有机凝胶模板法制备纳米二氧化硅及其形成机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于小分子有机凝胶因子可以通过分子自组装形成有机凝胶超分子结构,并在纳米无机材料制备过程中独特的模板效应,使其在超分子化学和无机材料领域的应用得到了蓬勃发展。
     在本论文中,合成了具有优良凝胶能力的小分子有机凝胶因子双硬脂酰胺二苯甲烷(BSAPM),以此有机凝胶自组装结构为模板成功诱导形成纳米结构的二氧化硅,考察了阳离子表面活性剂、金属盐、二氧化硅前驱体以及pH等条件对有机凝胶模板效应的影响,并对纳米结构二氧化硅的荧光性质进行了研究,此外,采用变温光谱学对有机凝胶中的氢键和π-π叠加等作用力进行了初步探索。论文的主要结果如下:
     1.合成了有机凝胶因子1、2、3,采用FTIR、1H NMR、MS对有机凝胶因子1(双硬脂酰氨二苯基甲烷,BSAPM)进行了结构表征。对有机凝胶因子1、2、3的凝胶能力进行了评价,有机凝胶因子1 (BSAPM)甚至在浓度低于1 wt %的情况下使许多溶剂凝胶化,表现出优良的凝胶能力,尤其可以使质子惰性溶剂二甲基亚砜(DMSO)、N,N-二甲基甲酰胺(DMF)、苯、二甲苯等发生凝胶化,并且对三个碳以上的烷醇也表现出良好的凝胶效果。采用DSC对在正丁醇中有机凝胶因子1、2、3形成凝胶的相转变温度(Tgel)进行了测定,结果发现其相转变温度随有机凝胶因子分子结构的不同而发生变化,其中BSAPM正丁醇凝胶的Tgel (66℃)最低,形成的凝胶比较稳定。考察了正丁醇、二甲苯、DMF和DMSO四种溶剂和有机凝胶因子浓度对BSAPM有机凝胶Tgel的影响,结果发现四种溶剂的BSAPM有机凝胶,其Tgel随溶剂沸点的升高而升高;有机凝胶因子BSAPM在浓度(1-5 wt %)的范围内,其正丁醇凝胶的Tgel随浓度的增大而升高。这些表明有机凝胶的Tgel,受有机凝胶因子的分子结构、凝胶化的溶剂及有机凝胶因子的浓度等诸多因素影响,并呈现一定的规律性变化,其中溶剂对有机凝胶的Tgel改变影响最大。
     2.采用SEM、TEM、AFM观察,以BSAPM为模板诱导制备了棒状、片状、管状和颗粒状等纳米结构的二氧化硅。在有机凝胶模板制备过程中,通过改变凝胶化溶剂、SiO2前驱体及添加阳离子表面活性剂、金属盐等,制备了形态可控的纳米SiO2。在正丁醇和质子惰性溶剂二甲苯、DMSO、DMF溶剂中成功地诱导制备了纤维束聚集体、棒状、卷曲状和薄片状的纳米结构SiO2,对凝胶因子BSAPM,仅通过改变溶剂,即可简单、方便的制备不同形态的二氧化硅。硅烷偶联剂A-1891改变了SiO2前驱体,可以制备形状均匀、表面光滑、直径约为100 nm、长几个微米的纳米棒。CTAB阳离子电荷密度的增大,使二氧化硅的形态发生了从纤维聚集-片状叠加-片状弯曲-管状的变化,说明阳离子电荷的密度是纤维束聚集、相互联结最终卷曲形成管状的关键因素,与文献报道的结论相符。硝酸铜存在时,易形成结晶体,破坏了有机凝胶的模板效应。此外,煅烧温度以及凝胶因子浓度在一定范围内的变化对SiO2的形态改变影响不大,而pH的变化直接影响正硅酸乙酯(TEOS)的水解聚合,从而影响纳米SiO2的制备。
     3.此类小分子有机凝胶模板法制备的纳米SiO2具有荧光性质。荧光显微镜观察,纳米SiO2固体粉末经紫外波段(330-380 nm)激发可以发射强烈而稳定的蓝色荧光,经蓝色(450-480 nm)和绿色波段(510-550 nm)激发分别发射相对较弱的绿色、红色荧光。荧光光谱测定,其最大激发波长Ex=261 nm,最大发射波长Em=365 nm,激发光谱峰形对称,发射光谱峰以365 nm为主要发射峰,并且在279和304 nm具有弱的窄发射峰。对不同SiO2前驱体获得的纳米结构SiO2,其荧光光谱的激发和发射波长略微不同。纳米SiO2经IR和XRD测定,均表明为无定形的结构,BET测试比表面积为148.51 m2/g,存在10-30 nm和1000-2000 nm两种孔径,以孔径较小的为主。XPS结果显示O与Si的原子摩尔数之比为2:1,主要以SiO2的形式存在,Si2p1/2 (103.87 eV)与Si2p3/2 (103.08 eV)的峰面积之比约为1:1.4,意味着纳米SiO2表面存在Si-的悬挂键。纳米SiO2的荧光性质可能与其纳米结构及表面Si-悬挂键的存在有关。
     4.利用变温红外、紫外、荧光等光谱对BSAPM正丁醇凝胶的形成机制进行研究。结果表明BSAPM正丁醇凝胶主要是通过氢键协同π-π叠加作用力形成,此凝胶的温度稳定区间为5-25℃。变温紫外、荧光光谱是研究芳香族有机凝胶因子π-π共轭的重要手段,同时变温红外光谱也显示了其特征振动光谱。
     5.利用变温红外光谱初步探讨了BSAPM分别在六种溶剂中形成凝胶的氢键和π-π共轭叠加作用力的强度变化趋势,其微弱变化可以显著改变BSAPM有机凝胶的聚集形态。六种BSAPM有机凝胶主要是以氢键为驱动力,π-π叠加作用协同而形成的,其中氢键作用力的大小可能决定凝胶聚集纤维束的连结、扭曲或卷曲。另外,有机凝胶聚集形态也因有机凝胶因子分子结构的变化而不同,有机凝胶因子2疏水链中双键的引入使聚集纤维束扭曲缠结,基于二苯砜的有机凝胶因子3可以形成纳米管。
     本文主要研究了小分子有机凝胶模板结构诱导制备形态可控的纳米二氧化硅,并且发现该模板法制备的纳米二氧化硅具有荧光性质。同时采用变温光谱学进一步探索了模板凝胶的形成机理,以期对这类体系在纳米材料的制备和应用方面具有一定的指导意义。
Recently, the use of organic compounds as templates for the generation of inorganic structures and materials has been receiving considerable attention. Low molecular weight organic gelators have become the focus of much attention. The gelator molecules self-assemble to form three-dimensional networks superstructures which are used as versatile building blocks in organogels and as templates for sol-gel transcription into nanostructured silica.
     In this dissertation, a bis-(4-stearoylaminophenyl) methane (BSAPM) organogelator based on 4, 4’-diaminodiphenylmethane was synthesized and possessed a versatile gelation ability. Multi-morphologic nanostructured SiO2 materials with controlled morphologies were prepared successfully by hydrolysis and polycondensation of a tetraethoxysilane (TEOS) precursor through a sol-gel transcription with the self-assembled organic superstructures of BSAPM as template. The addition of cation surfactant, metal-salt, silica precursor and hydrochloric acid will influence the transcription of the organogel as template. The fluorescence of nanostructured silica transcripted from the template method was investigated. On the other hand, the mainly driver of the aggregation of gelator molecules into fibrous network was studied by variable temperature FTIR spectra method.
     1. Three organogelators were synthesized and characterized by FTIR, 1H NMR and MS. Their gelation abilities of these gelators were evaluated in organic solvents under 1.0 wt %, indicating that the BSAPM possess a versatile and excellent gelation ability. The gelator BSAPM can gelate protic solvents (such as DMSO, DMF, benzene and toluene, etc) and alkyl alcohols. The phase transition temperatures (Tgel) of these organogels were determined by differential scanning calorimetry (DSC). Tgel of BSAPM gel was increased with concentration increasing of BSAPM gelator in n-butanol and boil point increasing of solvents in different organic solvents (such as n-butanol, xylene, DMF and DMSO). Moreover, the different molecular structure of gelator will lead to changes of Tgel.
     2. SEM, TEM and AFM observations of these nanostructured silica which transcripted from organogel as templates, showed various morphologies (such as stick-like, flake, tublar and granular, etc.). The nanostructured silica with controlled morphology was obtained by the addition of different solvents, cation surfactant, metal-salt and silica precursor in organogel systems. The silica obtained from n-butanol, xylene, DMSO and DMF had fibrous, stick-like, curly and thin flake nanostructured silica, respectively. All kinds of morphologies silica was obtained simply only by changed solvents in the template method. The silica obtained from n-butanol had changes from fibrous aggregation, flake stack, flake incurvate to tube like and granular with concentration increasing of cation surfactant (CTAB), whereas in the presence of A-1891 had a stick-like structure uniformly featuring the smooth surface and multi-layer wall with diameters of 100 nm and lengths of a few micron. The cationic charge generated by protonation of gelator and surfactant play a crucial role in the creation of such tube and stick like. These results indicate that various and novel silica can be prepared by transcription using various superstructures in one organogel as a template.
     3. The fluorescence property of nanostructured silica was validated by fluorescence spectrophotometer and microscopy. The blue light emission was stable and intense by ultraviolet excitation (330-380 nm) whereas the green and red emission was weak by blue and green (450-480 nm and 510-550 nm, respectively). The fluorescence spectra of nanostructured silica is Exmax=261 nm, Emmax=365 nm. The excitation curve had a symmetrical distribution. The emission curve had an intense main peak with two weak peaks at 279 nm and 304 nm. The different nanostructured silica has indistinct spectra. And that, the nanostructured silica was amorphous through FTIR, XRD and XPS. The nanostructured silica with two pore size distribution of 10-30 nm and 1000-2000 nm had a BET surface area of 148.51 m2/g. The XPS spectra of nanostructured silica displayed mainly O and Si peaks. Their peaks area revealed that the atomic ratio of O to Si is about 2:1. The spectrum of deconvoluted into multiple sub-peaks of Si2p peak (at103.87 eV, Si2p1/2 and 103.08 eV, Si2p3/2) indicated that nanotubes were composed of silica. The peaks area ratio of Si2p1/2 to Si2p3/2 is about 1:1.4, meaning there were Si- appended bonds in the surface of materials. The Si-O and Si- on the inner and outer surface presumably play an important role in the strong blue light emission of the nanotubes
     4. The gelation mechanism of BSAPM organogel from n-butanol was studied by FTIR, UV and FL spectra with variable temperature. The rudimental experiments results indicated that the organogel was very stable at 5-25℃and the intermolecular hydrogen-bonded play core role in the gelation process. Presumably, the BSAPM gel structure of 1-butanol system was self-assembled three dimension network mainly by intermolecular hydrogen-bonded cooperating with benzene ringπ-πconjugated. The variable temperature UV and FL spectra were important means for study of gel from gelator with aryl.
     5. The intensity and trend of hydrogen-bonded was investigated primarily with increasing temperature by FTIR in BSAPM organogels. Their weak changes would affect distinctly the aggregation of gelator. The aggregation of BSAPM molecular into fibrous network was driven mainly by hydrogen-bonded interaction in different gelatinized solvents. The intensity of hydrogen-bonded interaction may be decided to couple and twist between aggregation fibrous. On the other hand, different molecular structure of gelator would generate different aggregation morphologies of organogel. The aggregation fibrous of organogel from n-butanol was twisted owing to introducing one unsaturation of aliphatic alkyl chain in BSAPM gelator molecular structure and the nanotube of organogel from n-butanol was obtained due to 4, 4’-diaminodiphenyl sulphone instead of 4, 4’-diaminodiphenylmethane in BSAPM gelator molecular structure.
     In summary, the various novel nanostructured silicas with blue fluorescence can be prepared by transcription using various superstructures of the small molecular organogels as a template. The formation mechanism of the organogel superstructures was investigated primarily. It is very important that these results could also be expected to get further investigation and show great advantages for future preparation and application of nanostructured silica.
引文
[1] Journet C, Maser WK, Bernier P. Large-scale production of single-wallled carbon nanotubes by the electric-arc technique. Nat, 1997, 388: 756~758
    [2]王敏炜,彭年才,李凤仪.化学气相沉积法制备碳纳米管的研究进展.现代化工, 2002, 22(4): 18~21
    [3] Ma R, Bando Y, Golberg D, et al. Nanotubes of magnesium borate. Angew Chem Int Ed, 2003, 42: 1836~1838
    [4] Jiang Y, Xie Y, Qian YT, et al. A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J Am Chem Soc, 2000, 122: 12383~12384
    [5] Xu QM, Wan LJ, Bai CL, et al. Discriminating chiral molecules of (R)-PPA and (S)-PPA in aqueous solution by ECSTM. Angew Chem Int Ed, 2002, 41 (18): 3408~3411
    [6] Liang L, Liu J, Windisch CF, et al. Direct assembly of large arrays of oriented conducting polymer nanowires. Angew Chem Int Ed, 2002, 41(19): 3665~3668
    [7] Sadasivan S, Fowler CE, Mann S, et al. Nucleation of MCM-41 nanoparticles by internal reorganization of disordered and nematic-like silica-surfactant clusters. Angew Chem Int Ed, 2002, 41(12): 2151~2153
    [8] Pacholski C, Kornowski A, Weller H, et al. Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed, 2002, 41(7): 1188~1191
    [9] Kim Y, Mayer MF, Zimmerman SC, et al. A new route to organic nanotubes from porphyrin dendrimers. Angew Chem Int Ed, 2003, 42(10):1121~1126
    [10] Lu QY, Gao F, Zhao DY, et al. Creation of a unique self-sustained pattern of radially aligned semiconductor Ag2S nanorods. Angew Chem Int Ed, 2002, 41(11): 1932~1934
    [11] Jin J, Jiang L, Li TJ, et al. Self-assembly of uniform spherical aggregates of magnetic nanoparticles throughπ-πinteractions. Angew Chem Int Ed, 2001, 40(11): 2135~2138
    [12] Peng Q, Dong YJ, Li YD, et al. ZnSe semiconductor hollow microspheres. Angew Chem Int Ed, 2003, 42: 3027~3030
    [13]刘忠范,朱涛,张锦.纳米化学.大学化学, 2001,16(5): 1~10
    [14]王秀丽,曾永飞,卜显和.模板法合成纳米结构材料.化学通报, 2005, 10:723~730
    [15] Shenton W, Pum D, Sleytr U, Mann S, et al. Synthesis of cadmium sulphide superlattices using self~assembled bacterial S-layers. Nat, 1997, 389: 585~587
    [16] Davis SA, Burkett SL, Mendelson NH, et al. Bacterial templating of ordered macro-structures in silica and silica-surfactant mesophases. Nat, 1997, 385: 420~423
    [17] Kim SS, Zhang W, Pinnavaia TJ. Ultrastable mesostructured silica vesicles. Sci, 1998, 282: 1302~1305
    [18] van Esch JH, Feringa BL. Neue funktionelle Materialien aus selbstorganisierten organischen Gelen: vom Zufall zur Planung. Angew Chem, 2000, 112: 2351~2354
    [19] Abdallah DJ, Weiss RG. Organogels and low molecular mass organic gelators. Adv Mater, 2000, 12: 1237~1247
    [20] Swiegers GF, Malefetse TJ. New self-assembled structural motifs in coordination chemistry. Chem Rev, 2000, 100: 3483~3538
    [21] Bong DT, Clark TD, Granja JR, et al. Self-assembling organic nanotubes. Angew Chem, 2001, 113: 1016~1041
    [22] Shenton W, Douglas T, Young M, et al. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater, 1999, 11: 253~256
    [23] Douglas T, Young M. Host-guest encapsulation of materials by assembled virus protein cages. Nat, 1998, 393: 152~155
    [24] Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Sci, 1998, 279: 548~552
    [25] Terech P, Weiss RG. Low-molecular mass gelators of organic liquids and the properties of their gels. Chem Rev, 1997, 97: 3133~3159
    [26]杨亚江,崔文瑾.能使有机溶剂凝胶化的凝胶因子研究进展.有机化学, 2001, 21(9): 632~639
    [27]侯仲轲,陈立功,薛福华等.有机低分子凝胶因子.化学通报, 2005, 9: 643~649
    [28] Jung JH, Ono Y, Hanabusa K, et al. Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives. J Am Chem Soc, 2000, 122: 5008~5009
    [29] Kobayashi S, Hamasaki N, Suzuki M, et al. Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. J Am Chem Soc, 2002, 124: 6550~6551
    [30] Caruso F, Caruso RA, Mohwald H. Microencapsulation of uncharged low molecular weight organic materials by polyelectyolyte multilayer self-assembly. Sci, 1998, 282: 1111~1114
    [31] Yang H, Coombs N, Ozin GA. Morphogenesis of shapes and surface patterns in mesoporous silica. Nat, 1997, 386: 692~695
    [32] Mann S. Biomimetic Material Chemistry. Weinheim: VCH Publishers, 1996,11~23
    [33] Moreau JJ, Vellutini L, Chi Man MW, et al. Self-organized hybrid silica with long-range ordered lamellar structure. J Am Chem Soc, 2001, 123: 7957~7958
    [34] Jung JH, Ono Y, Shinkai S. Sol-gel polycondensation of tetraethoxysilane in a cholesterol-based organogel system results in chiral spiral silica. Angew Chem Int Ed, 2000, 39: 1862~1865
    [35] Ichinose I, Kunitake T. Wrapping individual chains of a viologen polymer with an ultrathin silicate sheath. Adv Mater, 2002, 14: 344~346
    [36]蒲敏,周根树,郑茂盛等.第三届中国功能材料及其应用学术会议论文集, 1998,10: 595~597
    [37] Jung HJ, Ono Y, Shinkai S. Novel silica structures which are prepared by transcription of various. Langmuir, 2000, 16: 1643~1649
    [38] De Gennes PG. Scaling Concepts in Polymer Physics. Cornell University Press: Ithaca, NY, 1979
    [39] Gelbart WM, Ben-Shaul A. The new science of complex fluids. J Phys Chem, 1996, 100: 13169~13189
    [40] John G, Masuda M, Okada Y, et al. Nanotube formation from renewable resources via coiled nanofibers. Adv Mater, 2001, 13: 715~718
    [41] Yager P, Schoes P. Formation of tubules by a polymerizable surfactant. Mol Cryst Liq Cryst, 1984, 106: 371~381
    [42] Nakashima N, Asakuma S, Kunikate T. Optical microscopic study of helical superstructures of chiral bilayer membranes. J Am Chem Soc, 1985, 107: 509~510
    [43] Thomas BN, Safinya CR, Plano RJ, et al. Lipid tubule self-assembly: Length dependence on cooling rate through a first order phase transition. Sci, 1995, 267: 1635~1638
    [44] Fuhrhop JH, Spiroski D, Boettcher C. Molecular monolayer rods and tubules made of a-(L-lysine),ω-(Amino)bolaamphiphiles. J Am Chem Soc, 1993, 115: 1600~1601
    [45] Giulierik F, Guilod D, Boettcher C. Anionic glucophospholipids-a new family of tubule-forming amphiphiles. Chem Eur J, 1996, 2: 1335~1339
    [46] Stewart S, Liu GJ. Block copolymer nanotubes. Angew Chem Int Ed, 2000, 39: 340~344
    [47] Ringler P, Mueller W, Ringsdorf H, et al. Functionalised lipid tubules as tools for helical crystallization of proteins. Chem Eur J, 1997, 3: 620~625
    [48] Fuhrhop JH, Bindig U, Siggel U. Micellar rods and vesicular tubules made of 14,16-diaminoporphyrins. J Am Chem Soc, 1993, 115: 11036~11037
    [49] Echegoyen LE, Hernandez J, Gokel GW, et al. Aggregation of steroidal lariat ethers: The first example of nonionic liposomes (niosomes) formed from neutral crown ether compounds. J Chem Soc Chem Commun, 1988, 12: 836~837
    [50] Nakano A, Hernadez JC, Gokel GW, et al. Steroidal aza-lariat ethers: Syntheses and aggregation behavior. Supramol Sci, 1997, 8: 213~223
    [51] Jung JH, Ono Y, Sakurai K, et al. Novel vesicular aggregates of crown-appended cholesterol derivatives which act as gelators of organic solvents and as templates for silica transcription. J Am Chem Soc, 2000, 122: 8648~8653
    [52]黄剑锋编.溶胶-凝胶原理与技术.北京:化学工业出版社, 2005.
    [53]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社, 1998.
    [54] Akiyama T, Imazeki S. Base promoted preparation of alkenylsilanols from allylsilanes. Chem Lett, 1997, 10: 1077~1078
    [55] Jung HJ, Hideki K, Kjeld JC, et al. Creation of Novel helical ribbon and double~layered nanotube TiO2 structures using an organogel template. Chem Mater, 2002, 14: 1445~1447
    [56] Kobayashi S, Hanabusa K, Hamasaki N, et al. Preparation of TiO2 hollow-fibers using supramolecular assemblies. Chem Mater, 2000, 12: 1523~1525
    [57] Adachi M, Harada T, Harada M. Formation processes of silica nanotubes through a surfactant-assisted templating mechanism in laurylamine hydrochloride/tetraethoxysilane system. Langmuir, 2000, 16: 2376~2384
    [58] Adachi M, Harada T, Harada M. Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane system. Langmuir, 1999, 15(21): 7097~7100
    [59] Jung JH, Ono Y, Shinkai S. Novel preparation method for multi-layered, tubular silica using an azacrown-appended cholesterol as template and metal-deposition into the interlayer space. J Chem Soc, Perkin Trans, 1999, 2(7): 1289~1291
    [60] Ono Y, Nakashima K, Sano M, et al. Organic gels are useful as a template for the preparation of hollow fiber silica. Chem Commun, 1998, 14: 1477~1478
    [61] Ono Y, Nakashima K, Shinkai S, et al. Template effect of cholesterol-based organogels on Sol-Gel polymerization creates novel silica with a helical structure. Chem Lett, 1999, 10: 1119~1120
    [62] Ono Y, Nakashima K, Sano M, et al. Organogels are useful as a template for the preparation of novel helical silica fibers. J Mater Chem, 2001, 11(10): 2412~2419
    [63] Wang G, Hamilton AD. Synthesis and self-assembling properties of polymerizable organogelators. Chem Eur J, 2002, 8: 1954~1961
    [64] Wang R, Geiger C, Chen L, et al. Direct observation of sol-gel conversion: the role of the solvent in organogel formation. J Am Chem Soc, 2000, 122: 2399~2400
    [65] Jung JH, John G, Masuda M, et al. Self-assembly of a sugar-based gelator in water: its remarkable diversity in gelation ability and aggregate structure. Langmuir, 2001, 17: 7229~7232
    [66] Jung JH, Shinkai S, Shimizu T. Spectral characterization of self-assemblies of aldopyranoside amphiphilic gelators: what is the essential structural difference between simple amphiphiles and bolaamphiphiles. Chem Eur J, 2002, 8: 2684~2690
    [67] Hanabusa K, Yamada M, Kimura M, et al. Prominent gelation and chiral aggregation of alkylamides derived from trans-1,2-diaminocyclohexane. Angew Chem Int Ed Engl, 1996, 35: 1949~1951
    [68] Hanabusa K, Kawakami A, Kimura M, et al. Small molecular gelling agents to harden organic liquids: trialkyl cis-cyclohexanetricarbonamides. Chem Lett, 1997, 3: 191~192
    [69] Suzuki M, Yumoto M, Kimura M, et al. A family of low-molecular-weight hydrogelators based on l-lysine derivatives with a positively charged terminal group. Chem Eur J, 2003, 9: 348~354
    [70] Hanabusa K, Maesaka Y, Kimura M, et al. New gelators based on 2-amino-2-phenylethanol: close gelator-chiral structure relationship. Tetrahedron Lett, 1999, 40: 2385~2388
    [71] Gronwald O, Shinkai S. Sugar-integrated gelators of organic solvents. Chem Eur J, 2001, 7: 4328~4334
    [72] Yoza K, Ono Y, Yoshihara K, et al. Oriented molecular aggregate of porphyrin-based amphiphiles and their morphology control by a boronic acid-sugar interaction. Chem Commun, 1998, 8: 907~908
    [73] Snip E, Shinkai S, Reinhoudt DN. Organogels of a nucleobase-bearing gelator and the remarkable effects of nucleoside derivatives and a porphyrin derivative on the gel stability. Tetrahedron Lett, 2001, 42: 2153~2156
    [74] IshiI T, Iguchi R, Snip E, et al. [60] Fullerene can reinforce the organogel structure of porphyrin~appended cholesterol derivatives: novel odd-even effect of the (CH2)n spacer on the organogel stability. Langmuir, 2001, 17: 5825~5833
    [75] van Bommel KJC, Shinkai S. Silica transcription in the absence of a solution catalyst: the surface mechanism. Langmuir, 2002, 18: 4544~4548
    [76] Caruso RA, Antonietti M. Sol-gel nanocoating: An approach to the preparation of structured materials. Chem Mater, 2001, 13: 3272~3282
    [77] Hubert DHW, Jung M, Frederik PM, et al. Vesicle-directed growth of silica. Adv Mater, 2000, 12: 1286~1290
    [78] Imai H, Takahashi N, Tamura R, et al. Formation of whiskers of silicate mesostructures. Langmuir, 2001, 17: 17~20
    [79] Wang XD, Yang WL, Tang Y, et al. Fabrication of hollow zeolite spheres. Chem Commun, 2000, 21: 2161~2162
    [80] Caruso RA, Susha A, Caruso F. Multilayered titania silica and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres. Chem Mater, 2001, 13: 400~409
    [81] Ono Y, Kanekiyo Y, Inoue K, et al. Preparation of novel hollow fiber silica using collagen fibers as a template. Chem Lett, 1999, 6: 475~476
    [82] Van Bommel KJC, Jung JH, Shinkai S. Poly(l-lysine) aggregates as templates for the fformation of hollow silica spheres. Adv Mater, 2001, 13: 1472~1476
    [83] Nakamura H, Matsui Y. Silica gel nanotubes obtained by the sol-gel method. J Am Chem Soc, 1995, 117: 2651~2652
    [84] Brinker CJ, Scherer GW. Sol-Gel Science; Academic Press: San Diego, 1990.
    [85] Pilpel N. Properties of organic solutions of heavy metal soaps. Chem Rev, 1963, 63: 221~234
    [86] Klyne W. The Chemistry of Steroids. Wiley: New York, 1960
    [87] Brotin T, Utermo hlen R, Fages F, et al. A novel small molecular luminescent gelling agent for alcohols. Chem Commun, 1991, 416~418
    [88] Lin YC, Weiss RG. A novel gelator of organic liquids and the properties of its gels. Macromolecules, 1987, 20: 414~417
    [89] Murata K, Aoki M, Susuki T, et al. Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J Am Chem Soc, 1994, 116: 6664~6676
    [90] Campbell J, Kuzma M, Labes M. Nonaqueous lyotropic nematic gel. Mol Cryst Liq Cryst, 1983, 95(1-2): 45~50
    [91] Yasuda Y, Iishi E, Inada H, et al. Novel low-molecular-weight organic gels: N,N’,N’’-tristearyltrimesamide/organic solvent system. Chem Lett, 1996, 7: 575~576
    [92] Hanabusa K, Okui K, Karaki K, et al. Organogels formed byN-benzyloxycarbonyl-L-alanine 4-hexadecanoyl-2-nitrophenyl ester and related compounds. J Colloid Interf Sci, 1997, 195(1): 86~93
    [93] Hanabusa K, Tange J, Taguchi Y, et al. Small molecular gelling agents to harden organic liquids: alkylamide of n-benzylcarbonyl-L-valyl-L-valine. Chem Commun, 1993, 390~392
    [94] Hanabusa K, Naka Y, Koyama T, et al. Gelling agents to harden organic fluids: oligomers of -amino acids. Chem Commun, 1994, 2683~2684
    [95] Hanabusa K, Matsumoto Y, Miki T, et al. Cyclo(dipeptide)s as low-molecular-mass gelling agents to harden organic fluids. Chem Commun, 1994, 1401~1402
    [96] de Vries EJ, Kellogg RM. Small depsipeptides as solvent gelators. J Chem Soc Chem Commun, 1993, 3: 238~240
    [97] Lu L, Weiss RG. Cholestanyl substituted quaternary ammonium salts as gelators of organic liquids. Langmuir, 1995, 11: 3630~3632
    [98] Gallivan JP, Schuster GB. Aggregates of hexakis(n-hexyloxy)triphenylene self-assemble in dodecane solution: Intercalation of (-)-menthol 3,5-dinitrobenzoate induces formation of helical structures. J Org Chem, 1995, 60: 2423~2429
    [99] De Rango C, Charpin P, Navaza J, et al. Beta-cyclodextrin/pyridine gel systems. The crystal structure of a first beta-cyclodextrin-pyridine water compound. J Am Chem Soc, 1992, 114: 5475~5476
    [100] Esch JV, Schoonbeek F, de Loos M, et al. Cyclic Bis-urea compounds as gelators for organic solvents. Chem Eur J, 1999, 5: 937~950
    [101] Shinkai S, Murata K. Cholesterol-based functional tectons as versati le building-blocks for liquid crystals, organic gels and monolayers. J Mater Chem, 1998, 8: 485~492
    [102] Shimizu T, Bottom-up synthesis and structural properties of self-assembled high-axial-ratio nanostructures. Macromol Rapid Commun, 2002, 23: 311~331
    [103]崔文瑾.有机凝胶因子的合成及其性能的研究:硕士学位论文.武汉市:华中科技大学图书馆, 2001
    [104]黎坚.可聚合凝胶因子的合成及其性能的研究:硕士学位论文.武汉市:华中科技大学图书馆, 2002
    [105]崔文瑾,殷以华,杨亚江.凝胶因子的合成及在有机溶剂中的聚集现象.华中科技大学学报, 2001, 21(8): 96~98
    [106]殷以华,杨亚江,徐辉碧.含有4,4’-双(甲基丙烯酰胺基)偶氮苯水凝胶的合及其在结肠位药物释放的动物实验.高分子学报, 2002, 4: 408~413
    [107] Pozzo JL, Clavier GM, Desvergne JP. Rational design of new acid-sensitive organogelators. J Mater Chem, 1998, 8: 2575~2577
    [108] Li S, John VT, Irvin GC, et al. Synthesis and magnetic properties of a novel ferrite organogel. J Appl Phys, 1999, 85: 5965~5967
    [109] Kawano SI, Fujita N, Shinkai S. A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli. J Am Chem Soc, 2004, 126: 8592~8593
    [110] Varghese TL, Gaindhar SC, David J. Developmental studies on metallised UDMH and kerosene gels. Def Sci J, 1995, 45: 25~33
    [111] Sakaguchi S, Ueki H, Kato T. Quasi-solid dye sensitized solar cells solidified withchemically cross-linked gelators Control of TiO2/gel electrolytes and counter Pt/gel electro-lytes interfaces. Photochem Photobio A: Chem, 2004, 164: 117~122
    [112] Mohmeyer N, Wang P, Schmidt HW, et al. Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-O-benzylidene-D-sorbitol derivatives as low molecular weight organic gelators. J Mater Chem, 2004, 14: 1905~1909
    [113] Tiller JC. Increasing the local concentration of drugs by hydrogel formation. Angew Chem Int Ed, 2003, 42: 3072~3075
    [114] Friggeri A, Feringa BL, Esch J. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator. J Control Release, 2004, 97: 241~248
    [115] Lin YC, Kachar B, Weiss RG. Liquid-crystalline solvents as mechanistic probes. Part 37. Novel family of gelators of organic fluids and the structure of their gels. J Am Chem Soc, 1989, 111: 5542~5551
    [116] James TD, Murata K, Harada T, et al. Chiral discrimination of monosaccharides through gel formation. Chem Lett, 1994, 266(2): 273~276
    [117] Van Esch J, Feringa BL. New functional materials based on self~assembling organogels: From serendipity towards design. Angew Chem Int Ed, 2000, 39(13): 2263~2266
    [118] Kolbel M, Menger FM. Hierarchical structure of a self~assembled xerogel. Chem Commun, 2001, 3: 275~276
    [119] Yoza K, Amanokura N, Ono Y, et al. Sugar-integrated gelators of organic solvents- their remarkable diversity in gelation ability and aggregate structure. Chem Eur J, 1999, 5: 2722~2729
    [120] Geiger C, Stanesch M, Chen LH, et al. Organogels resulting from competing self-assembly units in the gelator: Structure, dynamics, and photophysical behaviorof gels formed from cholesterol-stilbene and cholesterol-squaraine gelators. Langmuir, 1999, 15: 2241~2245
    [121] de Loos M, van Esch J, Stokroos I, et al. Remarkable stabilization of self-assembled organogels by polymerization. J Am Chem Soc, 1997, 119: 12675~12676
    [122] Lu L, Cocker TM, Bachman RE, et al. Gelation of organic liquids by some 5-cholestan-3β-yl N-(2~Aryl)carbamates and 3-cholesteryl 4-(2-anthrylamino)butanoates. How important are H-bonding interactions in the gel and neat assemblies of aza aromatic-linker-steroid gelators? Langmuir, 2000, 16: 20~34
    [123] Adballah DJ, Weiss RG. N-alkanes gel n-alkanes (and many other organic liquids). Langmuir, 2000, 16: 352~355
    [124] van Esch J, De Feyter S, Kellogg RM, et al. Self-assembly of bisurea compounds in organic solvents and on solid substrates. Chem Eur J, 1997, 3: 1238~1243
    [125] Otsuni E, Kamaras P, Weiss RG. Novel X-ray method for in situ determination of gelator strand structure: Polymorphism of cholesteryl anthraquinone-2-carboxylate. Angew Chem Int Ed Engl, 1996, 35: 1324~1326
    [126] Terech P, Furman I, Weiss RG. Structures of organogels based upon cholesteryl 4-(2-anthryloxy)butanoate, a highly efficient luminescing gelator: Neutron and X-ray small-angle scattering investigations. J Phys Chem, 1995, 99: 9558~9566
    [127] Aoki M, Nakashima K, Kawabata H, et al. Molecular design and characterisations of new calixarene-based gelators of organic fluids. J Chem Soc Perkin Trans 2 1993, 347~354
    [128] John G, Jung JH, Masuda M, et al. Unsaturation effect on gelation behavior of aryl glycolipids. Langmuir, 2004, 20: 2060~2065
    [129] Ralston AW, Mccorkle MR. 4,4'-diaminodiphenylmethane as a reagent for the identification of monobasic saturated aliphatic acids. J Am Chem Soc, 1939, 61: 1604~1605
    [130]卢涌泉,邓振华.实用红外光谱解析,电子工业出版社出版, 1989, 20~98
    [131]宁永成.有机化合物结构鉴定与有机波谱学,北京:科学出版社,第二版, 2000, 27~96
    [132]中国医药集团上海化学试剂公司编著.化学试剂手册.上海,上海科学技术出版社, 2002.
    [133] Jung JH, Lee SJ, Rim JA, et al. Stabilization of crown~based organogelators by charge-transfer interaction. Chem Mater, 2005, 17: 459~462
    [134] Fujikawa S, Kunitake T. Surface fabrication of interconnected hollow spheres ofnm-thick titania shell. Chem Lett, 2002, 11: 1134~1135
    [135] Patrissi C J, Martin C R. Sol-gel-based template synthesis and li-insertion rate performance of nanostructured vanadium pentoxide. J Electrochem Soc, 1999, 146: 3176 ~3180
    [136] Liu P, Lee S H, Tracy C E, et al. Preparation and lithium insertion properties of mesoporous vanadium oxide. Adv Mater, 2002, 14(1): 27 ~31
    [137] Hoffimann M R, Martin S T, Choi W, et al. Environment application of semiconductor photo catalysis. Chem Rev, 1995, 95: 69 ~96
    [138] Fox M A, Dulay M T. Heterogeneous photocatalysis. Chem Rev, 1993, 93: 341~357
    [139] Jung J H, Ono Y, Shinkai S. Sol-gel polycondensation in a cyclohexane-based organogel system in helical silica: creation of both right- and left-handed silica structures by helical organogel fibers. Chem Eur J, 2000, 6: 4552~4557
    [140] Jung J H, Shinkai S, Shimizu T. Organic supramolecular architectures and their sol-gel transcription to silica nanotubes. The Chemical Record, 2003, 3: 212~224
    [141] Jung J H, John G., Yoshida K, et al. Toshimi Shimizu. Self-assembling structures of long-chain phenyl glucoside influenced by the introduction of double bonds. J Am Chem Soc, 2002, 124: 10674~10675
    [142] Chang X L, Wang L, Yang Y J, et al. Bis-(4-stearoylaminaphenyl) methane assembles in organic solvents and used as templates for preparation of SiO2 nanowires. Mater Chem Phys, 2006, 99(1): 61~65
    [143]赵秦生,李中军,刘长让.溶胶~凝胶法制备多孔SiO2超细粉体.中南工业大学学报, 1998, 29(2): 131~134
    [144] Dan L, Mark S. Enhancement of transfection by physical concentration of DNA at the cell surface. Nat Biot, 2000, 13: 893~895
    [145] Carsten K, Mohammad S, Elenore G. Silica nanoparticle modified with aminosilanes as carriers for plasmid DNA. Intern J of Pharmac, 2000, 196: 257~261
    [146] Truong Le VL, Walsh SM, Schweibert E. Gene transfer by DNA-gelatin nanospheres. Arch of Biochemand and Bioph, 1990, 36l: 47~56
    [147] Belomoin G, Therrien J, Nayfeh M. Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles. Appl Phys Lett, 2000, 77: 779~781
    [148]王清涛,李清山.多孔硅及其应用研究展望.辽宁大学学报(自然科学版), 2001, 25(4): 301~304
    [149]李宏建,彭景翠,颜永红等.多孔硅的表面碳膜钝化.发光学报, 2000, 21(2): 104~108
    [150]王晓静,李清山,王佐臣.多孔硅的不同制备方法及其光致发光.发光学报,2003, 24(2): 203~207
    [151] Cheah KW, Chan T, Lee WL. Multiple peak photoluminescence of porous silicon. Appl Phys Lett, 1993, 63 (25): 3464~3466
    [152] Tanev PT, Chlbwe M, Pinnavaia TJ. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic Compounds. Nat, 1994, 368: 321~323
    [153] Yuri GD, Lin SH, Hwang LP, et al. Photoluminescence spectroscopy of silica-based mesoporous materials. J Phys Chem B, 2000, 104: 8652~8663
    [154] Pickering C, Beale MIJ, Bobbins DJ. Optical properties of porous silicon films. Thin Solid Films, 1985, 125(2): 157~163
    [155] Canham LT. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett, 1990, 57(10): 1046~1048
    [156]陈松岩,何闰荣,陈小红.多孔硅荧光谱双峰结构的研究.厦门大学学报(自然科学版), 2002, 41: 182~185
    [157]史向华,刘小兵.多孔硅光致发光谱的多峰结构.半导体光电, 2002, 23: 61~62
    [158] Beck JS, Vartuli JC, Roth WJ. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc, 1992, l14: 10834~10843
    [159]秦国刚,贾勇强.多孔硅发强可见光的新物理模型.半导体学报, 1993, 14: 648~651
    [160]韩银花,林君. SiO2干凝胶光致发光性质的研究.发光学报, 2002, 23(3): 296~300
    [161] Zhang M, Ciocan E, Bando Y, et al. Bright visible photoluminescence from silica nanotube flakes prepared by the sol-gel template method. Appl Phys Lett, 2002, 80: 491~493
    [162] Metson JB. Charge compensation and binding energy referencing in XPS analysis. Surf Interface Anal, 1999, 7: 1069~1073
    [163]王键祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)导论.北京:国防出版社, 1992.
    [164] Bruni S, Cariati F, Casu M. IR and NMR study of nanoparticle-support interactions in a Fe2O3-SiO2 nanocomposite prepared by a sol-gel method. Nanostruct Mater, 1999, 11(5): 573~586
    [165] Diaz G, Perez-Hernandez R, Gomez-Corres A. et al. CuO-SiO2 sol-gel catalysts: Characterization and catalytic properties for NO reduction. J Catal, 1999, 187: 1~ 14
    [166]黄惠忠.论表面分析及其在材料研究中的应用.北京:科学技术文献出版社,2002: 16~17
    [167]谢致薇,王国庆,杨元政等.添加元素对TiMeXN多元膜XPS谱的影响.真空科学与技术学报,2004, 24(3): 208~212
    [168]徐明生,季振国,袁骏等. XPS在酞菁类有机半导体研究方面的应用.真空科学与技术学报, 2000, 20(1): 55~59
    [169] Paparazzo E, On the XPS analysis of Si-OH groups at the surface of silica. Surf Interface Anal, 1996, 24: 729~730
    [170] Sakama H, Ohmura M, Tonouchi M, et al. Growth mechanism of ZnS: Mn films obtained by hydrogen plasma sputtering and its application to a thin-film electroluminescent device. Jpn J Appl Phys, Part 1, 1993, 32(4): 1681~1690
    [171]张文彬,张开坚,李新军等. SiOx(X≤2)基电致发光体系研究进展.科技导报, 2006, 24(2): 13~18
    [172] Miller ML, Linton RW. X-ray photoelectron spectroscopy of thermally treated silica (SiO2) surfaces. Anal Chem, 1985, 57: 2314~2319
    [173] Hillhous HW, van Egmond JW, Tsapatsis M. The interpretation of X-ray diffraction data for the determination of channel orientation in mesoporous films. Microporous Mesoporous Mater, 2001, 44~45: 639~643
    [174]严继民,张启元,高敬琮.吸附与凝聚-固体的表面与孔.北京:科学出版社,第二版, 1986,113~137
    [175] Duncan DC, Whitten DG. 1H NMR investigation of the composition, structure and dynamics of cholesterol-stilbene tethered dyad organogels. Langmuir, 2000, 16: 6445~6452
    [176] van Bommel KJC, Friggeri A, Shinkai S. Organic templates for the generation of inorganic materials. Angew Chem Int Ed, 2003, 42: 980~999
    [177] Schoonbeek FS, van Esch J, Hulst R, et al. Geminal bis-ureas as gelators for organic solvents: gelation properties and structural studies in solution and in the gel state. Chem Eur J, 2000, 6: 2633~2643
    [178] Carr AJ, Melendez R, Geib SJ, et al. The design of organic gelators: Solution and solid state properties of a family of bis-ureas. Tetrahedron Lett, 1998, 39: 7447~7450
    [179] Shi C, Kilic S, Xu J, et al. The gelation of CO2: A sustainable route to the creation of microcellular materials. Sci, 1999, 286: 1540~1543
    [180] Hafkamp RJH, Kokke BPA, Danke IM, et al. Organogel formation and molecular imprinting by functionalized gluconamides and their metal complexes. ChemCommun, 1997, 6: 545~546
    [181] Estroff LA, Hamilton AD. Effective gelation of water using a series of bis-urea dicarboxylic acids. Angew Chem Int Ed, 2000, 39: 3447~3450
    [182] Fuhrhop JH, Schnieder P, Rosenbery J, et al. The chiral bilayer effect stabilizes micellar fibers. J Am Chem Soc, 1987, 109: 3387~3390
    [183]王理,黎坚,杨亚江.水分子凝胶聚集态的DSC和AFM研究.化学学报, 2003, 61(2): 213~217
    [184] Jung JH, Ono Y, Shinkai S. Organogels of azacrown-appended cholesterol derivatives can be stabilized by host-guest interactions. Tetrahedron Lett, 1999, 40: 8395~8399
    [185] Oda R, Huc I, Candau SJ. Gemini surfactants as new low molecular weight gelators of organic solvents and water. Angew Chem Int Ed, 1998, 37: 2689~2691
    [186]王理,黎坚,杨亚江.水分子凝胶中有机凝胶因子聚集体的分形结构研究.物理学报, 2004, 53(1): 160~164
    [187]黎坚,王理,杨亚江.荧光探针法研究可聚合有机分子(BMDM)/二苯醚的凝胶化过程.高分子学报, 2003, 2: 261~265
    [188]黎坚,王理,张雪勤等.分子凝胶中可聚合凝胶因子的聚集态及分形结构研究.化学学报, 2003, 61(2): 171~174
    [189] Nakazawa I, Masuda M, Okada Y, et al. Spontaneous formation of helically twisted fibers from 2-glucosamide bolaamphiphiles: Energy-filtering transmission electron microscopic observation and even-odd effect of connecting bridge. Langmuir, 1999, 15: 4757~4764
    [190] Masuda M, Hanada T, Okada Y, etal. Polymerization in nanometer-sized fibers: molecular packing order and polymerizability. Macromolecules, 2000, 33: 9233~9238
    [191] Fuhrhop JH, Boettcher C. Stereochemistry and curvature effects in supramolecular organization and separation processes of micellar N-alkylaldonamide mixtures. J Am Chem Soc, 1990, 112: 1768~1776
    [192] Menger F, Caran K. Anatomy of a gel amino acid derivatives that rigidify water at submillimolar concentrations. J Am Chem Soc, 2000, 122: 11679~11691
    [193] Inoue K, Ono Y, Kanekiyo Y, et al. Design of new organic gelators stabilized by a host-guest interaction. J Org Chem, 1998, 64: 2933~2937
    [194] Abdallah DJ, Sirchio S, Weiss RG. Hexatriacontane organogels the first determination of the conformation and molecular packing of a low-molecular-massorganogelator in its gelled state. Langmuir, 2000, 16: 7558~7561
    [195]吴瑾光.近代傅里叶变换红外光谱技术及应用.上卷,北京:科学技术文献出版社, 1994: 599~718
    [196] Hanabusa K, Miki T, Taguchi Y, et al. 2-component, small-molecule gelling agents. J Chem Soc Chem Commun, 1993, 17: 1382~1384
    [197] Van der Laan S, Feringa BL, Kellogg RM, et al. Remarkable polymorphism in gels of new azobenzene bis-urea gelators. Langmuir, 2002, 18: 7136~7140
    [198] Jung JH, Kobayashi H, Masuda M, et al. Helical ribbon aggregate composed of a crown-appended cholesterol derivative which acts as an amphiphilic gelator of organic solvents and as a template for chiral silica transcription. J Am Chem Soc, 2001, 123: 8785~8789
    [199] Spector MS, Selinger JV, Singh A, et al. Controlling the morphology of chiral lipid tubules. Langmuir, 1998, 14: 3493~3500
    [200] Spector MS, Singh A, Messersmith PB, et al. Chiral self-assembly of nanotubules and ribbons from phospholipid mixtures. Nano Lett, 2001, 1: 375~378
    [201] Kulkarni VS, Anderson WH, Brown RE. Bilayer nanotubes and helical ribbons formed by hydrated galactosylceramides: acyl chain and headgroup effects. Biophys J, 1995, 69: 1976~1986
    [202] Kulkarni VS, Boggs JM, Brown RE. Modulation of nanotube formation by structural modifications of sphingolipids. Biophys J, 1999, 77: 319~330
    [203] Markowitz M, Singh A. Self-assembling properties of 1, 2-diacyl-sn-glycero -3-phosphohydroxyethanol: A headgroup-modified diacetylenic phospholipid. Langmuir, 1991, 7: 16~18
    [204] Markowitz MA, Schnur JM, Singh A. The influence of the polar headgroups of acidic diacetylenic phospholipids on tubule formation, microstructure morphology and langmuir film behavior. Chem Phys Lipids, 1992, 62: 193~204
    [205] Singh A, Wong EM, Schnur JM. Toward the rational control of nanoscale structures using chiral self-assembly: Diacetylenic phosphocholines. Langmuir, 2003, 19: 1888~1898
    [206] Thomas BN, Corcoran RC, Cotant CL, et al. Phosphonate lipid tubules 1. J Am Chem Soc, 1998, 120: 12178~12186
    [207] Thomas BN, Lindemann CM, Corcoran RC, et al. Phosphonate lipid tubules II. J Am Chem Soc, 2002, 124: 1227~1233
    [208] Kamiya S, Minamikawa H, Jung JH, et al. Molecular structure of glucopyranosylamide lipid and nanotube morphology. Langmuir, 2005, 21: 743~750
    [209] Yang B, Kamiya S, Yui H, et al. Effective shortening in length of glycolipid nanotubes with high axial ratios. Chem Lett, 2003, 32: 1146~1147
    [210] Yang B, Kamiya S, Yoshida K, et al. Confined organization of Au nanocrystals in glycolipid nanotube hollow cylinders. Chem Commun, 2004, 10(5): 500~501
    [211] Yang B, Kamiya S, Shimizu Y, et al. Glycolipid nanotube hollow cylinders as substrates: Fabrication of one-dimensional metallic-organic nanocomposites and metal nanowires. Chem Mater, 2004, 16: 2826~2831
    [212] Boettcher C, Schade B, Fuhurhop JH. Comparative cryo-electron microscopy of noncovalent N-dodecanoyl- (D- and L-) serine assemblies in vitreous toluene and water. Langmuir, 2001, 17, 873~877
    [213] Fuhrhop JH, Helfrich W. Fluid and solid fibers made of lipid molecular bilayers. Chem ReV, 1993, 93: 1565~1582
    [214] Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Sci, 2001, 294: 1684~1688
    [215] Stupp SI, LeBonheur V, Walker K, et al. Supramolecular materials: Self-organized nanostructures. Sci, 1997, 276: 384~389
    [216] Song J, Kopta S, Stevens RC. Modulating artificial membrane morphology: pH-induced chromatic transition and nanostructural transformation of a bolaamphiphilic conjugated polymer from blue helical ribbons to red nanofibers. J Am Chem Soc, 2001, 123: 3205~3213
    [217] Kobayashi H, Friggeri A, Koumoto K, et al. Molecular design of "super" hydrogelators: Understanding the gelation process of azobenzene-based sugar derivatives in water. Org Lett, 2002, 4: 1423~1426
    [218] Hafkamp RJH, Feiters MC, Nolte RJM. Organogels from carbohydrate amphiphiles. J Org Chem, 1999, 64: 412~426
    [219] Newkome GR, Baker GR, Arai S, et al. Cascade molecules. Part 6. Synthesis and characterization of two-directional cascade molecules and formation of aqueous gels. J Am Chem Soc, 1990, 112: 8458~8465
    [220] Fuhrhop JH, Schnieder P, Rosenberg J, et al. The chiral bilayer effect stabilizes micellar fibers. J Am Chem Soc, 1987, 109: 3387~3390
    [221] Jokic M, Makarevic J, Zinic M. A novel type of small organic gelators-bis(amino acid) oxalyl amides. J Chem Soc, Chem Commun, 1995, 1723~1724
    [222] Maitra U, Mukhopadhyay S, Sarkar A, et al. Hydrophobic pockets in a nonpolymeric aqueous gel: observation of such a gelation process by color change. Angew Chem Int Ed, 2001, 40: 2281~2283