高频区涂覆雷达吸波材料的复杂目标的实时RCS预估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术的发展,我们可以借助AutoCAD软件用非线性有理B样条(NURBS)对目标进行精确的几何建模。然后结合OpenGL技术,从目标的图形显示中获取电磁计算所需的信息。图形电磁计算(Graphical Electromagnetic Computing,GRECO)方法就是在这样的环境下产生的,它具有诸如自动实现消隐,计算速度快,精度高等优点,目前被认为是求解高频区复杂目标的最有效的方法之一。
     本论文做了以下研究工作:首先,实现了运用GRECO方法计算了高频区理想导体复杂目标的雷达散射截面(RCS),分别应用了物理光学法(PO)和增量长度绕射系数法(ILDC)计算了目标的面元和棱边的电磁散射,最后综合面元与棱边的散射效应得到目标的总RCS。并应用了几个可视化加速的技巧,显著的提高了图形算法的计算速度。其次,改进了原先的棱边检测方法,使得棱边绕射场的计算精度大大提高。接着,进一步对涂覆雷达吸波材料的复杂目标进行了RCS计算。其中,涂覆目标面元的散射场是通过结合阻抗边界条件和几何光学法(GO)而得到;而涂覆目标棱边的散射场则是通过等效电磁流法求解阻抗劈的边缘绕射场近似得到的。最后成功地分析了目标在线极化模式下和圆极化模式下的电磁散射参量。
     通过将大量计算结果与理论值或相关文献结果相比较,效果令人满意。实例证明了GRECO方法在高频区实时求解复杂目标的RCS的快速性和有效性。
With the development of the computer technology, Targets can be accurately modeled by NURBS in virtue of AutoCAD. In addition combining OpenGL technology, we can translate the source shape data of targets displayed on the computer screen to the data for RCS computing. "Graphical Electromagnetic Computing (GRECO)" was presented in these conditions, which has many merits such as detecting shadowed regions automatically, computing in real time and accurately and so on. At present GRECO is regarded as one of the most valuable methods of Radar Cross Section (RCS) computation in the high-frequency region.
    Depending on these conditions, several researches have been completed in this paper: Firstly, Calculating RCS of complex conducting targets has been accomplished by GRECO method. The high-frequency RCS of targets are obtained through Physical Optics (PO) and Incremental Length Diffraction Coefficients (ILDC) respectively. At the same time some techniques for speeding up the computation are applied in this paper. Secondly, the precision of diffraction field of the edges of targets has been greatly advanced by improving the original method of detecting edges. The RCS of targets coated with Radar Absorbing Material (RAM) in the high-frequency region have been further computed. RCS of facets
    
    
    
    of targets coated RAM was resolved by combining Impedance Boundary Condition (IBC) and Geometric Optics (GO) and RCS of those edges were approximated by computing the RCS of edges of impedance wedge through Method of Equivalent Currents. Finally, RCS of targets were analyzed under the linear polarization and circular polar mode.
    Good argument has been found comparing the results calculated with this present approach with the theoretical ones and related literatures. The method adopted in this paper could analyze RCS of complex radar targets in the high-frequency region rapidly and efficiently in practical application.
引文
[1]张考,张云飞,马东立,丁林峰,飞行器对雷达隐身性能计算与分析,北京,国防工业出版社,1997
    [2]阮颖铮等,雷达散射截面与隐身技术,北京,国防工业出版社,1998
    [3]E.F.克拉特等(著),阮颖铮等(译),雷达散射截面预估,测量和减缩,北京,电子工业出版社,1998
    [4]朱贤阳,杨儒贵,陈益临,复杂雷达散射截面计算方法新近展,电波科学学报,1998.9 Vol 13,No.3
    [5]J. Perez, M.F. Catedra, Application of the Physical Optic to the RCScomputation of bodies modeled with NURBS surfaces ,IEEE Transactions on Antennas and Propagation Magazine, 1994 October, 1404-1411
    [6]M. Domingo, F. Rivas, J. Perez, R.P. Torres, M.F. Catedra, Computation of the RCS of Complex Bodies Modeled Using NURBS Surfaces, IEEE Transactions on Antennas and Propagation Magazine, Vol. 137, No. 6, December1995, 36-47
    [7]S.D. Turner, RESPECT:rapid electromagnetic scattering predictor for extremely complex targets, IEEE Proceedings Magazine, Vol. 37, No. 4, August 1994,214-220
    [8]Juan M. Rius, Miguel FERRANDO, luis Jofre, High-Frequency RCS of Complex Radar Targets in Real-Time, IEEE Transactions on Antennas and Propagation Magazine, Vol. 41No. 9, September, 1308-1319
    [9]Juan M. Rius, M. Ferrando and L. Jofre, GRECO:Graphical Electromagnetic Computing for RCS Prediction in Real Time, IEEE Transactions on Antennas and Propagation Magazine, 1993,35(2),7-17
    [10]王兴,曹秦峰,鲁述,徐鹏根,计算机图形学在RCS预估中的应用,微波学报,1998,V14.(4),309-313
    [11]曹秦峰,鲁述,徐鹏根,计算机图形学消隐算法在电磁场散射计算中的应用,电波科学学报,1998,Vol.13(2),193-196
    
    
    [12]Nazih N. Youssef, Radar Cross Section of Complex Targets, Proc. IEEE, Vol. 77, No. 5, May 1989,722-734
    [13]韩明华,袁乃昌,光学复杂目标RCS计算机软件集成技术进展,电子科技导报,Vol.4,1998,9-12
    [14]施法中,计算机辅助几何设计与非均匀有理B样条,北京,北京航空航天大学出版社,1994
    [15]朱雄心等,参数曲线曲面造型技术,北京,科学技术出版社,2000
    [16]白燕斌,史惠康等,OpenGL三维图形库编程指南,北京,机械工业出版社,1998
    [17]吴斌,毕丽温,OpenGL编程实例与技巧,北京,人民邮电出版社,1999
    [18]朱亚萍,白建军,边晓东,王爱民等,0penGL编程实例,北京,人民邮电出版社,1999
    [19]朱心雄等,计算机辅助设计和制造技术,北京,科学技术出版社,2000
    [20]雷鸣,飞机总体性能分析软件系统结构设计和曲面单元的RCS计算,北京,北京航空航天大学硕士学位,2000
    [21]梁团伟,导弹及挂架,发射架的RCS计算及控制研究,北京,北京航空航天大学硕士学位,1999
    [22]Eugene F. Knott, The Relationship Between Mitzner's ILDC and Michaeli's Equivalent Currents, IEEE Trans. Antennas Propagation Magazine, Vol. 33, No.1, Jan. 1985,112-116
    [23]昂海松,舒永泽,周建江等,复杂目标RCS计算的新方法-曲面象素法,电子与信息学报,Vol.23,No.10,2001,962-969
    [24]Cao Qinfeng, Xu Penggen, Application of Improved Z-Buffer Technique to RCS Computation, Wuhan University Journal of Natural Sciences, Vol. 3, No.1, 1998,53-55
    [25]张云飞,武哲,金属平板涂敷吸波材的RCS计算研究,系统工程与电子技术,vol.22,No.5 2000
    [26]吴先良,涂敷雷达吸波材料复杂目标RCS可视化计算,安徽大学学报,Vol.24 No.2.2000
    
    
    [27] B.EWang, W.J.Zhang, Wai-Kai Chen, A Systematic Design Method of Multilayer Composite-Glass with Thin Metallic Layer, IEEE Tran. on Micro.&Tech.,Vol.45 (1), 1997,126-129
    [28] M.Domingo, R.P.Tomes, and M.F.Catedra, "Calculation of the RCS from the Interaction of Edges and Facets" , IEEE Tran.,AP-42,June 1994
    [29] N.N.Youssef, "Radar Cross Section of complex Targets" ,Proceeding of the IEEE,No.5,May 1989
    [30] A.Micheali, " Equivalent Edge currents for Arbitrary Aspects of Observation" ,IEEE Tran. Vol.AP-32,No.3,March 1984
    [31] Willian B, Gorden, "Far-field Approximation to the kirchnoff-Helmholtz Representations of scattered Field" ,IEEE Tran. Vol.AP-23,590-592,July 1975
    [32] 李振格等编译,“AutoCAD 11.0计算机绘图软件包用户参考手册”,海洋出版社,1991
    [33] 刘铁军等,“军用复杂目标几何外形及图形RCS计算基础”,1996,“目标环境特性学术交流论文集”
    [34] John S. Asvestas,The Physical-Optics Integral and Computer Graohics, IEEE Tran.AP, Vol.43,No. 12,Dec 1995,1459-1460
    [35] Arie Micheali, Correction to "Equivalent Edge currents for Arbitrary Aspects of Observation" ,IEEE Tran. VoI.AP-33,No.2,Feb. 1985,112-116
    [36] 张彦,面向对象技术在电磁计算中的应用,北京,北京航空航天大学硕士学位,2000
    [37] J.L.Hu,S.M.Lin and W.B.Wang,Calculation of Maliuzhinets Function in Complex Region, IEEE Tran. on AP.,Vol.44,Aug. 1996,1195-1196
    [38] K.S.Yee,Numedcal Solution of Initial Boundary Value Problems Involving Maxwell's Equation in Isotropic Media, IEEE Tran. AP, Vol. 14(3),May 1966,302-307
    [39] Korada Umashkar, Allen Taflove, "A Novel Method to Analyze Electromagnetic Scattering of Complex Objects",IEEE Trans.Electromagnetic Compatibility, Vol.24,No.4,397-405
    [40] R.G.Kouyoumjian,P.H.Pathak,A uniform theory of diffraction for an edge in a
    
    perfectly conducting surface,Proc. IEEE,Vol.62(11)Nov. 1974,1448-1461
    [41] S.W.Lee,G.A.Deschamps,A uniform asymptotic theory of electromagnetic diffraction by a curved wedge,IEEE Trans.AP, Vol.24(1),Jan. 1976,25-34
    [42] P.la.Ufimtsev, "Approximate computation of the diffraction of plane electromagnetic waves at certain metal bodies: 1.Diffraction patterns at a wedge and a ribbon,Zh.Tekhn. Fiz.(USSR)" ,Vol.27,No.8,1957,1780-1718