锥形光纤光栅应变传感器及解调技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应变和温度的传感技术研究在智能材料与结构领域以及结构健康监测领域中占据着十分重要的位置。光纤光栅传感器由于其自身所具有的独特优点,已经逐渐发展成为各种场合中对应变、温度等多种参量进行传感、监测的首选元件,其制作技术、信号解调技术的研究以及应用领域的拓展都达到了前所未有的高度。
     然而,光纤光栅传感器在应用中还存在着一些限制,其中比较突出的有光纤光栅传感器的温度-应变交叉敏感以及传感信号解调装置结构复杂、价格昂贵等问题,对这些问题的妥善解决是保证光纤光栅传感器性能、促使其进一步走向工程实用化的关键,具有重要的理论价值和工程意义。
     本文在大量查阅国内外相关文献的基础上,对光纤光栅的传输理论、传感机理及其信号解调技术进行了深入研究,提出了一种可用于解决温度-应变交叉敏感的光纤光栅应变传感器设计方案,并通过实验对该应变传感器的性能及其传感信号解调装置进行了深入研究,取得了满意的效果。论文的主要创造性研究工作如下:
     在分析已有的锥形光纤光栅传感器机理和优缺点的基础上,提出了一种锥形光纤光栅应变传感器设计方案。该方案基于对锥形光纤光栅反射光的带宽解调,具有传感信号为波长调制的特点;结构简单,容易实现。实验结果表明,所设计的锥形光纤光栅应变传感器在宽范围内对温度不敏感,对应变/应力具有线性敏感特性,提高了应变测量的准确度;易组成分布式传感网络,对智能结构应变检测和结构健康监测有重要意义。
     在分析锥形光纤光栅反射光带宽特性的基础上,提出了锥形光纤光栅传感器反射光带宽调制与解调方法。将待测应变转换成锥形光纤光栅反射光的带宽变化,故避免了温度影响。将反射光中心波长与带宽调制相结合,可实现应变和温度的同时测量。这一方法较双波长移位传感方法具有结构简单、容易实现、成本较低等优点。
     在反射光带宽解调时,为了提高准确性,提出了“阈值限制”的预处理方法。即通过设定阈值来对传感信号进行筛选,只对满足要求的信号进行下一步的处理。实验表明这种方法有效避免了反射光中的旁瓣信号对测量结果的影响,提高了测量的精度;同时减少了数据处理量,提高了解调速度,对锥形光纤光栅的分布式应用有较大意义。
     在研究光纤光栅的综合问题时,分别提出了基于模拟退火和遗传机理的光纤光栅参数重构方法。这两种方法基于同一种思想,即在设定光纤光栅各物理参数的离散化取值范围的基础上,通过不同的参数组合来使计算反射谱符合或逼近目标反射谱,从而将光纤光栅的参数重构问题转化成为组合优化问题,通过模拟退火算法和遗传算法来进行求解。仿真实验验证了这两种方法的有效性,可用于解决针对给定反射谱的光纤光栅综合问题。
The study of the strain and temperature sensing technology is the most important part of the fields of smart material and structure and health monitoring of large civil infrastructure. Because of their special characters, optical fiber grating sensors have been considered the critical sensing components in these two fields. With the development of the optical communication technology in past ten years, optical fiber Bragg grating (FBG) sensors have progressed very rapidly, many research works, such as the fiber grating fabricating technology, signal demodulating technology, have been made a great progress, and the application fields of the optical fiber grating sensor have grown wider and wider.
     However, there are many problems which still limit the practice application of optical fiber grating sensing technology, such as the problem which is called cross sensitivity of strain and temperature of FBG, the wavelength demodulating equipments for FBG sensors are usually complex and expensive, and so on. How to solve these problems has been the key to ensure the sensing properties and make FBG sensors advancing in practical applications. It must show great academic value and practical importance.
     Through collecting and studying of many documents about FBG sensing technology, this thesis makes studies of the transmitting theory, the sensing principle, and the interrogation technology of FBG sensors. Then, a novel optical fiber grating strain sensor which can be used to solve the problem of cross sensitivity is proposed, the sensing property of this kind of strain sensor and its signal demodulation system are studied by experiment. The main innovative contributions of this thesis are as follows:
     On the basis of the studies of tapered fiber grating sensing principle and its characters, a strain sensor which is based on the measurement of reflected bandwidth of tapered fiber grating is proposed. This strain sensor still retains the wavelength modulation characteristic of the optical fiber grating, and it possesses characteristics as simple structure, easy to achieve. The results of the experiment have shown that, the reflected bandwidth of this strain sensor has a strict linear relationship with the stress and strain, but it is insensitive to the temperature in a wide changing range. It has also been demonstrated that this kind of strain sensor can be used in distributed sensing applications. So it must have great value to strain sensing in fields of smart structure and health monitoring of large civil infrastructure.
     On the basis of analysis of the characteristics of the reflected bandwidth, several methods to demodulate the reflected bandwidth of the tapered fiber grating are proposed. Because the bandwidth of the reflected light will be modulated only by strain, it is insensitive to the change of temperature. By demodulating both reflected bandwidth and the center reflected wavelength, this tapered fiber grating sensor could be used for simultaneous measurement of the strain and temperature. Compared with the method which is based on the principle of dual-wavelength shifted by two optical fiber gratings, this sensing method has so many advantages, such as simpler system structure, lower cost, easy to achieve, and so on.
     During the course of interrogation of the sensing system, a signal pre-procession method called threshold limiting method is used to promote the demodulation accuracy. That is, only the data which are higher than a certain value will be transmitted into the demodulation system to be processed, and the others which are lower will be eliminated, this certain value is called threshold value. By adopting this method in data processing, the experimental result shows that the influence of the side pulses in reflected light on measurement result is eliminated, and the processing amount of sensing data is greatly decreased. So, the demodulating speed and the measurement precision of this sensing system would be approved simultaneously. All of these advantages are very important to the tapered fiber grating sensors when they are used in distributed sensing applications.
     The algorithm to solve the synthesis problem of the optical fiber grating has also been studied, and two methods to reconstruct the physical parameters of FBG from the target reflected spectrum are proposed. These two methods are based on the same principle to transform the synthesis problem of FBG into a global optimization problem, and then solve this optimization problem by simulated annealing algorithm and modified genetic algorithm respectively. The presented numerical examples show that these two methods all can give results that are comparable or better than other design methods.
引文
1 R. Oliveira, O. Frazao, J. L. Santos and A. T. Marques. Optic Fiber sensor for Real-time Damage Detection in Smart Composite. Computers and Struc- tures. 2004,82:1315~1321
    2 S. Yashiro, N. Takeda, T. Okabe and H. Sekine. A New Approach to Predicting Multiple Damage States in Composite Laminates with Embedded FBG Sensors. Composites Science and Technology. 2005,65:659~667
    3 姜德生, 罗裴, 梁磊. 光纤布拉格光栅传感器与基于应变模态理论的结构损伤识别. 传感器技术. 2003,(2):17~19
    4 丁睿. 工程健康监测的分布式光纤传感技术及应用研究. 四川大学博士学位论文 2005:7~15
    5 W. Baker, I. McKenzie and R. Jones. Development of Life Extension Strategies for Australian Military Aircraft, Using Structural Health Monitor- ing of Composite Repairs and Joints. Composite Structures. 2004,66: 133~143
    6 B. Beral, H. Speckmann. Structural Health Monitoring (SHM) for Aircraft Structures-A Challenge for System Developers and Aircraft Manufacturers. Proc. Forth International Workshop on Structural Health Monitoring, 2003, California:31~38
    7 E. F. Crawley, J. D. Luis. Use of Piezoelectric Actuators as Elements of Intelligent Structures. AIAA Journal. 1988,25(10):1373~1385
    8 邓年春. 结构的主被动一体化振动控制研究. 哈尔滨工业大学博士论文. 2004:5~17
    9 I. M. Kenzie, R. Jones, I. H. Marshall and S. Galea. Optical Fiber Sensors for Health Monitoring of Bonded Repair Systems. Composite Structures. 2000,50:405~416
    10 于秀娟, 余有龙, 张敏, 廖延彪. 光纤光栅传感器在航空航天复合材料/结构健康监测中的应用. 激光杂志. 2006,27(1):1~3
    11 D. Whiting, B. Stejskal and M. Nagi. Condition of Pre-stressed Concrete Bridge Components-Technology Review and Field Surveys. FHWA-RD-93- 037. Federal Highway Administration, 1993,Washington, D.C. (项目报告)
    12 S. Johansson, A. Elforsk. Detection of Internal Erosion in Embankment Dams: Possible Methods in Theory and Practice. FHWA-OR-RD-98-21. Oregon Department of Transportation, 1998, Salem (项目报告)
    13 欧进萍, 关新春. 土木工程智能结构体系的研究与发展. 地震工程与工程振动. 1999,19(2):21~28
    14 Ou Jinping. Some Recent Advances of Intelligent Health Monitoring Systems for Civil Infrastructures in Mainland China. Proc. of the First International Conference on Structural Health Monitoring and Intelligent Infrastructure, 2003, Tokyo:131~144
    15 Ou Jinping. Practical Implementations of Intelligent Health Monitoring Systems in HIT. Proc. of North American Euro Pacific Workshop for Sensing Issues in Civil Structural Health Monitoring, 2004, Hawaii
    16 欧进萍. 重大工程结构的累积损伤与安全度评定. 走向 21 世纪的中国力学——中国科协第 9 次“青年科学家论坛”报告文集.北京:清华大学出版社, 1996:179~189
    17 黄尚廉. 智能结构—工程学科萌生的一场革命. 压电与声光. 1993,15(1): 13~15
    18 W. Ecke, I. Latka, R. Willsch and R. Graue. Fibre Optic Sensor Network for Spacecraft Health Monitoring. Meas. Sci. Technol. 2001,(12): 974~980
    19 K. Levin. Durability of Embedded Fiber Optic Sensors in Composites. Doctoral Thesis of Royal Institute of Technology, Sweden. 2001:5~7
    20 R. Ikegami. Structural Health Monitoring: Assessment of aircraft Customer Needs. Proc. Second International Workshop on Structure Health Monitor- ing. 1999, Standford:12~23
    21 L. Byoungho. Review of the present status of optical fiber sensors. Optical Fiber Technology. 2003,9:57~79
    22 B. Culshaw. Fiber Optics in Sensing and Measurement. IEEE Journal of Selected Topics in Quantum Electronics. 2000,6(6):1014~1021
    23 J. N. Kudva, M. J. Grage and M. M. Roberts. Aircraft Structural Health Monitoring and Other Smart Structures Technologies-Perspectives on Development of Future Smart Aircraft. Proc. Second International Workshop on Structure Health Monitoring. 1999, Standford:106~119
    24 P. M. Nellen, P. Anderegg, R. Bronnimann and U. Sennhauser. Applicationof Fiber Optical and Resistance Strain Gauges for Long-term Surveillance of Civil Engineering Structures. Proc. SPIE. 1997,3043:77~86
    25 E. Udd. Fiber Optic Smart Structures. Proc. of IEEE. 1996,84(6):884~894
    26 L. Kexing. Development of Commercial Fiber Optic Strain Sensors. IEEE Instrumentation and Measurement Technology Conference. 1997, Ottawa: 714~718
    27 E. Udd and M. Kunzler. Development and Evaluation of Fiber Optic Sensors. FHWA-OR-RD-03-14. Federal Highway Administration, 2003,Washington, D.C. (项目报告)
    28 C. M. Lawrence. Embedded Fiber Optic Strain Sensors for Process Monitor- ing of Composites. PhD Dissertation, Stanford University, 1997:14~18
    29 廖延彪. 光纤传感发展近况. 光电子技术与信息. 2000,13(6):27~29
    30 A. D. Kersey. A Review of Recent Developments in Fiber Optic Sensor Technology. Optical Fiber Technology. 1996,2:291~317
    31 A. D. Kersey, M. A. Davis, H. J. Patrick, et al.. Fiber Grating Sensors. IEEE Journal of Lightwave Technology. 1997,15(8):1442~1462
    32 K. O. Hill and G. Meltz. Fiber Bragg Grating Technology Fundamentals and Overview. IEEE Journal of Lightwave Technology. 1997,15(8):1263~1276
    33 Y. J. Rao. Recent Progress in Applications of In-fiber Bragg Grating Sensors. Optics and Lasers in Engineering. 1999,31:297~324
    34 Zh. Shulian, B. L. Sang, X. Fang and C. S. Sam. In-fiber Grating Sensors. Optics and Lasers in Engineering. 1999,32:405~418
    35 侯尚林, 胡春莲, 马义元. 光纤 Bragg 光栅及其应用研究进展. 兰州理工大学学报. 2004,30(1):94~97
    36 贾宏志. 光纤光栅传感器的理论和技术研究. 中国科学院博士论文. 2000:73~74
    37 吕且妮, 张以谟, 刘铁根等. 光纤光栅传感测量中的交叉敏感研究. 天津大学学报. 2002,35(4):426~429
    38 J. M. Parka, S. I. Leea, O. Y. Kwonb, et al.. Comparison of Nondestructive Microfailure Evaluation of Fiber-optic Bragg Grating and Acoustic Emiss- ion Piezoelectric Sensors Using Fragmentation test. Composites Part A: Applied Science and Manufacturing. 2003,34:203~216
    39 张鹰. 光纤布拉格光栅传感器交叉敏感问题基础研究. 吉林大学硕士论文. 2005:40~45
    40 张爱华,李岩,张书练,谢芳. 光纤布喇格光栅反射波长移位的探测. 光电工程. 2001,28(4):22~25
    41 王向宇, 乔学光, 李明等. 光纤光栅传感的解调方法. 光通信技术. 2006,(2): 16~18
    42 吴薇, 戴亚文. 光纤布喇格光栅传感器的波长移位检测方法. 半导体光电. 2006, 27(4):489~492
    43 K. O. Hill, Y. Fuji, D. C. Jonson and B. S. Kawasaki. Photosensitivity in Optical Fiber Wave guides: Application to Reflection Filter Fabrication. App. Phys. Lett.. 1978,(32):647~649
    44 G. Meltz, W. W. Morey and H. Glenn. Formation of Bragg Grating in Optical Fibers by a Transverse Holographic Method. Opt. Lett.. 1989,(14): 823~825
    45 K. O. Hill, et al.. Bragg Grating Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure through a Phase Mask. Appl. Phys. Lett.. 1993,(62):1035~1037
    46 P. J. Lemaire, R. M. Atkins, V. Mizrahi, et al.. High Pressure H2 Loading as a Technique for Achieving Ultrahigh UV Photosensitivity and Thermal Sensitivity in GeO2 Doped Optical Fibers. Electron. Lett.. 1993,(29):1191~ 1195
    47 王惠文. 光纤传感技术与应用. 国防工业出版社,北京. 2001:70~78
    48 廖延彪. 光纤光学. 清华大学出版社. 北京. 2000:165~166
    49 姚远, 易本顺, 谢洪刚. 光纤光栅电磁量传感器的应用. 激光与光电子学进展. 2006,43(3):9~14
    50 王 黎 蒙 , 朱 荣 华 . 光 纤 布 拉 格 光 栅 磁 场 传 感 方 案 . 激 光 与 红 外 , 1999,Vol.29(4):21~24
    51 陈冠三. 光纤光栅电流传感器. 传感技术学报. 2000,(3):174~176
    52 王黎蒙, 朱荣华, 巫华, 周姬. 光纤 Bragg 光栅电压传感特性. 传感器技术. 2000,19(3):15~18
    53 M. D. Marazuela, M. C. Moreno-Bondi. Fiber-Optic Biosensors. Anal. Bioanal. Chem, 2002:664~682
    54 N. Takahashi, K. Yoshimura, S. Takahashi et al.. Development of an Optical Fiber Hydrophone with Fiber Bragg Grating. J. Ultrasonics, 2000,(38):581~585
    55 Y. Zhao, F. Ansari. Quasi-distributed White Light Fiber Optic Strain Sensor. Optics Communication. 2001,196:133~137
    56 王东, 祁雷, 张玉书. 紫外写入光纤光栅器件的研究概况. 微细加工技术. 1996,(4):1~4
    57 王庆亚, 张健, 郑伟等. 紫外写入制备普通单模光纤光栅. 吉林大学自然科学学报. 1996,(2):69~70
    58 查开德, 王向阳. 光纤布拉格光栅的制作和应用.应用光学. 1996,17(6): 17~26
    59 杨秀峰, 葛春风, 赵东晖等. 双波长窄线宽光纤光栅环形腔激光器. 光子学报. 1998,27(5):438~440
    60 赵志勇, 于永森, 马玉刚等. 基于光纤光栅的可调谐光纤激光器. 吉林大学学报(理学版). 2005,43(2):201~203
    61 K. O. Hill, et al.. Bragg Grating Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure through a Phase Mask. Appl. Phys. Lett.. 1993, 62:1035~1037
    62 W. W. Morey, G. Meltz, W. H. Glenn. Fiber Optic Bragg Grating Sensors. Proc. of SPIE. 1989,1169:98~107
    63 Sh. K. Liaw, K. P. Hob, C. Linc and Ch. Sien. Experimental Investigation of Wavelength-tunable WADM and OXC Devices Using Strain-tunable Fiber Bragg Gratings. Optics Communications. 1999,169:75~80
    64 R. E. Slusher, B. J. Eggleton, and T. A. Strasser. Nonlinear Pulse Reflections from Chirped Fiber Gratings. Optics Express. 1998, 3(11):465~475
    65 M. Sumetsky, B. J. Eggleton. Theory of Group Delay Ripple Generated by Chirped Fiber Gratings. Optics Express, 2002, Vol.10(7):332~340
    66 魏道平, 赵玉成, 张良忠等. 利用啁啾光纤光栅进行色散补偿的研究. 光学技术. 2000, 26(1):76~78
    67 M. C. Farries, C. M. Ragdale, J. Marti. Broad band Chirped Fiber Bragg Filter for Pump Rejection and Recycling in Erbium Doped Fiber Ampliers. Electron Lett.. 1992, 28:487~489
    68 H. Ke, K. S. Chiang, and J. H. Peng. Analysis of Phase-Shifted Long-Period Fiber Gratings. IEEE Photonics Techn. Lett.. 1998, 10(10):1596~1598
    69 X. Shu, L. Zhang. Sensitivity Characteristics of Long-Period Fiber Gratings.J. Lightwave Techn.. 2002, 20(2):255~266
    70 J. A. Besley, T. Wang, and L. Reekie. Fiber Cladding Mode Sensitivity Characterization for Long-Period Gratings. IEEE J. Lightwave Techn.. 2003, (1):1~6
    71 M. Das, K. Thyagarajan. Dispersion Compensation in Transmission Using Uniform Long Period Fiber Gratings. Optics Communication, 2001,190: 159~163
    72 瞿荣辉, 丁浩, 赵浩, 方祖捷等. 取样光纤布拉格光栅. 光学学报. 1999, 19(2):226~229
    73 C. Sun, C. Li, X. Yu. Study on a Sampled Chirped Fiber Gratings. Optics Communications. 2003, 218:297~302
    74 贾宝华, 盛秋琴, 冯丹琴, 董孝义. 超结构光纤布拉格光栅的理论研究. 中国激光. 2003,30(3):247~251
    75 B. A. L. Gwandu, X. Shu, Y. Liu, W. Zhang, et al.. Simultaneous and Independent Sensing of Arbitrary Temperature and Bending Using Sampled Fiber Bragg Grating. Electronics Lett.. 2001, 37(15):946~948
    76 X. Chen, X. Li, L. Xia, J. Wang, et al.. Numerical Investigation of a Stress- Gradient Sampled Bragg Grating for Dispersion Compensation Applications in Wavelength-Division Multiplexing Systems. Optics Communications. 2001,187:363~367
    77 A. M. Gillooly, K. E. Chisholm, L. Zhang, and I. Bennion. Fiber Laser Based on Sampled Fiber Bragg Grating. Meas. Sci. Technol.. 2004,15:885~ 888
    78 X. Wang, K. Matsushima, A. Nishiki, and N. Wada1. High Reflectivity Sup- erstructured FBG for Coherent Optical Code Generation and Recognition. Optics Express. 2004,12(22):5457~5468
    79 刘崇琪. 具有倾角的光纤光栅反射特性的研究. 西安邮电学院学报. 2000,5(3):8~10
    80 C. Zheng, Y. Dai. The Influence of Tilting on Reflection Property of Fiber Grating. Opt. Electronic Techn, 2005, Vol.25(1):25~27
    81 洪从胜, 徐新华, 吕昌贵等. 切趾光纤光栅技术及其研究进展. 光电子技术与信息. 2002,15(3):1~6
    82 L. Z. Qiang, C. X. Fei, S. J. Shan, et al.. A novel method for fabricatingapodized fiber Bragg gratings. Optics and Laser Technology. 2003(35): 315~318
    83 赵春柳, 冯德军, 丁镭等. Moire 光纤光栅的原理及应用. 光通信技术. 2000, 24(4):280~284
    84 赵岭, 李琳, 瞿荣辉等. 基于莫尔光纤光栅的带通滤波器. 半导体光电. 2002, 23(6):408~414
    85 M. J. Cole. Broad Band Dispersion-Compensating Moire Fiber Bragg Gratings in a 10Gbit/s NRZ 100km Standard Step Index Monomode Fiber Link. J. Electron. Lett.. 1997,33:70~71
    86 L. Zhao, L. Li, A. Luo, J. Zhen, et al.. Bandwidth Controllable Transmission Filter based on Moire Fiber Bragg Grating. J. Light and Electron Optics. 2002, 113(10):464~468
    87 周志华, 王智, 谢平, 荆涛. 基于光子晶体光纤的长周期光栅. 激光与光电子学进展. 2005,42(8):41~44
    88 李智忠, 罗洪, 杨华勇等. 边孔光纤光栅的传感特性. 中国激光. 2006, 33(8): 1081~1085
    89 王云明, 戴劲草, 张明德, 孙小菡. 多模光纤光栅中新型的光波传输分析法. 应用科学学报. 2004,22(1):25~29
    90 张春书, 开桂云, 王志等. 柚子型微结构光纤 Bragg 光栅温度和应变传感特性研究. 物理学报. 2005,54(6):2758~2763
    91 P. Frederik. Fibre Bragg Grating-Based Temperature Monitor for Biomedical Applications. Doctoral Thesis of University of Applied Science of Ulm, Germany, 2001
    92 S. Soltesz. Strain Monitoring For Horsetail Falls and Sylvan Bridges. The Annual Final Report by Oregon Department of Transportation Research Group for Federal Highway Administration U.S.A.(No. SPR 304-081), 2002
    93 P. D. Foote. Fiber Bragg Grating Strain Sensors for Aerospace Smart Structure. Proc. of SPIE. 1994,2361:162~166
    94 陈熙源, 王曦峤. 光纤 Bragg 光栅传感器在智能船舶结构中的应用. 船舶工程. 2006,28(2):29~32
    95 M. Helyla, P. Florila. Flow-Speed Measurements based on Optical Fiber Sonsers. Info. Techn. Annual Report of Optoelectronics and Measurements Laboratory of University of Oulu, 1999:66~72
    96 宁靖, 王文争, 刘世海, 冯跃军. 光纤布拉格光栅传感器在石油勘探领域应用展望. 物探装备. 2004,14(4):1~5
    97 张向林, 陶果, 刘新茹. 光纤传感器在油田开发测井中的应用. 测井技术. 2006,30(3):267~269
    98 石艺尉, 王耀才, 蒋洪涛. 分布式光纤传感在井下瓦斯检测中的应用. 仪器仪表学报. 1995,16(4):387~392
    99 C. S. Weis, M. Naumann and G. Borm. Fiber Bragg Grating Strain Measure- ments in Comparison with Additional Techniques for Rock Mechanical Testing. IEEE Sensors Journal. 2003,3(1):50~55
    100 R. M. Lopeza, V. V. Spirina, S. V. Miridonova, et al.. Fiber Optic Distributed Sensor for Hydrocarbon Leak Localization based on Transmission/ Reflection Measurement. Optics & Laser Technology. 2002,34:465~469
    101 Y. J. Rao, et al.. In-fiber Bragg Grating Temperature Sensor Syatem for Medical Application. Lightwave Technology. 1997,15:779~785
    102 Y. Ogawa, et al.. A Multiplexing Load Monitoring System for Power Transmission Lines Using Fiber Bragg Grating. Proc. or the Optical Fiber Sensors Conf.. Williamsburg, VA, USA, 1997:468~471
    103 T. E. Hammon, et al.. Optical Fiber Bragg Grating Temperature Sensor Measurements in an Electrical Power Transformer Using a Temperature Compensated Fiber Bragg Grating as a Reference. Proc. of 11th International Conf. on Optical Fiber Sensors. Sapporo, Japan, 1996:566~569
    104 N. M. Theune, et al.. Application of Fiber Optical Sensors in Power Gen- erators: Current and Temperature Sensors. Proc. of Opto2000 Conf. 2000: 22~25
    105 W. Ecke, et al.. Chemical Bragg Grating Sensor Network based on Side- polished Optical Fiber. Proc. of SPIE. 1998,3555:457~466
    106 K. Habib. Detection of Crevice Corrosion by Optical Interferometry. Corro- sion Science. 2000, 42:455~467
    107 K. Habib, K. A. Muhana. Detection of Crevice Corrosion of Steels in Sea- water by Optical Interferometry. Materials Characterization, 2000,45:203~ 209
    108 B. Lee. Review of the Present Status of Optical Fiber Sensors. Optical Fiber Techn.. 2003,(9):57~59
    109 A. D. Kersey, A. Dandridge. An Overview of the Navy Fiber Optic Sensor Program. Report of OSM. US Naval Research Laboratory. Washington D. C. 2003:180~185
    110 J. O. Simpson, S. A. Wise, R. G. Bryant, et al.. Innovative Materials for Aircraft Morphing. Report of Materials Division NASA Langely Research Center. Hampton, VA 23681
    111 R. W. Wlezien, G. C. Horner, A. R. McGowan, et al.. The Aircraft Morphing Program. Proc. of the SPIE Smart Structures and Materials Symposium. Industrial and Commercial Applications Conference. 1998,3326:84~91
    112 Federal Highway Administration, 1996 Research and Technology Program Highlights. FHWA-RD-96-168, Washington D.C. 1996 (项目报告)
    113 G. Chen et al.. Simultaneous Pressure and Temperature Measurement Using Hi-Bi Fiber Bragg Gratings. Optics Communications. 2003,228:99~105
    114 P. D. Foote. Fiber Bragg Grating Strain for Aerospace Smart Structures. Proc. of SPIE. 1994,2361:162~166
    115 M. Froggatt. Distributed Measurement of the Complex Modulation of a Photoinduced Bragg Grating in an Optical Fiber. Applied Optics. 1996,35: 5162~5166
    116 E. Udd. Fiber Optic Smart Structures. Proc. of IEEE. 1996,84(1):60~67
    117 L. Sun-Kyu, L. Shuang, S. In-Cheon, J. Sung-Ho, et al.. Signal processing for strain measurement system with fiber Bragg grating. Report of Korea Science and Engineering Foundation (KOSRF R01-2000-0300). Gwangju, Korea. 2000
    118 焦明星, 赵恩国. 光纤 Bragg 光栅应变、温度交叉敏感问题解决方案. 应用光学. 2003,24(2):20~24
    119 M. G. Xu, L. Dong, L. Reekie, J. A. Tucknott and J. L. Cruz. Temperature- independent Strain Sensor Using a Chirped Bragg Grating in a Tapered Optical Fiber. Electron. Lett.. 1995,31(10):823~825
    120 于永森, 赵志勇, 卓仲畅等. 一种基于啁啾光纤光栅温度不敏感的应力传感器. 半导体光电. 2005,26(4):353~355
    121 Zh. W. Lin, L. Yang, Y. H. Yong, et al.. Methods for Wavelength-shift Detec- tion of Fiber Bragg Grating Sensor. J. Applied Optics. 2004,25(2):40~43
    122 W. Xiaoke and F. T. Henry. Fiber Bragg Grating Pair Interferometer Sensorwith Improved Multiplexing Capacity and High Resolution. IEEE Photonics Technology Lett.. 2003,15(5):742~744
    123 B. Villeneuve, M. Cyr, H. B. Kim. High-stability Wavelength-controlled DFB Laser Sources for Dense WDM Applications. Proc. of OFC’98. 1998, Washington:381~382
    124 Johannes Skaar. Synthesis and characterization of fiber Bragg gratings. Doctoral Thesis of Norwegian University of Science and Technology. 2000
    125 C. Ye, L. Bo, K. Gui-yun, D. Xiao-yi. Present Research and Perspective Development of Sensing Technology with Fiber Gratings. J. of Transducer Technology. 2005,24(12):1~4
    126 A. H. Hermann and H. Weiping. Coupled-Mode Theory. Proc. of IEEE. 1991,79(10):1505~1518
    127 M. Yamada, K. Sakuda. Analysis of Almost Periodic Distributed Feedback Waveguide via a Fundamental Matrix Approach. Appl. Opts.. 1987,26(6): 3474~3478.
    128 G. G. Karapetyana, A. V. Daryan, D. M. Meghavoryan, et al.. Theoretical Investigation of Active Fiber Bragg Grating. Optics Communications. 2002, 205:421~425
    129 张颖. 布拉格光纤光栅传感技术研究. 南开大学博士论文, 2001:47~61
    130 廖帮全. 光纤光栅理论、传感应用及全光纤声光调制研究. 南开大学博士论文. 2002:22~35
    131 余有龙. 光纤光栅及其在传感领域中的应用研究. 南开大学博士论文. 1999:34~40
    132 周智. 土木工程结构光纤光栅智能传感元件及其监测系统. 哈尔滨工业大学博士论文. 2003:27~38
    133 T. Erdogan. Fiber Grating Spectra. J. of Lightwave Technology. 1997,15(8): 1277~1294
    134 D. H. Kang, S. O. Park, C. S. Hong, C. G. Kim. The Signal Characteristics of Reflected Spectra of Fiber Bragg Grating Sensors. NDT&E International. 2005,38:712~718
    135 ZH. Feng, Z. Yu-cheng, Y. Feng-ping, W. Jun-hon. Research on Sensing Properties of Fiber Bragg Grating. Optical Fiber and Electric Cable. 2000, (4):29~32
    136 J. Azana, M. A. Muriel, R. C. Lawrence and P. W. Smith. Fiber Bragg Grating Period Reconstruction Using Time-Frequency Signal Analysis and Application to Distributed Sensing. J. Lightwave Techn.. 2001,19(5):646~ 654
    137 R. Kashyap. Design of Step-chirped Fiber Bragg Gratings. Optics Commun- ications. 1997,136:461~469
    138 K. A. Winick, J. E. Roman. Design of Corrugated Waveguide Filters by Fourier Transform Techniques. IEEE J. Quant. Electron.. 1990,26(11):1918~ 1929
    139 G. H. Song and S. Y. Shin. Design of Corrugated Waveguide Filters by the Gel’Fand-Levitan-Marenko Inverse-scattering Method. J. Opt. Soc. America. 1985,2:1905~1915
    140 E. Peral, J. Capmany and J. Marti. Iterative Solution to the Gel’Fand- Levitan-Marenko Coupled Equations and Application to Syntheses of Fiber Gratings. IEEE J. Quantum Electron.. 1996,32:2078~2084
    141 R. Feced, M. N. Zervas, M. A. Muriel. An Efficient Inverse Scattering Algorithm for the Design of Nonuniform Fiber Bragg Gratings. IEEE J. Quant. Electron.. 1999,35(8):1105~1115
    142 A. Rosenthal, M. Horowitz. Inverse Scattering Algorithm for Reconstruct- ing Strongly Reflecting Fiber Bragg Gratings. IEEE J. Quant. Electron.. 2003,39(8):1018~1026
    143 S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by Simulated Ann- ealing. Science. 1983,220:671~680
    144 G. Apninder, K. Peters and M. Studer. Genetic Algorithm for the Recon- struction of Bragg Grating Sensor Strain Profiles. Meas. Sci. Techn.. 2004, 15:1877~1884
    145 J. Skaar and K. M. Risvik. A Genetic Algorithm for the Inverse Problem in Synthesis of Fiber Grating. J. Lightwave Techn.. 1998,16(10):1928~1932
    146 王雪梅, 王义和. 模拟退火算法与遗传算法的结合. 计算机学报. 1997, 20(4):381~384
    147 徐芝纶. 弹性力学. 高等教育出版社. 北京. 1990,第三版:72~110
    148 谢芳, 张书练, 李岩等. 温度补偿的光纤光栅应力传感系统的研究. 光学技术. 2001,27(5):394~396
    149 M. G. Xu, J. L. Archambault, L. Reekie, et al.. Discrimination between Strain and Temperature Effects Using Dual-wavelength Fiber Grating Sensors. Elcetron. Lett.. 1994,30(13):1085~1087
    150 V. Bhatia, K. A. Murphy and R. O. Claus. Simultaneous Measurement Systems Employing Long-Period Grating Sensors. Proc. of Optical Fiber Sensors. 1996,11:702~705
    151 H. J. Patrick, G. M. Williams, A. D. Kersy and J. R. Pedrazzani. Hybrid Fiber Bragg Grating/Long Period Fiber Grating Sensor for Strain/Tempera- ture Discrimination. IEEE Photonics Technology Lett.. 1996,8(9):1223~ 1225
    152 余有龙, 关柏鸥, 董孝义等. 光纤光栅力传感器的无源温漂补偿技术. 光学学报. 2000,20(3):400~404
    153 M. Song, B. Lee, S. B. Lee. Interferometric Temperature-insensitive Strain Measurement with Different-diameter Fiber Bragg Gratings. Opt. Lett.. 1997,22(11):790~792
    154 P. M. Cavaleiro, F. M. Araujo, L. A.Ferreira, et al.. Simultaneous Measure- ment of Strain and Temperature Using Bragg Gratings Written in Germano- silicate and Boron-codoped Germanosilicate Fibers. IEEE Photon. Technol. Lett. 1999,11:1635~1637
    155 李剑芝, 姜德生. 载氢与光纤布拉格光栅. 材料研究学报. 2006,20(5): 518~522
    156 关柏鸥, 余有龙, 葛春风, 董孝义. 光纤光栅法布里-珀罗腔透射特性的理论研究. 光学学报. 2000,20(1):34~38
    157 Christopher Palmer. Diffraction Grating Handbook. Richardson Grating Laboratory. 2002 Fifth Edition, New York U.S.A.:16~25
    158 郝学元, 季鑫源, 陈家胜. 用线阵 CCD 实现光谱测试的虚拟仪器. 光学仪器. 2001,23(3):3~6