胶质细胞结构与功能的光学成像
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中枢神经系统中主要存在两类细胞:神经元和神经胶质细胞。通过记录电信号,人们能够准确地记录神经元的活动。但是神经胶质细胞作为一类非电兴奋型的细胞,仅靠电信号很难反映出它们的功能——这也是长期以来胶质细胞不被大家关注的原因之一。但是,从数量上来看,神经胶质细胞却是神经元的数倍,这提示神经胶质细胞可能在神经活动中发挥着更大的作用。近十年来,随着光学成像和光学标记方法的发展,胶质细胞在神经活动中的重要作用正在逐步被揭示。
     显微镜的发明将生命科学的发展引入了细胞水平。高分辨率、高对比度和高成像深度成为目前显微成像技术发展的目标。本文使用双光子激发扫描显微术和全内反射荧光显微术来研究了神经胶质细胞的形态与功能。
     在大鼠急性分离的海马脑片上,根据电生理和免疫组化的结果,区分了四种胶质细胞:星型胶质细胞,少突胶质细胞、NG2胶质细胞和小胶质细胞。通过电极注射荧光染料和双光子成像,观察了四种胶质细胞在正常生理状态下的形态;并进一步探索了它们的功能。对于星型胶质细胞,使用双光子解笼锁钙离子,发现在急性海马脑片上,星型胶质细胞的胞内钙升高能导致血管的舒张。对于少突胶质细胞,通过三维扫描成像,揭示了海马CA1区少突胶质细胞特有的突起分布形式:分为两种走向,呈十字分布。对于脑片中的NG2细胞,观察到其特有分裂方式:胞体一分为二,而突起按照在胞体上的位置分属不同的子细胞。
     利用飞秒脉冲激光刺激培养的星形胶质细胞,诱导了细胞内的钙升高及随后产生的钙波。不同的光强能诱导星型胶质细胞的产生两种钙振荡模式:短时的钙升高(即calcium spike,定义为S型)和高且可持续的钙升高(定义为H型)。光刺激后胞外的PI染料的进入,高数值孔径物镜观察到细胞膜的可逆变化及胞外钙离子的依赖性证实了光致穿孔效应是导致钙升高的原因。光穿孔诱导的钙升高能够在星型胶质间传播;药理学证据证实这种钙波是通过细胞释放的ATP介导,激活P2Y受体来实现的。同时在混合培养的细胞上,H型钙升高会引起附近神经元的同步钙振荡而S型则不会引起任何响应。以上结果说明,基于飞秒脉冲激光的光穿孔能在星型胶质细胞上诱导钙升高,从而导致P2Y受体依赖的钙波。而胶质细胞的钙波能诱导神经元产生同步的钙振荡。
     使用全内反射显微术研究了培养星型胶质细胞溶酶体的胞吐作用。使用TIRFM观察FM染料标记的溶酶体,发现星型胶质细胞的溶酶体有三种不同的释放现象,即膜上溶酶体的完全释放(full exocytosis from old puncta),新上膜溶酶体的完全释放(full exocytosis from new puncta)和部分释放模式(”kiss and run”)。在ATP刺激时,星型胶质细胞溶酶体的释放仅表现部分释放模式;而在缺氧条件下诱导了大量的溶酶体上膜,同时几乎所有在膜上的溶酶体都会被释放。
The central nervous system is consisted of neuron and glial cell. By recording electronic signals, the neural activities could be described precisely. As a non-excitatory cell in neural system, however, glial cell is hardly touched their functions by electronic signal; that is why glial cells have not received neuroscientists’attentions. Moreover, several to ten times to neuron in number in central nervous system, glial cell have implied to exert more functions in neural system. At a last decade, by advances in optical imaging and labeling techniques, the functions of glial cell will have been understood.
     The invention of microscope brings the life science research to cellular level. High resolution, contrast and penetration are the hot topics in development of optical imaging techniques. Here, by using two-photon laser excitation scanning microscopy and total- internal reflection microscopy, the morphology and function of glial cell were investigated.
     In CA1 region of hippocampal slices, four types of glial cell were identified by electrophysiological characteristics and immunocytochemical staining: astrocytes, oligodendrocyte, NG2 (a chondroitin sulfate proteoglycan) positive cells and microglia. By pipette-injected dyes and two-photon laser scanning microscopy (2PLSM), their shapes were observed. Further, their functions were explored : For astrocyte, by two-photon induced uncaging calcium, the astrocytic calcium elevation induced the vasodilatation. For oligodendrocyte in CA1 region of hippocampal slices, by 3-dimensional imaging, their processes showed distinct distribution: about two third of all the processes (67.5±12.0%) are parallel to Sch fiber and the others were vertical to them. For NG2 glial cell, the distinct mitosis mode was observed: the cell body divides into two, the processes belong to the daughter cells according to their localization in cell body.
     Stimulated astrocyte by femtosecond pulse laser induced the intracellular calcium elevation and followed intercellular calcium wave. Under the different powers, astrocytes displayed two modes of calcium elevation: calcium spike (named S-type in following) and higher and sustained calcium elevation (named H-type in following). Some evidences, from PI penetration, membrane reversible shift under the high numerical aperture objective and extracellular calcium-dependent results, demonstrated that photoporation effects were causes to intracellular calcium elevation. Photoporation induced calcium elevation could spread among astrocytes; from pharmacological results, this calcium wave is mediated by ATP from astrocyte released and activated the P2Y receptor in adjacent astrocytes. Moreover, in mix culture of neuron and astrocyte, the H-type calcium elevation in astrocyte could induce neuronal synchronized calcium oscillation, whereas no any responses to S-type。In conclusion, the photoporation based on femtosecond pulsed laser could generate calcium elevation in astrocyte, and induce P2Y receptor-dependent calcium wave. The calcium waves in astrocytes lead the neuronal synchronized calcium oscillation.
     Investigate lysosome exocytosis revealed by TIRFM. By FM dye labeled lysosome and TIRF imaging, three types of release modes of lysosomes in astrocyte were showed: full exocytosis from old puncta mode, full exocytosis from new puncta mode and”kiss and run”mode. Physiological stimulation by ATP could induce partial exocytosis, whereas pathological stimulation by an ischemic insult (KCN) induced full exocytosis of lysosome.
引文
[1] Conchello, J. A., Lichtman, J. W. Optical sectioning microscopy. Nat Methods. 2005, 2(12): 920-931
    [2] Denk, W., Strickler, J. H., Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science. 1990, 248(4951): 73-76
    [3] Zipfel, W. R., Williams, R. M., Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003, 21(11): 1369-1377
    [4] Svoboda, K., Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron. 2006, 50(6): 823-839
    [5] Nimmerjahn, A., Kirchhoff, F., Kerr, J. N., Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods. 2004, 1(1): 31-37
    [6] Fan, G. Y., Fujisaki, H., Miyawaki, A., Tsay, R. K., et al. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys J. 1999, 76(5): 2412-2420
    [7] Nguyen, Q. T., Callamaras, N., Hsieh, C., Parker, I. Construction of a two-photon microscope for video-rate Ca(2+) imaging. Cell Calcium. 2001, 30(6): 383-393
    [8] Schwille, P., Haupts, U., Maiti, S., Webb, W. W. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J. 1999, 77(4): 2251-2265
    [9] Steigert, J., Grumann, M., Brenner, T., Riegger, L., et al. Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab Chip. 2006, 6(8): 1040-1044
    [10] Oheim, M. Imaging transmitter release. II. A practical guide to evanescent-wave imaging. Lasers Med Sci. 2001, 16(3): 159-170
    [11] Wilson, T., Sheppard, C. Theory and Practice of Scanning Optical Microscopy New York: Academic Press, 1984
    [12] Sugiura, S., Lahav, R., Han, J., Kou, S. Y., et al. Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro. Eur J Neurosci. 2000, 12(2): 457-466
    [13] Chen, T. S., Zeng, S. Q., Luo, Q. M., Zhang, Z. H., et al. High-order photobleaching of green fluorescent protein inside live cells in two-photon excitation microscopy. Biochem Biophys Res Commun. 2002, 291(5): 1272-1275
    [14] Leutenegger, M., Blom, H., Widengren, J., Eggeling, C., et al. Dual-color total internal reflection fluorescence cross-correlation spectroscopy. J Biomed Opt. 2006, 11(4): 040502
    [15] Theer, P., Hasan, M. T., Denk, W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett. 2003, 28(12): 1022-1024
    [16] Yuste, R., Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature. 1995, 375(6533): 682-684
    [17] Mainen, Z. F., Malinow, R., Svoboda, K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature. 1999, 399(6732): 151-155
    [18] Krum, J. M., Rosenstein, J. M. Transient coexpression of nestin, GFAP, and vascular endothelial growth factor in mature reactive astroglia following neural grafting or brain wounds. Exp Neurol. 1999, 160(2): 348-360
    [19] Toku, K., Tanaka, J., Fujikata, S., Hamamoto, Y., et al. Distinctions between microglial cells and peripheral macrophages with regard to adhesive activities and morphology. J Neurosci Res. 1999, 57(6): 855-865
    [20] Raofi, S., Wong, P. K., Wilcox, R. E. Modulation of G-protein linked cAMP accumulation in immortalized murine cortical astrocytes by retroviral infection. Brain Res. 2000, 862(1-2): 230-233
    [21] Domaradzka-Pytel, B., Ludkiewicz, B., Jagalska-Majewska, H., Morys, J. Immunohistochemical study of microglial and astroglial cells during postnatal development of rat striatum. Folia Morphol (Warsz). 2000, 58(4): 315-323
    [22] Oertner, T. G. Functional imaging of single synapses in brain slices. Exp Physiol. 2002, 87(6): 733-736
    [23] Lendvai, B., Zelles, T., Rozsa, B., Vizi, E. S. A vinca alkaloid enhances morphological dynamics of dendritic spines of neocortical layer 2/3 pyramidal cells. Brain Res Bull. 2003, 59(4): 257-260
    [24] Yasuda, R., Sabatini, B. L., Svoboda, K. Plasticity of calcium channels in dendritic spines. Nat Neurosci. 2003, 6(9): 948-955
    [25] Stosiek, C., Garaschuk, O., Holthoff, K., Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A. 2003, 100(12): 7319-7324
    [26] Stewart, R., Christie, V. B., Przyborski, S. A. Manipulation of human pluripotent embryonal carcinoma stem cells and the development of neural subtypes. Stem Cells. 2003, 21(3): 248-256
    [27] Xia, M. Q., Bacskai, B. J., Knowles, R. B., Qin, S. X., et al. Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer's disease. J Neuroimmunol. 2000, 108(1-2): 227-235
    [28] Bacskai, B. J., Kajdasz, S. T., McLellan, M. E., Games, D., et al. Non-Fc-mediated mechanisms are involved in clearance of amyloid-beta in vivo by immunotherapy. J Neurosci. 2002, 22(18): 7873-7878
    [29] Robinson, R. J., McDonald, S. D. Glucose-sensitive membrane and infrared absorption spectroscopy for potential use as an implantable glucose sensor. Asaio J. 1992, 38(3): M458-462
    [30] Sharma, D. K., Brown, J. C., Cheng, Z., Holicky, E. L., et al. The glycosphingolipid, lactosylceramide, regulates beta1-integrin clustering and endocytosis. Cancer Res. 2005, 65(18): 8233-8241
    [31] Ge, W. P., Yang, X. J., Zhang, Z., Wang, H. K., et al. Long-term potentiation of neuron-glia synapses mediated by Ca2+-permeable AMPA receptors. Science. 2006, 312(5779): 1533-1537
    [32] Wolf, K., Mazo, I., Leung, H., Engelke, K., et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 2003, 160(2): 267-277
    [33] Cahalan, M. D., Parker, I., Wei, S. H., Miller, M. J. Two-photon tissue imaging: seeing the immune system in a fresh light. Nat Rev Immunol. 2002, 2(11): 872-880
    [34] Miller, M. J., Wei, S. H., Parker, I., Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science. 2002, 296(5574): 1869-1873
    [35] Wei, S. H., Miller, M. J., Cahalan, M. D., Parker, I. Two-photon imaging in intact lymphoid tissue. Adv Exp Med Biol. 2002, 512: 203-208
    [36] Stegemiller, M. L., Heineman, W. R., Seliskar, C. J., Ridgway, T. H., et al.Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 11. Design and evaluation of a small portable sensor for the determination of ferrocyanide in Hanford waste samples. Environ Sci Technol. 2003, 37(1): 123-130
    [37] Acuto, O. T cell-dendritic cell interaction in vivo: random encounters favor development of long-lasting ties. Sci STKE. 2003, 2003(192): PE28
    [38] Squirrell, J. M., Wokosin, D. L., White, J. G., Bavister, B. D. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol. 1999, 17(8): 763-767
    [39] Yasuda, Y., Tateishi, N., Shimoda, T., Satoh, S., et al. Relationship between S100beta and GFAP expression in astrocytes during infarction and glial scar formation after mild transient ischemia. Brain Res. 2004, 1021(1): 20-31
    [40] Raymond, C. R., Redman, S. J. Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus. J Physiol. 2006, 570(Pt 1): 97-111
    [41] Oertner, T. G., Sabatini, B. L., Nimchinsky, E. A., Svoboda, K. Facilitation at single synapses probed with optical quantal analysis. Nat Neurosci. 2002, 5(7): 657-664
    [42] Nimchinsky, E. A., Yasuda, R., Oertner, T. G., Svoboda, K. The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines. J Neurosci. 2004, 24(8): 2054-2064
    [43] Egger, V., Svoboda, K., Mainen, Z. F. Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike. J Neurosci. 2005, 25(14): 3521-3530
    [44] Ness, J. K., Valentino, M., McIver, S.R., Goldberg, M.P. . Identification of oligodendrocytes in experimental disease models. Glia. 2005, 50(4): 321-328
    [45] Nevian, T., Sakmann, B. Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex. J Neurosci. 2004, 24(7): 1689-1699
    [46] Rozsa, B., Zelles, T., Vizi, E. S., Lendvai, B. Distance-dependent scaling of calcium transients evoked by backpropagating spikes and synaptic activity in dendrites of hippocampal interneurons. J Neurosci. 2004, 24(3): 661-670
    [47] Koester, H. J., Sakmann, B. Calcium dynamics associated with actionpotentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J Physiol. 2000, 529 Pt 3: 625-646
    [48] Savtchenko, L. P., Rusakov, D. A. Extracellular diffusivity determines contribution of high-versus low-affinity receptors to neural signaling. Neuroimage. 2005, 25(1): 101-111
    [49] Davalos, D., Grutzendler, J., Yang, G., Kim, J. V., et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005, 8(6): 752-758
    [50] Hirase, H., Qian, L., Bartho, P., Buzsaki, G. Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol. 2004, 2(4): E96
    [51] Kawaguchi, N., Kobayashi, Y., Miyauchi, Y., Atarashi, H., et al. Incidence and clinical significance of junctional rhythm remaining after termination of radiofrequency current delivery in patients with atrioventricular nodal reentrant tachycardia. Jpn Circ J. 1999, 63(11): 865-872
    [52] Kiskin, N. I., Chillingworth, R., McCray, J. A., Piston, D., et al. The efficiency of two-photon photolysis of a "caged" fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals. Eur Biophys J. 2002, 30(8): 588-604
    [53] Manneville, J. B., Etienne-Manneville, S., Skehel, P., Carter, T., et al. Interaction of the actin cytoskeleton with microtubules regulates secretory organelle movement near the plasma membrane in human endothelial cells. J Cell Sci. 2003, 116(Pt 19): 3927-3938
    [54] Zou, K., Kim, D., Kakio, A., Byun, K., et al. Amyloid beta-protein (Abeta)1-40 protects neurons from damage induced by Abeta1-42 in culture and in rat brain. J Neurochem. 2003, 87(3): 609-619
    [55] Sobczyk, A., Scheuss, V., Svoboda, K. NMDA receptor subunit-dependent [Ca2+] signaling in individual hippocampal dendritic spines. J Neurosci. 2005, 25(26): 6037-6046
    [56] Bollmann, J. H., Sakmann, B. Control of synaptic strength and timing by the release-site Ca2+ signal. Nat Neurosci. 2005, 8(4): 426-434
    [57] Yang, J., Kleijn, J. M. Order in phospholipid Langmuir-Blodgett layers and the effect of the electrical potential of the substrate. Biophys J. 1999, 76(1 Pt 1): 323-332
    [58] Tirlapur, U. K., Konig, K. Targeted transfection by femtosecond laser. Nature.2002, 418(6895): 290-291
    [59] Thompson, N. L., Lagerholm, B. C. Total internal reflection fluorescence: applications in cellular biophysics. Curr Opin Biotechnol. 1997, 8(1): 58-64
    [60] Steyer, J. A., Almers, W. A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol. 2001, 2(4): 268-275
    [61] Sontheimer, H., Waxman, S. G. Expression of voltage-activated ion channels by astrocytes and oligodendrocytes in the hippocampal slice. J Neurophysiol. 1993, 70(5): 1863-1873
    [62] Verkhratsky, A., Orkand, R. K., Kettenmann, H. Glial calcium: homeostasis and signaling function. Physiol Rev. 1998, 78(1): 99-141
    [63] Zhang, S. C. Defining glial cells during CNS development. Nat Rev Neurosci. 2001, 2(11): 840-843
    [64] Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., Barres, B. A. Control of synapse number by glia. Science. 2001, 291(5504): 657-661
    [65] Yang, Y., Ge, W., Chen, Y., Zhang, Z., et al. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci U S A. 2003, 100(25): 15194-15199
    [66] Mulligan, S. J., MacVicar, B. A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature. 2004, 431(7005): 195-199
    [67] Zonta, M., Angulo, M. C., Gobbo, S., Rosengarten, B., et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003, 6(1): 43-50
    [68] Karadottir, R., Cavelier, P., Bergersen, L. H., Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature. 2005, 438(7071): 1162-1166
    [69] Bergles, D. E., Roberts, J. D., Somogyi, P., Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature. 2000, 405(6783): 187-191
    [70] David G.Amaral, Witter, M. P. Hippocampal Formation. in: Paxinos, G., editors. The Rat Nervous System ( second edition), London: Academic Press; 1994
    [71] Horikawa, K., Armstrong, W. E. A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Methods. 1988, 25(1): 1-11
    [72] Diamond, J. S., Bergles, D. E., Jahr, C. E. Glutamate release monitored withastrocyte transporter currents during LTP. Neuron. 1998, 21(2): 425-433
    [73] Luscher, C., Malenka, R. C., Nicoll, R. A. Monitoring glutamate release during LTP with glial transporter currents. Neuron. 1998, 21(2): 435-441
    [74] Tian, G. F., Azmi, H., Takano, T., Xu, Q., et al. An astrocytic basis of epilepsy. Nat Med. 2005, 11(9): 973-981
    [75] Salter, M. G., Fern, R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature. 2005, 438(7071): 1167-1171
    [76] Polak, P. E., Szuchet, S. Plasma membrane of cultured oligodendrocytes: I. Isolation, purification, and initial characterization. Glia. 1988, 1(1): 39-53
    [77] Soliven, B., Szuchet, S., Arnason, B. G., Nelson, D. J. Voltage-gated potassium currents in cultured ovine oligodendrocytes. J Neurosci. 1988, 8(6): 2131-2141
    [78] Berger, T., Schnitzer, J., Kettenmann, H. Developmental changes in the membrane current pattern, K+ buffer capacity, and morphology of glial cells in the corpus callosum slice. J Neurosci. 1991, 11(10): 3008-3024
    [79] Gipson, K., Bordey, A. Analysis of the K+ current profile of mature rat oligodendrocytes in situ. J Membr Biol. 2002, 189(3): 201-212
    [80] A.Verkhratsky, R. K.Orkand, H.Kettenmann. Glial calcium: homeostasis and signaling function. Physiol Rev. 1998, 78(1): 99-141
    [81] Chvatal, A., Pastor, A., Mauch, M., Sykova, E., et al. Distinct populations of identified glial cells in the developing rat spinal cord slice: ion channel properties and cell morphology. Eur J Neurosci. 1995, 7(1): 129-142
    [82] Fellin, T., Pascual, O., Haydon, P. G. Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology (Bethesda). 2006, 21: 208-215
    [83] Schipke, C. G., Kettenmann, H. Astrocyte responses to neuronal activity. Glia. 2004, 47(3): 226-232
    [84] Araque, A., Perea, G. Glial modulation of synaptic transmission in culture. Glia. 2004, 47(3): 241-248
    [85] Newman, E. A. Propagation of intercellular calcium waves in retinal astrocytes and Muller cells. J Neurosci. 2001, 21(7): 2215-2223
    [86] Zonta, M., Carmignoto, G. Calcium oscillations encoding neuron-to-astrocyte communication. J Physiol Paris. 2002, 96(3-4): 193-198
    [87] Haydon, P. G. GLIA: listening and talking to the synapse. Nat.Rev.Neurosci. 2001, 2(3): 185-193
    [88] Fields, R. D., Stevens, B. ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci. 2000, 23(12): 625-633
    [89] A.M.Jensen, S.Y.Chiu. Fluorescence measurement of changes in intracellular calcium induced by excitatory amino acids in cultured cortical astrocytes. J Neurosci. 1990, 10(4): 1165-1175
    [90] Kirischuk, S., Moller, T., Voitenko, N., Kettenmann, H., et al. ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J Neurosci. 1995, 15(12): 7861-7871
    [91] Kozlov, A. S., Angulo, M. C., Audinat, E., Charpak, S. Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci U S A. 2006, 103(26): 10058-10063
    [92] Angulo, M. C., Kozlov, A. S., Charpak, S., Audinat, E. Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci. 2004, 24(31): 6920-6927
    [93] Sanzgiri, R. P., Araque, A., Haydon, P. G. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells. J Neurobiol. 1999, 41(2): 221-229
    [94] Burghardt, T. P., Charlesworth, J. E., Halstead, M. F., Tarara, J. E., et al. In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy. Biophys J. 2006, 90(12): 4662-4671
    [95] Bernardinelli, Y., Magistretti, P. J., Chatton, J. Y. Astrocytes generate Na+-mediated metabolic waves. Proc Natl Acad Sci U S A. 2004, 101(41): 14937-14942
    [96] Innocenti, B., Parpura, V., Haydon, P. G. Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J Neurosci. 2000, 20(5): 1800-1808
    [97] Gallagher, C. J., Salter, M. W. Differential properties of astrocyte calcium waves mediated by P2Y1 and P2Y2 receptors. J Neurosci. 2003, 23(17): 6728-6739
    [98] Sul, J. Y., Orosz, G., Givens, R. S., Haydon, P. G. Astrocytic Connectivity in the Hippocampus. Neuron Glia Biol. 2004, 1(1): 3-11
    [99] K.K?nig, P.T.C.So, W.W.Mantulin, E.Gratton. Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes. Optics letters. 1997, 22(2): 135-136
    [100] Sandvig, A., Berry, M., Barrett, L. B., Butt, A., et al. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia. 2004, 46(3): 225-251
    [101] Valiunas, V. Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells. J Gen Physiol. 2002, 119(2): 147-164
    [102] De Vuyst, E., Decrock, E., Cabooter, L., Dubyak, G. R., et al. Intracellular calcium changes trigger connexin 32 hemichannel opening. Embo J. 2006, 25(1): 34-44
    [103] Guthrie, P. B., Knappenberger, J., Segal, M., Bennett, M. V., et al. ATP released from astrocytes mediates glial calcium waves. J Neurosci. 1999, 19(2): 520-528
    [104] Iwanaga, S., Kaneko, T., Fujita, K., Smith, N., et al. Location-dependent photogeneration of calcium waves in HeLa cells. Cell Biochem Biophys. 2006, 45(2): 167-176
    [105] Han, D., Ma, W., Liao, F., Yeh, M., et al. Time-series observation of the spreading out of microvessel endothelial cells with atomic force microscopy. Phys Med Biol. 2003, 48(23): 3897-3909
    [106] Bacso, Z., Eliason, J. F. Measurement of DNA damage associated with apoptosis by laser scanning cytometry. Cytometry. 2001, 45(3): 180-186
    [107] Satava, R. M., Wolf, R. K. Disruptive visions: biosurgery. Surg Endosc. 2003, 17(11): 1833-1836
    [108] Heidemann, A. C., Schipke, C. G., Kettenmann, H. Extracellular application of nicotinic acid adenine dinucleotide phosphate induces Ca2+ signaling in astrocytes in situ. J.Biol.Chem. 2005, 280(42): 35630-35640
    [109] Liu, Q. S., Xu, Q., Kang, J., Nedergaard, M. Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission. Neuron Glia Biol. 2004, 1(4): 307-316
    [110] Scalettar, B. A., Rosa, P., Taverna, E., Francolini, M., et al. Neuronal calcium sensor-1 binds to regulated secretory organelles and functions in basal and stimulated exocytosis in PC12 cells. J Cell Sci. 2002, 115(Pt 11): 2399-2412
    [111] Dunwiddie, T. V., Diao, L., Proctor, W. R. Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci. 1997, 17(20): 7673-7682
    [112] Liu, Q. S., Xu, Q., Arcuino, G., Kang, J., et al. Astrocyte-mediated activation ofneuronal kainate receptors. Proc Natl Acad Sci U S A. 2004, 101(9): 3172-3177
    [113] Kerr, D. A., Llado, J., Shamblott, M. J., Maragakis, N. J., et al. Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J Neurosci. 2003, 23(12): 5131-5140
    [114] King, S. M., Reed, G. L. Development of platelet secretory granules. Semin.Cell Dev.Biol. 2002, 13(4): 293-302
    [115] Stinchcombe, J., Bossi, G., Griffiths, G. M. Linking albinism and immunity: the secrets of secretory lysosomes. Science. 2004, 305(5680): 55-59
    [116] Jaiswal, J. K., Chakrabarti, S., Andrews, N. W., Simon, S. M. Synaptotagmin VII restricts fusion pore expansion during lysosomal exocytosis. PLoS.Biol. 2004, 2(8): E233
    [117] Luellen, B. A., Miller, D. B., Chisnell, A. C., Murphy, D. L., et al. Neuronal and astroglial responses to the serotonin and norepinephrine neurotoxin: 1-methyl-4-(2'-aminophenyl)-1,2,3,6-tetrahydropyridine. J Pharmacol Exp Ther. 2003, 307(3): 923-931
    [118] Gerasimenko, J. V., Gerasimenko, O. V., Petersen, O. H. Membrane repair: Ca(2+)-elicited lysosomal exocytosis. Curr.Biol. 2001, 11(23): R971-R974
    [119] Ginis, I., Hallenbeck, J. M., Liu, J., Spatz, M., et al. Tumor necrosis factor and reactive oxygen species cooperative cytotoxicity is mediated via inhibition of NF-kappaB. Mol Med. 2000, 6(12): 1028-1041
    [120] Reddy, A., Caler, E. V., Andrews, N. W. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell. 2001, 106(2): 157-169
    [121] Grafstein, B., Liu, S., Cotrina, M. L., Goldman, S. A., et al. Meningeal cells can communicate with astrocytes by calcium signaling. Ann Neurol. 2000, 47(1): 18-25
    [122] Pascual, O., Casper, K. B., Kubera, C., Zhang, J., et al. Astrocytic purinergic signaling coordinates synaptic networks. Science. 2005, 310(5745): 113-116
    [123] Coco, S., Calegari, F., Pravettoni, E., Pozzi, D., et al. Storage and release of ATP from astrocytes in culture. J Biol Chem. 2003, 278(2): 1354-1362
    [124] Maienschein, V., Marxen, M., Volknandt, W., Zimmermann, H. A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia. 1999, 26(3): 233-244
    [125] Parpura, V., Fang, Y., Basarsky, T., Jahn, R., et al. Expression of synaptobrevinII, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett. 1995, 377(3): 489-492
    [126] Bezzi, P., Gundersen, V., Galbete, J. L., Seifert, G., et al. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci. 2004, 7(6): 613-620
    [127] Chen, X., Wang, L., Zhou, Y., Zheng, L. H., et al. "Kiss-and-run" glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J.Neurosci. 2005, 25(40): 9236-9243
    [128] Axelrod, D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J.Cell Biol. 1981, 89(1): 141-145
    [129] Schmoranzer, J., Goulian, M., Axelrod, D., Simon, S. M. Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J.Cell Biol. 2000, 149(1): 23-32
    [130] Bi, G. Q., Alderton, J. M., Steinhardt, R. A. Calcium-regulated exocytosis is required for cell membrane resealing. J.Cell Biol. 1995, 131(6 Pt 2): 1747-1758
    [131] Ueki, K., Ramaswamy, S., Billings, S. J., Mohrenweiser, H. W., et al. ANOVA, a putative astrocytic RNA-binding protein gene that maps to chromosome 19q13.3. Neurogenetics. 1997, 1(1): 31-36
    [132] Grossman, A. W., Churchill, J. D., McKinney, B. C., Kodish, I. M., et al. Experience effects on brain development: possible contributions to psychopathology. J Child Psychol Psychiatry. 2003, 44(1): 33-63