. Journal of Vacuum Science & Technology B,2011.29(1):p.011035.
    11. Yang, Z.-J., et al., Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers. Optics letters,2011.36(9):p.1542-1544.
    12. Herbert, W., et al., Cavity quantum electrodynamics. Reports on Progress in Physics,2006. 69(5):p.1325.
    13. Ameling, R., D. Dregely, and H. Giessen, Strong coupling of localized and surface plasmons to microcavity modes. Optics letters,2011.36(12):p.2218-2220.
    14. Taubert, R., et al., From near-field to far-field coupling in the third dimension:retarded interaction of particle plasmons. Nano letters,2011.11(10):p.4421-4424.
    15. Taubert, R., et al., Octave-wide photonic band gap in three-dimensional plasmonic Bragg structures and limitations of radiative coupling. Nature communications,2012.3:p.691.
    16. Ameling, R. and H. Giessen, Microcavity plasmonics:strong coupling of photonic cavities and plasmons. Laser & Photonics Reviews,2013.7(2):p.141-169.
    17. Ameling, R. and H. Giessen, Cavity Plasmonics:Large Normal Mode Splitting of Electric and Magnetic Particle Plasmons Induced by a Photonic Microcavity. Nano Letters,2010.10(11):p. 4394-4398.
    18. Novotny, L., Strong coupling, energy splitting, and level crossings:A classical perspective. American Journal of Physics,2010.78(11):p.1199-1202.