1、半相合肿瘤特异性淋巴细胞过继免疫治疗肿瘤的小鼠模型研究 2、新型溶瘤病毒oHSV2~(hGM-CSF)的构建及其抗肿瘤作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景生物治疗已经成为继手术、放疗、化疗后的第4种抗癌疗法。其中细胞过继免疫治疗是肿瘤的生物治疗的主要手段之一。治疗所采用的细胞通常来源于患者自体细胞。由于肿瘤患者一般处于免疫低功状态,有些患者很难诱导出较强的和足量的抗肿瘤免疫活性细胞。若采用MHC完全匹配的供者免疫细胞作过继免疫治疗比较理想,但供者难求。如采用MHC不相合异体免疫细胞可能会产生移植物抗宿主反应,也无法诱导针对宿主肿瘤特异性的细胞毒性T细胞(CTL)。而父母和子女之间半相合的供者较易寻找。供者免疫细胞有可能通过与患者MHC相合部分诱导产生肿瘤抗原特异性CTL;而不相合部分产生免疫佐剂效应。但应用半相合CTL进行过继免疫治疗尚缺乏深入研究。
     目的研究MHC半相合肿瘤特异性CTL过继免疫治疗肿瘤的效应和机制。探索细胞过继免疫治疗肿瘤的新途径。
     方法应用TC-1肿瘤细胞裂解物冲击C57BL/6与Balb/C的杂交一代(F1)小鼠骨髓来源的树突细胞(TP-DC),再与小鼠脾细胞混合培养,诱导肿瘤特异性CTL(TP-DC-TC); C57BL/6 (C57)荷瘤鼠以TC-1肿瘤细胞的皮下成瘤为动物治疗模型,当肿瘤直径约为5毫米时,经尾静脉回输丝裂霉素C灭活TP-DC-TC予以治疗。或用丝裂霉素C灭活的C57小鼠来源的TC-1肿瘤细胞直接免疫F1小鼠获得肿瘤特异性CTL。进而将CTL经丝裂霉素C灭活后经尾静脉输入C57小鼠TC-1肿瘤细胞人工肺转移模型。两个动物模型分别治疗3次,每次间隔5-7天,观察肿瘤大小和生存期。人工肺转移模型的小鼠末次治疗后5天,眼眶采血,用ELISA检测血浆IL-2、IL-10、IFN-γ,TGF-β水平;用流式细胞术检测脾细胞和外周血细胞中CD3+CD4+T、CD3+CD8+T、Treg、MDSC、NK等免疫细胞亚群的变化和宿主免疫效应细胞的H-2表型。组织切片检测半相合CTL治疗对心、肝、肾、脾的影响。
     结果ELISPOT结果显示体外或体内均可诱导半相合肿瘤特异性CTL。应用该细胞治疗皮下荷TC-1肿瘤的C57小鼠,其肿瘤生长速度减缓,生存延长。在人工肺转移C57小鼠模型中与同系小鼠CTL过继免疫治疗相比,灭活半相合CTL免疫治疗后小鼠肺表面肿瘤结节数量明显减少,小鼠的生存期显著延长。半相合CTL治疗显著上调了Thl细胞因子IL-2和IFN-γ的分泌,并下调免疫抑制因子TGF-β和IL-10产生。流式仪检测证明:半相合CTL治疗后CD4+T, CD8+T和NK细胞在外周血和脾细胞中的比例明显增高;并且诱导了宿主自身肿瘤特异性CTL和NK细胞。而Treg、MDSC细胞亚群的比例显著下降;流式检测宿主免疫细胞的H-2表型结果发现,上述免疫细胞均源于宿主自身。HE染色证实,接受半相合CTL治疗小鼠的心、肝、肾、脾的无明显的病理变化。
     结论灭活半相合肿瘤特异性CTL过继免疫治疗,既可特异性杀伤肿瘤,又对宿主抗肿瘤免疫起到佐剂效应。该疗法不失为一种简单、安全有效的抗肿瘤疗法。
     研究背景溶瘤性单纯疱疹病毒(OncolyticHSV,简称为oHSV)具有强效、特异、广谱、安全及易于生产制备等特点。oHSVl已进入临床Ⅰ-Ⅲ期试验阶段。虽有文献报道oHSV2对肿瘤细胞的杀伤活性比oHSVl强,在治疗动物膀胱癌以及卵巢癌腹腔转移时,疗效明显好于oHSVl,但对oHSV2的研究较少。另外,oHSV作为载体还可以携带各种治疗性基因(如GM-CSF, TNF-α、药物前体转化酶、IL-12、FGFR2-IIIb, TRP1等),因此,我们已构建成有自主知识产权的新型oHSV2hGM-CSF,以改进病毒的安全性(优于现有的oHSV2)及增强病毒的溶瘤活性(优于现有的oHSVl),同时具有佐剂效应,增强机体抗肿瘤免疫。
     目的构建新的含有表达人GM-CSF的溶瘤2型疱疹病毒(oHSV2hGM-CSF),初步验证其体外溶瘤效果及其对小鼠B16R黑色素瘤模型的体内疗效。
     方法采用PCR、分子克隆及同源重组技术,从HG52野生病毒株的基因组中剔除ICP34.5及ICP47基因并插入hGM-CSF表达序列,构建hGM-CSF溶瘤活性体外实验,将HeLa, Eca-109和PG等16种肿瘤细胞分别接种到24孔板,分别用oHSV1hGM-CSF和oHSV2hGM-CSF (MOI=1)感染24h、48h后,显微镜观察细胞病变。动物实验,以表达HSV感染受体的C57BL/6小鼠黑色素瘤细胞B16R为模型。当肿瘤生长至直径约7-8mm3时,瘤内分别注射2.3 X106 PFU oHSV1hGM-CSF和oHSV2hGM-CSF,共3次,每次间隔3天,同时测量肿瘤大小,并观察生存期。
     结果PCR扩增及DNA序列分析证实各目的基因被剔除及hGM-CSF表达盒插入到ICP34.5的基因位点。oHSV1hGM-CSF和oHSV2hGM-CSF MOI-1感染肿瘤细胞后,24h即能观察到细胞病变,且溶瘤谱较广,oHSV2hGM-CSF感染的肿瘤细胞合胞体现象比较多。从感染48h的图像来分析,oHSV2hGM-CSF对HeLa, HepG2、SK-Mel-28 B16R U87-MG,的溶瘤效果优于oHSV1hGM-CSF。B16R细胞的黑色素瘤的动物实验发现,接受oHSV2hGM-CSF治疗后,能明显延长治疗组荷瘤鼠的生存期(P<0.01);减缓肿瘤的生长(oHSV1hGM-CSF组, P<0.05; oHSV2hGM-CSF组, P<0.01)。
     结论oHSV2hGM-CSF对人肿瘤细胞溶瘤谱较广,对荷B16R黑色素瘤瘤内注射有较好的抗肿瘤效应,具有较好的开发前景,有望成为临床治疗肿瘤的制剂。
Background Biotherapy of malignant diseases has become the fourth treatment modality besides surgery, chemo-and radiotherapy and the adoptive immune competent cells (AICs) infusion is one of the important mean for biotherapy. AICs are often derived from the cancer patient autologous immune cells which can do little in combating tumor cells due to the defected immune function of the cancer patient. A healthy donor with identical MHC would be ideal but it is very difficult to find such a donor. The allologous AICs has been demonstrated to be able to induce not tumor-specific CTLs but strong graft anti-host reaction (GAHR). On the other hand, it has been proposed that the semi-allogeneic AICs may use their allogeneic part to function as a powerful adjuvant to break the tumor immune tolerance or ignorance to some degree and use their autologous part to induce the MHC-restricted tumor-specific CTLs. So far, only semi-allogeneic CTL adoptive immunotherapy for the treatment of hematopoietic malignancies has been reported. Therefore, the semi-allogeneic CTL adoptive immunotherapy with less toxicity and more specific tumor targeting and adjuvant effects are to be studied.
     Objective This study was aimed at investigating the anti-tumor efficacy of the transfused tumor specific T cells with the surface semi-allogeneic antigens and to explore a new way on adoptive immunotherapy of cancer.
     Methods In order to produce the tumor-antigen specific semi-allogeneic lymphocytes, the lst-generation hybrid mice named F1 cross (H-2b/d) were bred by cross-mating C57BL/6 and Balb/c mice. The Fl tumor lysate-pulsed dendritic cells (TP-DC) and antigen specific CTLs (TP-DC-TCs) were prepared in vitro, and then the TP-DC-TCs were inactivated by MMC and transferred into the TC-1 bearing mice (C57BL/6). For evaluating therapeutic TP-DC-TCs infusion,1X1O5TC-1 tumor cells were injected s.c. into the right flank, and after the mice developed palpable tumor (approximately 5 mm diameter),3X107 antigen specific TP-DC-TCs were transferred into the recipients via the tail vein.
     In order to rapidly produce the tumor-antigen specific semi-allogeneic splenocytes (SPs), the Fl cross (H-2b/d) mice were then immunized with the mitomycin C (MMC) inactivated TC-1 tumor cells. These SPs were used as donor cells to transfuse into TC-1 bearing C57BL/6 mice (an artificial pulmonary metastases ainimal model was established by the i.v. injection of lxlO5 TC-1 cells) via intravenous injections three times at 7-d intervals in 3X107. On day 5 after the third treatment, the heparinized whole obital blood was collected and the plasma IL-2, IL-10, IFN-y, TGF-βwere examed by ELISA. To measure cell preparations of CD3+CD4+, CD3+CD8+, Treg, MDSC and NK mice were sacrificed on the 5th day after the third SPs administion, and their spleen cells were prepared and analysed by flow cytometry. The pathological characteristics of heart, spleen, liver and kidney were by HE staining. The phenotype of H-2 from recipients leucocyte was analysed by flow cytometry also.
     Results our results illuminated that the treatment of C57BL/6 tumor-bearing recipients receiving TP-DC-TCs from Fl mice resulted in a slower tumor growth and survived longer term. It was found in our study that both specific and nonspecific immune responses were triggered after SPs intra-vein transfusion (3x107/100ul, tail vein) with no obvious side effects. Intravenous transfusion of MMC inactivated semi-allogeneic SPs resulted in the increased IL-2 and IFN-y release, the decreased TGF-P excretion, the proliferation of specific CD4+and CD8+and the generation of nonspecific immune response (NK cells). In addition, the semi-allogeneic SP transfusion has shown to be able to delay TC-1 tumor growth and prolong survival in the established TC-1 tumor model. Our data indicate that the transfusion of tumor specific allogeneic SPs may induce anti-tumor therapeutic effects resulted from both the specific and nonspecific immune responses. There were less pathological characteristics of heart, spleen, liver and kidney were found by HE staining.
     Conclusion Adoptive transfer of semi-allogeneic tumor specific CTL provides a promising approach to cancer immunotherapy.
     Background Oncolytic virus (OV) therapy is based on the concept of using live viruses to selectively infect and replicate in cancer cells, with minimal destruction of non-neoplastic tissue. And the evidences have recorded their specificity, wild-oncolytic effecty, good safety, fast replication and facilitated process. oHSVl has enterⅠ-Ⅲclinical pilot. However, there a few studies demonstrated that oHSV2 is more oncolytic effective than oHSVl in the treatment of bladder cancer and peritoneal metastasis of ovarian cancer in mice models. Further more, HSV2 is an enveloped double-stranded DNA virus containing a large, well characterized, fully sequenced genome of about 152kb of DNA. While the large size makes genetic manipulations cumbersome, it also provides ample opportunities to remove genes that are not essential for replication and insert therapeutic transgenes within the viral backbone, just as a vector carrying DNA encoding GM-CSF, TNF-a, IL-12, TRPland prodrug-converting enzyme. Therefore, our lab has constructed a newly oHSV2hGM-CSF aiming at enhancing the safety and the activity of oncolytic. oHSV2hGMCSF may promote the anti-tumor immunity as adjuvant.
     Objective This study was to construct a new oHSV2hGM-CSF and evaluate the oncolytic activity in vitro and in vivo in parallel with oHSVlhGM-CSF.
     Methods oHSV2hGM-CSF is a replication-competent, attenuated HSV type 2 based on the HG52 virus (an HSV2 strain). It has been engineered to be specific for cancer by deletion of the viral genes ICP34.5 and ICP47 and inserted the gene encoding hGM-CSF. To measure the in vitro killing effect of the viruses,15 human tumor cell lines (HeLa, Eca-109 and PG etc.) and mouse melanoma (B16R) cell line were seeded into 24-well plates and infected with viruses at 1 pfu/cell (Multiplicity of infection, MOI=1), or left uninfected. Cells were harvested 24 and 48 hours post infection, and observed at microscope. For animal studies, the oncolytic viruses were administered intratumorally (at 3-day interval) at a dose of 2.3x106 pfu for three times when tumor volume reached 7-8mm3. And the tumor volume was measured at 3 day interval and animal survival was monitored after treatment.
     Results Both oHSV2hGM-CSFand oHSVlhGM-CSF induce widespread cytopathic effects after 24h infection. oHSV2hGM-CSF, by contrast, produced more plaques with a syncytial phenotype than oHSVlhGM-CSF. In the in vitro killing experiments for the cell lines of HeLa, HepG2, SK-Mel-28, B16R and U87-MG, oHSV2hGM-CSF eradicated significantly more cells than oHSVlhGM-CSF under the same conditions. For the animal experiments, it is concluded that the oHSV2hGM-CSF significantly inhibited tumor growth. The long term therapitic effect of oHSV2hGM-CSF on the B16R animal model was evaluated by recording animal survival over 110 days post tumor cells inoculation whereas mice in the PBS group all were dead by day 22 (p<0.01). The anti-tumor mechanism of newly constructed oHSV2hGM-CSF against B16R cell carcinoma appeared to include the directly oncolytic activity and the induction of antitumor immunity in some degree.
     Conclusion These data demonstrate that the newly constructed oHSV2hGM"CSF have potent anti-tumor activity in vitro for many tumor cell lines and in vivo for the established B16R tumor models.
引文
1. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity.2004 Aug;21(2):137-48. Review.
    2. Bregni M, Bernardi M, Ciceri F, Peccatori J. Allogeneic stem cell transplantation for the treatment of advanced solid tumors. Springer Semin Immunopathol.2004 Nov;26(1-2):95-108. Epub 2004 Sep 11. Review.
    3. Barth RJ Jr, Mule JJ, Spiess PJ, Rosenberg SA. Interferon gamma and tumor necrosis factor have a role in tumor regressions mediated by murine CD8+tumor-infiltrating lymphocytes. J Exp Med.1991 Mar 1;173(3):647-58.
    4. Yang L, Carbone DP. Tumor-host immune interactions and dendritic cell dysfunction.Adv Cancer Res.2004,92:13-27.Review.
    5. Seki N, Brooks AD, Carter CR, Back TC, Parsoneault EM, Smyth MJ, Wiltrout RH, Sayers TJ. Tumor-specific CTL kill murine renal cancer cells using both perforin and Fas ligand-mediated lysis in vitro, but cause tumor regression in vivo in the absence of perforin. J Immunol.2002 Apr 1;168(7):3484-92.
    6. Gratwohl A, Baldomero H, Passweg J, Frassoni F, Niederwieser D, Schmitz N, Urbano-Ispizua A; Accreditation Committee of the European Group for Blood and Marrow Transplantation (EBMT); Working Parties Acute (ALWP) Chronic Leukemias (CLWP); Lymphoma Working Party. Hematopoietic stem cell transplantation for hematological malignancies in Europe. Leukemia.2003 May;17(5):941-59.
    7. Childs R, Chernoff A, Contentin N, Bahceci E, Schrump D, Leitman S, Read EJ, Tisdale J, Dunbar C, Linehan WM, Young NS, Barrett AJ. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N Engl J Med.2000 Sep 14;343(11):750-8.
    8. Slavin S. Immunotherapy of cancer with alloreactive lymphocytes. Lancet Oncol. 2001 Aug;2(8):491-8. Review.
    9. Fabre JW. The allogeneic response and tumor immunity. Nat Med.2001 Jun;7(6):649-52. Review.
    10. Muir G, Rajbabu K, Callen C, Fabre JW. Preliminary evidence that the allogeneic response might trigger antitumour immunity in patients with advanced prostate cancer. BJU Int.2006 Nov;98(5):989-95.
    11. Perussia B, Mangoni L, Engers HD, Trinchieri G. Interferon production by human and murine lymphocytes in response to alloantigens. J Immunol.1980 Oct;125(4):1589-95.
    12. Nabholz M, Vives J, Young HM, Meo T, Miggiano V, Rijnbeek A, Shreffler DC. Cell-mediated cell lysis in vitro:genetic control of killer cell production and target specificities in the mouse. Eur J Immunol.1974 May;4(5):378-87.
    13. Horton HM, Anderson D, Hernandez P, Barnhart KM, Norman JA, Parker SE. A gene therapy for cancer using intramuscular injection of plasmid DNA encoding interferon alpha. Proc Natl Acad Sci USA.1999 Feb 16;96(4):1553-8.
    14. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin:a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell.1994 Oct 21;79(2):315-28.
    15. Harada M, Tamada K, Abe K, Yasumoto K, Kimura G, Nomoto K. Role of the endogenous production of interleukin 12 in immunotherapy. Cancer Res.1998 Jul 15;58(14):3073-7.
    16. Greenberg PD. Adoptive T cell therapy of tumors:mechanisms operative in the recognition and elimination of tumor cells. Adv-Immunol.1991;49:281-355. Review.
    17. Melief CJ. Tumor eradication by adoptive transfer of cytotoxic T lymphocytes. Adv Cancer Res.1992;58:143-75. Review.
    18. Su X, Guo S, Zhou C, Wang D, Ma W, Zhang S. A simple and effective method for cancer immunotherapy by inactivated allogeneic leukocytes infusion. Int J Cancer.2009 Mar 1;124(5):1142-51.
    19. Dang Y, Knutson KL, Goodell V, dela Rosa C, Salazar LG, Higgins D, Childs J, Disis ML. Tumor antigen-specific T-cell expansion is greatly facilitated by in vivo priming. Clin Cancer Res.2007 Mar 15;13(6):1883-91.
    20. Zhou J, Zhong Y. Breast cancer immunotherapy. Cell Mol Immunol.2004 Aug;1(4):247-55. Review.
    21. Dang Y, Knutson KL, Goodell V, dela Rosa C, Salazar LG, Higgins D, Childs J, Disis ML. Tumor antigen-specific T-cell expansion is greatly facilitated by in vivo priming. Clin Cancer Res.2007 Mar 15; 13(6):1883-91.
    22. Sabel MS, Arora A, Su G, Chang AE. Adoptive immunotherapy of breast cancer with lymph node cells primed by cryoablation of the primary tumor. Cryobiology.2006 Dec;53(3):360-6. Epub 2006 Sep 14.
    23. Toes RE, Blom RJ, van der Voort E, Offringa R, Melief CJ, Kast WM. Protective antitumor immunity induced by immunization with completely allogeneic tumor cells. Cancer Res.1996 Aug 15;56(16):3782-7.
    24. Hart DN. Dendritic cells:unique leukocyte populations which control the primary immune response. Blood.1997 Nov 1;90(9):3245-87. Review.
    25. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998 Mar 19;392(6673):245-52. Review.
    26. Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol. 2006 Jan 1;176(1):284-90.
    27. Roy V, Perez EA. Biologic therapy of breast cancer:focus on co-inhibition of endocrine and angiogenesis pathways. Breast Cancer Res Treat.2009 Jul;116(1):31-8. Epub 2008 Dec 20. Review.
    28. Kusmartsev SA, Li Y, Chen SH. Gr-1+myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol.2000 Jul 15;165(2):779-85.
    29. Bernhard H, Neudorfer J, Gebhard K, Conrad H, Hermann C, Nahrig J, Fend F, Weber W, Busch DH, Peschel C. Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer. Cancer Immunol Immunother.2008 Feb;57(2):271-80. Epub 2007 Jul 24.
    30. Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res.2007 Jan 15; 13(2 Pt 2):721s-726s. Review.
    31. Young MR, Lathers DM. Myeloid progenitor cells mediate immune suppression in patients with head and neck cancers. Int J Immunopharmacol.1999 Apr;21(4):241-52. Review.
    32. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet.2001 Oct;29(2):117-29. Review. Erratum in:Nat Genet 2001Nov;29(3):351.
    33. Massague J. TGFbeta in Cancer. Cell.2008 Jul 25;134(2):215-30. Review.
    34. McCarthy N. Immunology:In need of a boost? Nat Rev Cancer.2010 Nov;10(11):742.
    35. Logsdon NJ, Jones BC, Josephson K, Cook J, Walter MR. Comparison of interleukin-22 and interleukin-10 soluble receptor complexes. J Interferon Cytokine Res. 2002Nov;22(11):1099-112.
    36. Pedersen AE, Thorn M, Gad M, Walter MR, Johnsen HE, Gaarsdal E, Nikolajsen K, Buus S, Claesson MH, Svane IM. Phenotypic and functional characterization of clinical grade dendritic cells generated from patients with advanced breast cancer for therapeutic vaccination. Scand J Immunol.2005 Feb;61(2):147-56.
    37. Hayakawa Y, Kelly JM, Westwood JA, Darcy PK, Diefenbach A, Raulet D, Smyth MJ. Cutting edge:tumor rejection mediated by NKG2D receptor-ligand interaction is dependent upon perforin. J Immunol.2002 Nov 15;169(10):5377-81.
    38. Bronte V, Serafini P, Apolloni E, Zanovello P. Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J Immunother.2001 Nov-Dec;24(6):431-46. Review.
    39. Lin KY, Guamieri FG, Staveley-O'Carroll KF, Levitsky HI, August JT, Pardoll DM, Wu TC. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res.1996 Jan 1;56(1):21-6.
    40. Fidler IJ. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res.1975 Jan;35(1):218-24.
    41. Kiessling R, Klein E, Wigzell H. "Natural" killer cells in the mouse. Ⅰ. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol.1975 Feb;5(2):112-7.
    42. Qin H, Zhou C, Wang D, Ma W, Liang X, Lin C, Zhang Y, Zhang S. Specific antitumor immune response induced by a novel DNA vaccine composed of multiple CTL and T helper cell epitopes of prostate cancer associated antigens. Immunol Lett.2005 Jun 15;99(1):85-93.
    43. Kagi D, Ledermann B, Burki K, Zinkernagel RM, Hengartner H. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu Rev Immunol.1996; 14:207-32.
    44. Gomez GG, Hutchison RB, Kruse CA. Chemo-immunotherapy and chemo-adoptive immunotherapy of cancer. Cancer Treat Rev.2001 Dec;27(6):375-402.
    45. Bishop MR, Fowler DH, Marchigiani D, Castro K, Kasten-Sportes C, Steinberg SM, Gea-Banacloche JC, Dean R, Chow CK, Carter C, Read EJ, Leitman S, Gress R. Allogeneic lymphocytes induce tumor regression of advanced metastatic breast cancer. J Clin Oncol.2004 Oct 1;22(19):3886-92.
    46. Bishop MR, Fowler DH, Marchigiani D, Castro K, Kasten-Sportes C, Steinberg SM, Gea-Banacloche JC, Dean R, Chow CK, Carter C, Read EJ, Leitman S, Gress R. Allogeneic lymphocytes induce tumor regression of advanced metastatic breast cancer. J Clin Oncol.2004 Oct 1;22(19):3886-92.
    47. Miinz C, Obst R, Osen W, Stevanovic S, Rammensee HG Alloreactivity as a source of high avidity peptide-specific human CTL. J Immunol.1999 Jan 1;162(1):25-34.
    48. Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz O, Matzinger P. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood.2007 Jun 15;109(12):5346-54.
    49. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol.1991;9:271-96. Review.
    50. Takamizawa M, Rivas A, Fagnoni F, Benike C, Kosek J, Hyakawa H, Engleman EG. Dendritic cells that process and present nominal antigens to naive T lymphocytes are derived from CD2+precursors. J Immunol.1997 Mar 1;158(5):2134-42.
    51. Stingl G, Bergstresser PR. Dendritic cells:a major story unfolds. Immunol Today. 1995 Jul;16(7):330-3. Review.
    52. Schuler G, Steinman RM. Dendritic cells as adjuvants for immune-mediated resistance to tumors. J Exp Med.1997 Oct 20;186(8):1 183-7. Review.
    53. Greten TF, Jaffee EM. Cancer vaccines. J Clin Oncol.1999 Mar;17(3):1047-60.Review.
    54. Wolf PR, Ploegh HL. How MHC class Ⅱ molecules acquire peptide cargo: biosynthesis and trafficking through the endocytic pathway. Annu Rev Cell Dev Biol. 1995; 11:267-306. Review.
    55. Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, Kurek R, Loeser W, Bichler KH, Wernet D, Stevanovic S, Rammensee HG. Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res.2002 Oct 15;62(20):5818-27.
    56. Srivastava PK, Udono H, Blachere NE, Li Z. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics.1994;39(2):93-8. Review.
    57. Lehner PJ, Cresswell P. Processing and delivery of peptides presented by MHC class I molecules. Curr Opin Immunol.1996 Feb;8(1):59-67. Review.
    58. Ackerman AL, Cresswell P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol.2004 Jul;5(7):678-84. Review.
    59. Vierboom MP, Nijman HW, Offringa R, van der Voort El, van Hall T, van den Broek L, Fleuren GJ, Kenemans P, Kast WM, Melief CJ. Tumor eradication by wild-type p53-specificcytotoxicT lymphocytes. J Exp Med.1997 Aug29;186(5):695-704.
    60. Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M, Suzuki Y, Shintaku I, Nagura H, Ohtani H. Proliferative activity of intratumoral CD8(+)T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res.2001 Jul l;61(13):5132-6.
    61. Marrogi AJ, Munshi A, Merogi AJ, Ohadike Y, El-Habashi A, Marrogi OL, Freeman SM. Study of tumor infiltrating lymphocytes and transforming growth factor-beta as prognostic factors in breast carcinoma. Int J Cancer.1997 Oct 21;74(5):492-501. 62. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol.2007 Jun 20;25(18):2586-93.
    63. Ahlers JD, Belyakov IM, Terabe M, Koka R, Donaldson DD, Thomas EK, Berzofsky JA. A push-pull approach to maximize vaccine efficacy:abrogating suppression with an IL-13 inhibitor while augmenting help with granulocyte/macrophage colony-stimulating factor and CD40L. Proc Natl Acad Sci USA.2002 Oct 1;99(20):13020-5. Epub 2002 Sep 13.
    64. van der Bruggen P, Van den Eynde BJ. Processing and presentation of rumor antigens and vaccination strategies. Curr Opin Immunol.2006 Feb;18(1):98-104. Epub 2005 Dec 15. Review.
    65. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med.1992 Dec 1;176(6):1693-702.
    66. Porgador A, Snyder D, Gilboa E. Induction of antitumor immunity using bone marrow-generated dendritic cells. J Immunol.1996 Apr 15;156(8):2918-26.
    67. Thurner B, Haendle I, Roder C. Vaccination with mage-3Al peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med.1999 Dec 6;190(11):1669-78.
    68. DE P, CHATTERJEE R. Nucleolar localization of succinic dehydrogenase in human malignant cells with MTT. Experientia.1962 Dec 15;18:562.
    69. Qin H, Zhou C, Wang D, Ma W, Liang X, Lin C, Zhang Y, Zhang S. Enhancement of antitumour immunity by a novel chemotactic antigen DNA vaccine encoding chemokines and multiepitopes of prostate-tumour-associated antigens. Immunology.2006 Mar; 117(3):419-30.
    70. Hakverdi S, Balci DD, Dogramaci CA, Toprak S, Yaldiz M. Retrospective analysis of basal cell carcinoma. Indian J Dermatol Venereol Leprol.2011 Mar-Apr;77(2):251.
    71. Melief CJ. Tumor eradication by adoptive transfer of cytotoxic T lymphocytes. Adv Cancer Res.1992;58:143-75. Review.
    72. Dubsky P, Hayden H, Sachet M, Bachleitner-Hofmann T, Hassler M, Pfragner R, Gnant M, Stift A, Friedl J. Allogeneic tumor lysate can serve as both antigen source and protein supplementation for dendritic cell culture. Cancer Immunol Immunother.2008 Jun;57(6):859-70. Epub 2007 Nov 21.
    73. Emens LA, Machiels JP, Reilly RT, Jaffee EM. Chemotherapy:friend or foe to cancer vaccines? Curr Opin Mol Ther.2001 Feb;3(1):77-84. Review.
    74. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI. Increased production of immature myeloid cells in cancer patients:a mechanism of immunosuppression in cancer. J Immunol.2001 Jan 1;166(1):678-89.
    75. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother.2009 Jan;58(1):49-59. Epub 2008 Apr 30.
    76. Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest.2007 May; 117(5):1155-66. Review.
    77. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+T cells:a common basis between tumor immunity and autoimmunity. J Immunol.1999 Nov 15;163(10):5211-8.
    78. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol.2002 Sep 1;169(5):2756-61.
    79. Hrouda D, Perry M, Dalgleish AG Gene therapy for prostate cancer. Semin Oncol. 1999Aug;26(4):455-71. Review.
    80. Haigh PI, Difronzo LA, Gammon G, Morton DL. Vaccine therapy for patients with melanoma. Oncology (Williston Park).1999 Nov; 13(11):1561-74; discussion 1574 passim. Review.
    81. Mach N, Dranoff G. Cytokine-secreting tumor cell vaccines. Curr Opin Immunol. 2000 Oct;12(5):571-5. Review.
    82. Knight BC, Souberbielle BE, Rizzardi GP, Ball SE, Dalgleish AG. Allogeneic murine melanoma cell vaccine:a model for the development of human allogeneic cancer vaccine. Melanoma Res.1996 Aug;6(4):299-306.
    83. Meyer GC, Batrla R, Rudy W, Meuer SC, Wallwiener D, Guckel B, Moebius U. Potential of CD80-transfected human breast carcinoma cells to induce peptide-specific T lymphocytes in an allogeneic human histocompatibility leukocyte antigens (HLA)-A2.1+-matched situation. Cancer Gene Ther.1999 May-Jun;6(3):282-8.
    84. Steinman MA, Gonzales R, Linder JA, Landefeld CS. Changing use of antibiotics in community-based outpatient practice,1991-1999. Ann Intern Med.2003 Apr 1;138(7):525-33.
    85. Steinman RM, Dhodapkar M. Active immunization against cancer with dendritic cells:the near future. Int J Cancer.2001 Nov;94(4):459-73. Review.
    86. Schuler G, Steinman RM. Dendritic cells as adjuvants for immune-mediated resistance to tumors. J Exp Med.1997 Oct 20; 186(8):1183-7. Review.
    87. Bender A, Sapp M, Feldman M, Reddy A, Seder R, Schuler G, Steinman RM, Bhardwaj N. Dendritic cells as immunogens for human CTL responses. Adv Exp Med Biol.1997;417:383-7.
    88. Dubensky TW Jr, Reed SG. Adjuvants for cancer vaccines. Semin Immunol.2010 Jun;22(3):155-61. Epub 2010 May 21. Review.
    89. Hui K, Grosveld F, Festenstein H. Rejection of transplantable AKR leukaemia cells following MHC DNA-mediated cell transformation. Nature.1984 Oct 25-31;311 (5988):750-2.
    90. Hui KM, Sim T, Foo TT, Oei AA. Tumor rejection mediated by transfection with allogeneic class I histocompatibility gene. J Immunol.1989 Dec 1;143(11):3835-43.
    91. Leach DR, Callahan GN. Fibrosarcoma cells expressing allogeneic MHC Class Ⅱ antigens induce protective antitumor immunity. J Immunol.1995 Jan 15;154(2):738-43.
    92. Schendel DJ, Frankenberger B, Jantzer P, Cayeux S, Nobetaner E, Willimsky G, Maget B, Pohla H, Blankenstein T. Expression of B7.1 (CD80) in a renal cell carcinoma line allows expansion of tumor-associated cytotoxic T lymphocytes in the presence of an alloresponse. Gene Then 2000 Dec;7(23):2007-14.
    93. Yamaguchi H, Tanaka F, Ohta M, Inoue H, Mori M. Identification of HLA-A24-restricted CTL epitope from cancer-testis antigen, NY-ESO-1, and induction of a specific antitumor immune response. Clin Cancer Res.2004 Feb 1;10(3):890-6.
    94. Berezhnaya NM. Interaction between tumor and immune system:the role of tumor cell biology. Exp Oncol.2010 Sep;32(3):159-66.
    95. Toes RE, Blom RJ, van der Voort E, Offringa R, Melief CJ, Kast WM. Protective antitumor immunity induced by immunization with completely allogeneic tumor cells. Cancer Res.1996 Aug 15;56(16):3782-7.
    96. Fehniger TA, Cooper MA, Caligiuri MA. Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev.2002 Apr; 13(2):169-83. Review.
    97. Bach EA, Aguet M, Schreiber RD. The IFN gamma receptor:a paradigm for cytokine receptor signaling. Annu Rev Immunol.1997; 15:563-91. Review.
    98. Sharma S, Stolina M, Lin Y, Gardner B, Miller PW, Kronenberg M, Dubinett SM. T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function. J Immunol.1999 Nov 1;163(9):5020-8.
    99. Romero P, Gervois N, Schneider J, Escobar P, Valmori D, Pannetier C, Steinle A, Wolfel T, Lienard D, Brichard V, van Pel A, Jotereau F, Cerottini JC. Cytolytic T lymphocyte recognition of the immunodominant HLA-A*0201-restricted Melan-A/MART-1 antigenic peptide in melanoma. J Immunol.1997 Sep 1;159(5):2366-74.
    100. Chen W, Frank ME, Jin W, Wahl SM. TGF-beta released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity.2001 Jun;14(6):715-25.
    101. Hoehn P, Goedert S, Germann T, Koelsch S, Jin S, Palm N, Ruede E, Schmitt E. Opposing effects of TGF-beta 2 on the Thl cell development of naive CD4+T cells isolated from different mouse strains. J Immunol.1995 Oct 15;155(8):3788-93.
    1. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting:from immunosurveillance to tumor escape. (2002) Nat Immunol 3(11):991-998
    2. Dye ES, North RJ. T cell-mediated immunosuppression as an obstacle to adoptive immunotherapy of the P815 mastocytoma and its metastases. J Exp Med (1981) 154(4):1033-1042
    3. McHugh RS, Whitters MJ, Piccirillo CA, et al. CD4(+)CD25(+) immunoregulatory T cells:gene expression analysis reveals a functional role for the glucocorticoidinduced TNF receptor. Immunity (2002) 16(2):311-323
    4. Thornton AM, Shevach EM. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. (2000) J Immunol 164:183-190
    5. Antony PA, Restifo NP. Do CD4+CD25+immunoregulatory T cells hinder tumor immunotherapy? J Immunother (2002) 25(3):202-206
    6. Alison H. Banham, Fiona M. et al. FOXP3+regulatory T cells:Current controversies and future perspectives. Eur. J. Immunol. (2006) 2832:36。
    7. Sasada T, Kimura M, Yoshida Y,et al. CD4+CD25+regulatory T cells in patients with gastrointestinal malignancies:possible involvement of regulatory T cells in disease progression. Cancer (2003) 98:1089-1099
    8. Bronte V, Apolloni E, Cabrelle A, et al. Identification of a CD11b(+)/Gr-l(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+)T cells Blood (2000) 96(12):3838-3846
    9. Mazzoni A, Bronte V, Visintin A, et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol (2002)168(2):689-695
    10. Kusmartsev SA, Li Y, Chen SH. Gr-1+myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol (2000) 165(2):779-785
    11. Almand B, Clark JI, Nikitina E, et al. Increased production of immature myeloid cells in cancer patients:a mechanism of immunosuppression in cancer. J Immunol (2001) 166(1):678-89
    12. Pardoll D. T cells and tumors. (2001) Nature 411(12):1010-1012
    13. Danna EA, Sinha P, Gilbert M, et al. Surgical removal of primary tumor reverses tumor-induced immunosuppression despite the presence of metastatic disease.Cancer Res (2004) 64:2205-2211.
    14. Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res (2001) 61:4756-4760.
    15. Yang L, Carbone DP. Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res (2004) 92:13-27.
    16. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol (2004) 4:941-952.
    17. S. Chouaib, J. Thiery, A. Gati. Tumor escape from killing:Role of killer inhibitory receptors and acquisition of tumor resistance to cell death. Tissue Antigens (2002) 60: 273-281
    18. Lasalvia-Prisco EM, Garcia-Giralt E, Cucchi S,et al. Prostate cancer:Autologous immunotherapy optimized by indoleamine-2,3-dioxygenase (IDO)-inhibitor as immune-tolerance breaker. In American Society of Clinical Oncology (ASCO) annual meeting (2006) Abstract 12509.
    19. Irmler M, Thome M, Hahne M, et al. Inhibition of death receptor signals by cellular FLIP. Nature (1997) 388(6638):190-195.
    20. Schwartz S Jr., Yamamoto H, Navarro M, et al. Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res (1999) 59: 2995-3002
    21. Joseph B, Ekedahl J, Sirzen F,et al. Differences in expression of pro-caspases in small cell and non-small cell lung carcinoma. Biochem Biophys Res Commun (1999) 262:381-387
    22 Lucia Malaguarnera. Implications of apoptosis regulators in tumorigenesis. Cancer and Metastasis Reviews (2004) 23:367-387.
    23. Cabrera T, Lopez-Nevot MA, Gaforio JJ, et al. (2003) Analysis of HLA expression in human tumor tissues. Cancer Immunol Immunother.52:1-9
    24. Osaki M, Kase S, Adachi K, et al. Inhibition of the PI3 K-Akt signaling pathway enhances the sensitivity of Fas-mediated apoptosis in human gastric carcinoma cell line, MKN-45. J Cancer Res Clin Oncol (2004)130(1):8-14
    25. Fennell DA Bcl-2 as a target for overcoming chemoresistance in small-cell lung cancer. Clin Lung Cancer (2003)4(5):307-313
    26. B Lu, OJ Finn. T-cell death and cancer immune tolerance.Cell Death and Differentiation (2008) 15,70-79。
    27. Mingari MC, Moretta A, Moretta L. Regula-tion of KIR expression in human T cells: a safety mechanism that may impair protec-tive T cell responses. Immunol Today (1998) 19:153-7.
    28. Traverso LW. Pancreatic cancer:surgery alone is not sufficient. Surg Endosc (2006) 20 Suppl 2:S446--9.
    29. Curiel TJ,Wei S, Dong H, et al. Blockade of B7-1 improves myeloid dendritic cell-mediated antitumor immunity. NatMed (2003) 9:562-7.
    30. Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-1 promotes T-cell apoptosis:a potential mechanism of immune evasion. Nat Med (2002) 8:793-800.
    31. Michael J. Gough, Carl E. Ruby, William L. Redmond. OX40 Agonist Therapy Enhances CD8 Infiltration and Decreases Immune Suppression in the Tumor. Cancer Res (2008) 68:(13).
    32. Li R, Ruttinger D, Li R, et al. Analysis of the immunological microenvironment at the tumor site in patients with non-small cell lung cancer. Langenbecks Arch Surg (2003) 388(6):406-412
    33. Ohm JE, Carbone DP. VEGF as a mediator of tumor associated immunodeficiency. Immunol Res (2001) 23(2-3):263-272
    34. Cabrera CM, Jimenez P, Cabrera T, et al. Total loss of HLA class I in colorectal tumors can be explained by two molecular pathways:beta 2-microglobulin inactivation and MSI-positive tumors and P7/TAP2 downregulation in MS negative tumors. Tissue Antigens (2003)61(3):211-219
    35. Fan XH, Han BH, Dong QG, et al. Vascular endothelial growth factor inhibits dendritic cells from patients withNSCLC. (2003) (9):539-543
    36. Buggins AG, Milojkovic D, Arno MJ, et al. Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. J Immunol (2001)167(10):6021-6030
    37. Fortis C, Foppoli M, Gianotti L,et al. Increased interleukin-10 serum levels in patients with solid tumors. Cancer Lett (1996) 104(1):1-5
    38. Bellone G, Turletti A, Artusio E, et al. Tumor-associated transforming growth factor-beta and interleukin-10 contribute to a systemic Th2 immune phenotype in pancreatic carcinoma patients. Am J Pathol (1999)155(2):537-547
    39. Mukherjee P, Ginardi AR, Madsen CS, et al. MUC1-specific CTLs are non-functional within a pancreatic tumor microenvironment. Glycoconj J (2001)18(11-12):931-942
    40. Gruss HJ, Dower SK. Tumor necrosis factor ligand superfamily:involvement in the pathology of malignant lymphomas. Blood (1995) 85:3378-404
    41. Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins:activation, costimulation, and death. Cell 76:959-962
    42. Joan Seoane. Escaping from the TGFb anti-proliferative control. Carcinogenesis vol.27 no.11 pp.2148-2156
    43. Maeda H, Shiraishi A. TGF-beta contributes to the shift toward Th2-type responses through direct and IL-10-mediated pathways in tumor-bearing mice. J Immunol (1996) 156(1):73-78
    44. Nam KO, Kang WJ, Kwon BS,et al. The therapeutic potential of 4-1BB (CD137) in cancer.
    45. Rafael Carretero, Jose M. Romero, Francisco Ruiz-Cabello. Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics (2008) 60:439-447
    46. de Vries TJ, Fourkour A, Wobbes T, et al. Heterogeneous expression of immunotherapy candidate proteins gplOO, MART-1, and tyrosinase in human melanoma cell lines and in human melanocytic lesions. Cancer Res (1997) 57(15):3223-3229
    47. Hofbauer GF, Kamarashev J, Geertsen R, et al. Melan A/MART-1 immunoreactivity in formalinfixed paraffin-embedded primary and metastatic melanoma:frequency and distribution. Melanoma Res (1998) 8(4):337-343
    48. Ciurea A, Hunziker L, Martinic MM,et al. CD4+T-cell-epitope escape mutant virus selected in vivo. Nat Med (2001) 7:795-800
    49. Rohrlich PS, Cardinaud S, Firat H, et al. HLA-B*0702 transgenic, H-2KbDb double-knockout mice:phenotypical and functional characterization in response to influenza virus. Int Immunol (2003)15:765-772
    1. Clive KS, Tyler JA, Clifton GT, et al. Use of GM-CSF as an adjuvant with cancer vaccines:beneficial or detrimental? Expert Rev Vaccines.2010 May;9(5):519-25.
    2. Benencia F, Courreges MC, Fraser NW, et al. Herpes virus oncolytic therapy reverses tumor immune dysfunction and facilitates tumor antigen presentation. Cancer Biol Ther. 2008 Aug;7(8):1194-205. Epub 2008 Aug 1.
    3. Israyelyan A, Chouljenko VN, Baghian A, et al. Herpes simplex virus type-l(HSV-l) oncolytic and highly fusogenic mutants carrying the NV1020 genomic deletion effectively inhibit primary and metastatic tumors in mice. Virol J.2008 Jun 2;5:68.
    4. Li H, Dutuor A, Fu X, et al. Induction of strong antitumor immunity by an HSV-2-based oncolytic virus in a murine mammary tumor model. J Gene Med.2007 Mar;9(3):161-9.
    5. Liu TC, Galanis E, Kirn D. Clinical trial results with oncolytic virotherapy:a century of promise, a decade of progress. Nat Clin Pract Oncol.2007 Feb;4(2):101-17.
    6. Ebert O, Shinozaki K, Kournioti C, et al. Syncytia induction enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for cancer. Cancer Res.2004 May 1;64(9):3265-70.
    7. Nakamori M, Fu X, Rousseau R, et al. Destruction of nonimmunogenic mammary tumor cells by a fusogenic oncolytic herpes simplex virus induces potent antitumor immunity. Mol Ther.2004 May;9(5):658-65.
    8. Cinatl J Jr, Cinatl J, Michaelis M, et al. Potent oncolytic activity of multimutated herpes simplex virus G207 in combination with vincristine against human rhabdomyosarcoma. Cancer Res.2003 Apr l;63(7):1508-14.
    9. Liu BL, Robinson M, Han ZQ, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther.2003 Feb;10(4):292-303.
    10. Bateman AR, Harrington KJ, Kottke T, et al. Viral fusogenic membrane glycoproteins kill solid tumor cells by nonapoptotic mechanisms that promote cross presentation of tumor antigens by dendritic cells. Cancer Res.2002 Nov 15;62(22):6566-78.
    11. Fu X, Zhang X. Potent systemic antitumor activity from an oncolytic herpes simplex virus of syncytial phenotype. Cancer Res.2002 Apr 15;62(8):2306-12.
    1. Dvorak 1. ak HF:Tumors:Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med (1986) 315(26):1650-1659.
    2. Kawanishi S, Hiraku Y. Oxidative and nitrative DNA damage as biomarker for carcinogenesis with special reference to inflammation. Antioxid Redox Signal.2006 May-Jun;8(5-6):1047-58.
    3. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy:moving beyond current vaccines. Nat Med.2004 Sep;10(9):909-15.
    4. Ronnov-Jessen L, Petersen OW, Bissell MJ. Cellular changes involved in conversion of normal to malignant breast:importance of the stromal reaction. Physiol Rev.1996 Jan;76(1):69-125.
    5. Sung SY, Hsieh CL, Wu D, Chung LW, Johnstone PA. Tumor microenvironment promotes cancer progression, metastasis, and therapeutic resistance. Curr Probl Cancer. 2007 Mar-Apr;31(2):36-100.
    10. Arismendi-Morillo G, Castellano A. Tumoral micro-blood vessels and vascular microenvironment in human astrocytic tumors. A transmission electron microscopy study. J Neurooncol.2005 Jul;73(3):211-7.
    11. Hagemann T, Lawrence T. Investigating macrophage and malignant cell interactions in vitro. Methods Mol Biol.2009;512:325-32.
    12. Fidler IJ. The pathogenesis of cancer metastasis:the'seed and soil'hypothesis revisited. Nat Rev Cancer.2003 Jun;3(6):453-8.
    13. Kitagawa Y, Zhou M, Yamaguchi M, Komatsu T, Takeuchi K, Itoh M, Gotoh B. Human metapneumovirus M2-2 protein inhibits viral transcription and replication. Microbes Infect.2010 Feb;12(2):135-45. Epub 2009 Nov 12.
    14. Wakimoto H, Ikeda K, Abe T, Ichikawa T, Hochberg FH, Ezekowitz RA, Pasternack MS, Chiocca EA:The complement response against an oncolytic virus is species-specific in its activation pathways. Mol Ther (2002) 5(3):275-282.
    15. Wakimoto H, Johnson PR, Knipe DM, Chiocca EA:Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells. Gene Ther (2003) 10(11):983-990.
    16. Stanford MM, Shaban M, Barrett JW, Werden SJ, Gilbert PA, Bondy-Denomy J, MacKenzie L, Graham KC, Chambers AF, McFadden G:Myxoma virus oncolysis of primary and metastatic B16F10 mouse tumors in vivo. Mol Ther (2007) 16(1):52-59.
    17. L, Brooks G, Sampson-Johannes A, Williams A, Hawkins L, Kirn D:An adenovirus El A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med (2000) 6(10):1134-1139.
    18. Lun X, Yang W, Alain T, Shi ZQ, Muzik H, Barrett JW, McFadden G, Bell J, Hamilton MG, Senger DL, Forsyth PA:Myxoma virus is a novel oncolytic virus with significant antitumor activity against experimental human gliomas. Cancer Res (2005) 65(21):9982-9990.
    19. Shinozaki K, Ebert O, Kournioti C, Tai YS, Woo SL:Oncolysis of multifocal hepatocellular carcinoma in the rat liver by hepatic artery infusion of vesicular stomatitis virus. Mol Ther (2004) 9(3):368-376.
    20. Vaha-Koskela MJ, Kallio JP, Jansson LC, Heikkila JE, Zakhartchenko VA, Kallajoki MA, Kahari VM, Hinkkanen AE:Oncolytic capacity of attenuated replicative semliki forest virus in human melanoma xenografts in severe combined immunodeficient mice. Cancer Res (2006) 66(14):7185-7194.
    21. Yang WQ, Senger DL, Lun XQ, Muzik H, Shi ZQ, Dyck RH, Norman K, Brasher PM, Rewcastle NB, George D, Stewart D et al:Reovirus as an experimental therapeutic for brain and leptomeningeal metastases from breast cancer. Gene Ther (2004) 11(21):1579-1589.
    22. Vaha-Koskela MJ, Heikkila JE, Hinkkanen AE:Oncolytic viruses in cancer therapy. Cancer Lett (2007) 254(2):178-216.
    23. McKee TD, Grandi P, Mok W, Alexandrakis G, Insin N, Zimmer JP, Bawendi MG, Boucher Y, Breakefield XO, Jain RK:Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res (2006) 66(5):2509-2513.
    24. Salio M, Cella M, Suter M, Lanzavecchia A. Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol.1999 Oct;29(10):3245-53.
    25. Reid TR, Freeman S, Post L, McCormick F, Sze DY:Effects of ONYX-015 among metastatic colorectal cancer patients that have failed prior treatment with 5-FU/leucovorin. Cancer Gene Ther (2005) 12(8):673-681.
    26. Hu JC, Coffin RS, Davis CJ, Graham NJ, Groves N, Guest PJ, Harrington KJ, James ND, Love CA, McNeish I, Medley LC et al:A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colonystimulating factor. Clin Cancer Res (2006) 12(22):6737-6747.