异常T细胞亚群参与免疫性血小板减少症的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免疫性血小板减少性紫癜(immune thrombocytopenia,ITP)是一种以血小板免疫性破坏为特征的自身免疫性疾病。临床上分为慢性ITP与急性ITP,慢性ITP多发病于20~50岁之间,女性发病率较男性高2~3倍,绝大多数慢性ITP患者缺乏临床表现或明确的病因。急性ITP是儿童比较常见的出血性疾病,发病年龄以2~5岁之间为多,病程一般4~6周,多数患儿病情可自行缓解,痊愈后很少复发,多在病毒感染或预防接种后发生,成人少见,无性别差异,通常在冬春季节、病毒感染高峰期发病较多。根据临床经验,急性ITP大多可自然缓解,而慢性ITP起病隐匿,病因复杂。越来越多的证据表明,ITP患者除体液免疫功能紊乱,产生自身抗血小板抗体外,还存在T细胞亚群的失衡,如Th1/Th2平衡失调,并以Th1异常表达占优势,另外有研究表明,Treg及Th17细胞数目均发生异常。
     目前临床对于ITP的治疗主要是通过三种途径来达到血小板数目的增加:(1)通过抑制血小板的清除,比如脾切除术;(2)通过抑制或者纠正异常的免疫反应,比如皮质甾醇类药物或者rituximab;(3)通过增加血小板的生成,比如TPO-RAs。但是对于部分慢性ITP患者的治疗效果却不显著,临床比较棘手。
     有报道指出,短程大剂量地塞米松冲击疗法对慢性ITP患者有较好的治疗效果,但是机制不明。本研究试图研究地塞米松对ITP患者的治疗效果并阐明其作用机制。本文首先对ITP患儿外周血中的T细胞亚群,包括Th1、Th2、Treg及Th17细胞进行流式分析,并对IL-2、IFN-γ、IL-4、IL-10、TGFβ及IL-17等细胞因子进行ELISA测定,对T-bet、GATA-3、Foxp3及RORγt进行实时定量PCR分析,初步探讨ITP患儿中T细胞亚群的改变。再进一步对慢性ITP患者进行短程大剂量地塞米松冲击疗法,观察其治疗效果并阐述其作用机制。
     我们对30例正常对照和30例ITP患儿进行Th1、Th2、Treg、Th17的流式分析,结果表明,Th1细胞在正常对照与ITP患儿中没有显著变化,而Th2细胞在ITP患儿中的表达显著降低,ITP患儿中Treg细胞数目减少而Th17细胞数量增加。用ELISA方法分别检测各细胞因子含量,结果发现,Th1的细胞因子(IL-2及IFN-γ)在ITP患儿外周血中含量明显升高,而Th2的细胞因子(IL-4和IL-10)含量明显降低,TGFβ及IL-17的表达与Treg及Th17细胞含量结果一致,分别为降低和升高。 Realtime PCR结果显示ITP患者外周血PBMC中T-bet的表达没有显著变化,但是GATA-3及Foxp3的表达在ITP患者中显著降低,而RORγt的表达明显升高。
     我们对10名ITP患者进行短程大剂量地塞米松冲击治疗,结果表明70%的患者在治疗后血小板数量明显增加,可达到正常水平。我们对T细胞亚群及转录因子进行了分析,结果表明,地塞米松治疗的患者外周血Th2细胞及Treg细胞较未治疗组有明显的升高,Th17细胞有显著的降低,同时我们发现转录因子表达改变趋势与相关T细胞亚群相同。为了进一步揭示用地塞米松纠正T细胞亚群失衡来治疗ITP的机制,我们纯化分离正常的T细胞,地塞米松体外处理。结果表明地塞米松可以抑制RORγt的表达,但是促进GATA-3及Foxp3的表达。这些结果表明地塞米松是通过调节转录因子的表达水平从而影响T细胞亚群的分化来纠正ITP患者中T细胞亚群异常的状态,从而达到治疗ITP的目的。
     综上所述,我们首次对儿童ITP的T细胞亚群的含量、细胞因子及转录因子的表达进行了分析,对异常T细胞亚群参与ITP的发病提供了更多的证据,并对大剂量地塞米松治疗ITP患者的机制进行了初步探讨,这些研究结果为揭示ITP的发病机制并为治疗ITP提供了重要信息。
Immune thrombocytopenia (ITP) is a kind of platelet immunological failure featuresof autoimmune disease. Clinically, ITP is divided into acute and chronic ITP. Chronic ITPdisease is mainly in20-50years old adult people. Female incidence rate is2-3times morethan that of male. Most chronic ITP patients lack clinical symptoms and definite reasons.Acute ITP is mainly occurred in children about2-5years old after virous infection andvaccination and there is no gender difference. The general course of acute ITP is four to sixweeks and the majority of children with the disease can relieve itself, rarely relapse afterrecovery. Acute ITP usually happens in spring/winter and the fastigium of virous infection.According to clinical experience, acute ITP is mostly spontaneous remission. However thecause of chronic ITP is complex. More and more evidence shows that, other than humoralimmune function disorders, imbalance of Th1/Th2is happened in ITP patients and Th1type reaction is dominant. In addition, it is reported that the number of Treg and Th17cellswere abnormal in ITP patients.
     Recent progress of ITP treatment enables us to use three distinct approaches toincrease platelet mass:(1) by suppression of platelet clearance, e.g. splenectomy,(2) bysuppression or modification of abnormal immune responses, e.g. corticosteroids orrituximab, and (3) by stimulation of platelet production, e.g. TPO-RAs. But for somepatients with chronic ITP, the treatment effect is not significant.
     There are reports of short-range high concentrations of dexamethasone has a goodtherapeutic effect for patients with chronic ITP, but the mechanism is unknown. Thisresearch attempts to study the therapeutic effect of dexamethasone in patients with ITP andto elucidate its mechanism of action. In this paper, we first analyzed the T cell subsets in the peripheral blood of ITP patients using FCM including Th1, Th2, Treg and Th17cells.Meanwhile, IL2, IFN-gama, IL4, IL10, TGFbeta and IL17cytokines were assessed byELISA; mRNA of T-bet, GATA-3, Foxp3and ROR γ t were checked using real timefluorescent quantitative PCR. Furthermore, we evaluated the therapeutic effect of shortcourse-high concentration of dexamethasone in the treatment of patients with chronic ITPand studied the mechanism of dexamethasone in treatment of ITP.
     We analyzed30normal people and30ITP patients. Our results showed that thecontent of Th1cells did not change significantly in normal subjects and in patients withITP, and the content of Th2cells in patients with ITP was significantly lower. At the sametime, we analyzed another two T cells subsets Treg and Th17. The results showed that thenumber of Treg cells was reduced and Th17cells increased in patients with ITP. ELISAresults showd that Th1type cytokines (IL2and IFN-gama) were increased in the peripheralblood of patients with ITP, and Th2type cytokines (IL4and IL10) was significantlydown-regulated.
     As the change of Treg cells and Th17cells, TGFbeta and IL17were also decreasedand increased respectively in the peripheral blood of patients with ITP. Realtime PCRresults showed there were no significant changes of the expression of T-bet in peripheralblood of patients with ITP, but the expression of GATA-3and Foxp3were significantlylower in patients with ITP, and the expression of ROR γ t is higher than normal people.Subsequently, we treated10ITP patients with high concentration of dexamethasone. Thetreatment results showed that70%of the patients after treatment significantly increased thenumber of platelets. At the same time, T cell subsets and transcription factors wereanalyzed. The results show that, Th2cells and Treg cells in peripheral blood of patientstreated with dexamethasone compared to untreated group significantly increased, and Th17cells were significantly decreased. At the same time, we found that expression oftranscription factor is changed as T cells subsets. In order to further reveal the mechanismof dexamethasone in changing the T cell subsets in ITP, we isolated the T cells from normal people and treated with dexamethasone. The results show that dexamethasone caninhibit the expression of ROR γ T, but promotes the expression of GATA-3andFoxp3.These results suggest that dexamethasone can correct the T cell subsets in patientswith ITP by regulating the expression level of transcription factors.In summary, we for thefirst time analyzed the content of T cells subsets, cytokines and transcription factors in ITPpatients, providing more evidence for abnormal T cell subsets in the pathogenesis of ITP.Mechanism and treatment of patients with ITP to the high concentration of dexamethasoneare discussed. These results provide important information for understanding thepathogenesis and treatment of ITP.
引文
1. Cines DB, Blanchette VS. Immune thrombocytopenic purpura.N Engl J Med.2002;346:995–1008.
    2. McMillan R. The pathogenesis of chronic immune thrombocytopenic purpura. SeminHematol.2007;44(Suppl5):S3–11.
    3. Provan D, Stasi R, Newland AC, Blanchette VS, Bolton-Maggs P, Bussel JB, et al.International consensus report on the investigation and management of primaryimmune thrombocytopenia. Blood.2010;115:168–86.
    4. Frederiksen H, Schmidt K. The incidence of idiopathic thrombocytopenic purpura inadults increases with age. Blood.1999;94:909–13.
    5. Neylon AJ, Saunders PWG, Howard MR, Proctor SJ, Taylor PRA. Clinically significantnewly presenting autoimmune thrombocytopenic purpura in adults: a prospectivestudy of a population-based cohort of245patients. Br J Haematol.2003;122:966–74.
    6. Schoonen WM, Kucera G, Coalson J, Li L, Rutstein M, Mowat F, et al. Epidemiology ofimmune thrombocytopenic purpura in the general practice research database. Br JHaematol.2009;145:235–44.
    7. Kurata Y, Fujimura K, Kuwana M, Tomiyama Y, Murata M. Epidemiology of primaryimmune thrombocytopenia in children and adults in Japan: a population-based studyand literature review. Int J Hematol.2011;93:329–35.
    8. Harrington WJ, Minnich V, Hollingsworth JW, Moore CV. Demonstration of athrombocytopenic factor in the blood of patients with thrombocytopenic purpura. JLab Clin Med.1951;38:1–10.
    9. Sigdel MR, Shah DS, Kafle MP, Raut KB. Severe immune thrombocytopenic purpuratreated with plasma exchange. Kathmandu Univ Med J (KUMJ).2012Jan-Mar;10(37):85-7.
    10. Lee CY, Wu MC, Chen PY, Chou TY, Chan YJ. Acute immune thrombocytopenicpurpura in an adolescent with2009novel H1N1influenza A virus infection. J ChinMed Assoc.2011Sep;74(9):425-7.
    11. Akbayram S, Akgun C, Dogan M, Caksen H, Oner AF. Acute ITP due to insect bite:report of2cases. Clin Appl Thromb Hemost.2011Aug;17(4):408-9.
    12. Kempin S. Update on chronic lymphocytic leukemia: overview of new agents andcomparative analysis. Curr Treat Options Oncol.2013Jun;14(2):144-55.
    13. Kuter DJ, Bussel JB, Newland A, Baker RI, Lyons RM, Wasser J, Viallard JF, MacikG, Rummel M, Nie K, Jun S. Long-term treatment with romiplostim in patients withchronic immune thrombocytopenia: safety and efficacy. Br J Haematol.2013May;161(3):411-23.
    14. Hirano A, Ueoka H. Successful treatment of an elderly patient with idiopathicthrombocytopenic purpura accompanied with chronic subdural hematoma, using aChinese herbal medicine, EK-49, and ascorbic acid. Nihon Ronen Igakkai Zasshi.2001Mar;38(2):224-8.
    15. Maleki D, van der Meer M, Eghbal MP. Successful treatment of refractory idiopathicthrombocytopenic purpura and neutropenia with the monoclonal antibody, rituximab.Indian J Hematol Blood Transfus.2012Jun;28(2):114-6.
    16. Mahmoud Gouda H, Mohamed Kamel NR. Cannabinoid CB2receptor gene (CNR2)polymorphism is associated with chronic childhood immune thrombocytopenia inEgypt. Blood Coagul Fibrinolysis.2013Apr;24(3):247-51.
    17. McMillan R. The pathogenesis of chronic immune thrombocytopenic purpura. SeminHematol.2007Oct;44(4Suppl5):S3-S11.
    18. Maloisel F, Andrès E, Zimmer J, Noel E, Zamfir A, Koumarianou A, Dufour P. Danazoltherapy in patients with chronic idiopathic thrombocytopenic purpura: long-termresults. Am J Med.2004May1;116(9):590-4.
    19. Kashiwagi H, Tomiyama Y. Pathophysiology and management of primary immunethrombocytopenia. Int J Hematol.2013Jul;98(1):24-33.
    20. Takahata M, Hashino S, Fujimoto K, Endo T, Kobayashi N, Kurosawa M, Iwasaki H,Miyake T, Kohda K, Maekawa I, Sasagawa H, Tsustumi Y, Miyagishima T, Tanaka J,Imamura M, Teshima T. Clinical efficacy of high-dose cepharanthine for idiopathicthrombocytopenic purpura: retrospective multicenter analysis. Rinsho Ketsueki.2012Dec;53(12):1983-90.
    21. Gwilliam NR, Lazar DA, Brandt ML, Mahoney DH Jr, Wesson DE, Mazziotti MV,Nuchtern JG, Lee TC. An analysis of outcomes and treatment costs for childrenundergoing splenectomy for chronic immune thrombocytopenia purpura. J PediatrSurg.2012Aug;47(8):1537-41.
    22. Journeycake JM. Childhood immune thrombocytopenia: role of rituximab, recombinantthrombopoietin, and other new therapeutics. Hematology Am Soc Hematol EducProgram.2012;2012:444-9.
    23. Shulman NR, Marder VJ, Weinrach RS. Similarities between known antiplateletantibodies and the factor responsible for thrombocytopenia in idiopathic purpura.Physiologic, serologic and isotopic studies. Ann NY Acad Sci.1965;124:499–542.
    24. Schwartz RS. Immune thrombocytopenic purpura-from agony to agonist. N Engl JMed.2007;357:2299–301.
    25. Kuwana M, Kaburaki J, Ikeda Y. Autoreactive T cells to platelet GPIIb-IIIa in immunethrombocytopenic purpura. Role in production of anti-platelet autoantibody. J ClinInvest.1998;102:1393–402.
    26. Panitsas FP, Theodoropoulou M, Kouraklis A, Karakantza M, Theodorou GL,Zoumbos NC, et al. Adult chronic idiopathic thrombocytopenic purpura (ITP) is themanifestation of a type-1polarized immune response. Blood.2004;103:2645–7.
    27. Hu Y, Ma DX, Shan NN, Zhu YY, Liu XG, Zhang L, et al. Increased number of Tc17and correlation with Th17cells in patients with immune thrombocytopenia. PLoSONE.2011;6: e26522.
    28. Stasi R, Del Poeta G, Stipa E, Evangelista ML, Trawinska MM, Cooper N, et al.Response to B-cell depleting therapy with rituximab reverts the abnormalities ofT-cell subsets in patients with idiopathic thrombocytopenic purpura. Blood.2007;110:2924–30.
    29. Olsson B, Andersson PO, Jerna°s M, Jacobsson S, Carlsson B, Carlsson LM, et al.T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenicpurpura. Nat Med.2003;9:1123–4.
    30. Liu B,Zhao H,Poon MC. Abnormality of CD4(+) CD25(+) regulatory T cells inidiopathic thrombocytopenic purpura[J]. Eur J Haematol,2007,78(2):139-143.
    31. Zhang J,Ma D,Zhu X,et al. Elevated profile of Th17,Th1and Tc1cells in patientswith immune thrombocytopenic purpura[J]. Haematologica,2009,94(9):1326-1329.
    32. Li HY,Zhang DL,Ge J,et al. Elevated interleukin-27enhances the polarization ofTh1/Tc1cells and the production of proinflammatory cytokines in primary immunethrombocytopenia[J]. Hum Immunol,2012,73(3):240-247.
    33.钱莘,施明,王福生.流式细胞术检测细胞内细胞因子的研究进展[J].细胞与分子免疫学杂志,2005,21(1):62-64.
    34. Carrasco-Yepez M,Rojas-Hernandez S,Rodriguez-Monroy MA,et al.Protectionagainst Naegleria fowleri infection in mice immunized with Cry1Ac plus amoebiclysates is dependent on the STAT6Th2response. Parasite Immunol,2010,32(9-10):664-670.
    35.王谦,展凤霞,单宁宁.免疫性血小板减少症患者外周血白细胞介素-18及其受体α链的表达.中华内科杂志,2010,49(4):316-319.
    36. Panitsas FP, Theodoropoulou M, Kouraklis A. Adult chronic idiopathicthrombocytopenic purpura (ITP) is the manifestation of a type-1polarized immuneresponse. Blood,2004,103(7):2645-2647.
    37. Webber NP,Mascarenhas JO,Crow MK,et al. Functional properties of lymphocytesin idiopathic thrombocytopenic purpura.Hum Immunol,2001,62(12):1346-1355.
    38. Stasi R,Cooper N,Del Poeta G,et al. Analysis of regulatory T-cell changes inpatients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapywith rituximab. Blood,2008,112(4):1147-1150.
    39. Lee YK,Turner H,Maynard CL,et al. Late developmental plasticity in the T helper17lineage. Immunity,2009,30(1)
    40. Sakaguchi S. Naturally arising Foxp3-exprcssing CD25+CD4+regulatory T cells inimmunological tolerance to self and non-self. Nat Immunol,2005,699(4):345
    41. Fontenot JD, Gavin MA, Rudensky AY. Foxp3programs the development andfunction of CD4+CD25+regulatory T cells. Nat Immunol,2003,(4):330
    42. Maloy KJ, Salaun L, Cahill R, et al. CD4+CD25+T(R) cells suppress innate immunepathology through cytokine-dependent mechanisms. Exp Med,2003,197(1):111.
    43. Balandina A, Lecart S, Dartevelle P, et al. Functional defect of regulatoryCD4+CD25+T cells in the thymus of patients with autoimmune myasthenia gravis.Blood,2005,105(2):735
    44. Lin SC, Chen KH, Lin CH, et al. The quantitative analysis of peripheral bloodFOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritispatients. Eur J Clin Invest,2007,37(12):987
    45. Jiao Z, Wang W, Jia R, et al. Accumulation of Foxp3-expressingCD4(+) CD25(+) Tcells with distinct chemokine receptors in synovial fluid of patients with activerheumatoid arthritis. Scand J Rheumatol,2007,36(6):428
    46. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4+T cells regulates tissueinflammation by producing interleukin17. Nat Immunol,2005,6(11):1133
    47. Ivanov II, Mekenzie BS, Zhou L, et al. The orphan nuclear receptor R0R-γt directsthe differentiation program of pro-inflammatory ILl7+T helper cells. Cell,2006,l26(6):l12l
    48. Kolls JK, Linden A. Interleukin-l7family members and inflammation. Inmmnity,2004,2l (4):467
    49. Zheng Y,Danilenko DM,Valdez P,et al. Interleukin-22,a T(H)17ctykoine mediatesIL-23-inducde dermal inflammation and acanthosis Nature,2006,445:468
    50. Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21in thegeneration of inflammatory T cells. Nature,2007,448:480
    51. Wong CK, Ho CY, Li EK, et al. Elevation of proinflammatory cytoine(IL-18,IL-17,IL-12) and Th2cyokine (IL-4) concentrations in patients with systemic lupuserythematosus. Lupus,2000,9(8)589
    52. KohnoM, TsutsumiA, Matsui H, et al. Interleukin-17gene expression in patients withrheumatoid arthritis. Mod Rheumatol,2008,18(1):15
    53. Fujino S,Andoh A,Bamba S,et al. Increased expression of interleukin-17ininflammatory bowel disease.Gut,2003,52(1):65
    54. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for thegeneration of pathogenic effector Th17and regulatory T cells. Nature,2006,441:235
    55.于健宁,马纪林,陶筱娟,等. Foxp3仍然是人调节性T细胞的标志?中华临床免疫和变态反应杂志,2008,2(1):5
    56.凌云,曹祥山,余自强,等. CD4+CD25+调节性T细胞在特发性血小板减少性紫癜患者中的变化.中华血液学杂志,2007,3(28):3
    57.刘家华,徐军发,钟明,等. CD4+CD25+调节性T细胞在免疫性血小板减少性紫癜中的调解作用.临床内科杂志,2006,23:383
    58. Sakakura M, Wada H, Tawara I, et al. Reduced CD4+CD25+T cells in patients withidiopathic thrombocytopenic purpura. Thromb Res,2007,120(2):187
    59. Ma DX, Zhu XJ, Zhao P,et al. Profile of Th17cytokines (IL-17, TGF-β, IL-6) andTh1cyt okine (IFN-γ) in patients with immune thrombocytopenic purpura. AnnHematol,2008,87:899
    60. Zhou RF, Yang JQ, Chang DY, et al. Profiles of Th1, Th2, Th17and Treg Cells inPatients with Chronic Idiopathic Thrombocytopenic Purpura.. Blood (ASH AnnualMeeting Abstracts),2008,112:4907
    61. Akio S, Akihiko Y,Hirotaka N.Innate Immunity in Idiopathic ThrombocytopenicPurpura (ITP). Blood (ASH Annual Meeting Abstracts),2008,112:4537
    62. Li F, Zou SH, Cheng YF. Elevated Expression of IL-17and IL-23in Patients withImmune Thrombocytopenic Purpura.Blood (ASH Annual Meeting Abstracts),2008,112:3428
    63. M cFarland J. Path ophysiology of plate le t destruction in immune (idiopathic) thrombocytopen ic purpura.B lood,2002,16(1):1-2.
    64. Kuw anaM, Ikeda Y. The ro le of autoreactive Tce lls in the pa thogeneses o f id iopath ic throm bocytopen ic purpura. In t J H em ato,l2005,81(2):106-112.
    65. Ahn YS, H o rstman LI. Idiopa th ic throm bo cy topen ic purpura: pathophysio logyand m anagement. In t J H ema to,l2002,76(Suppl2): S123-S131.
    66. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F. T helper cells plasticity ininflammation. Cytometry A.2013Sep5. doi:10.1002/cyto.a.22348.
    67. Fujimoto S, Komine M, Karakawa M, Uratsuji H, Kagami S, Tada Y, Saeki H,Ohtsuki M, Tamaki K. Histamine differentially regulates the production of Th1andTh2chemokines by keratinocytes through histamine H1receptor. Cytokine.2011May;54(2):191-9.
    68. Yeh WI, McWilliams IL, Harrington LE. Autoreactive Tbet-positive CD4T cellsdevelop independent of classic Th1cytokine signaling during experimentalautoimmune encephalomyelitis. J Immunol.2011Nov15;187(10):4998-5006.
    69. Seki N, Miyazaki M, Suzuki W, Hayashi K, Arima K, Myburgh E, Izuhara K,Brombacher F, Kubo M. IL-4-induced GATA-3expression is a time-restrictedinstruction switch for Th2cell differentiation. J Immunol.2004May15;172(10):6158-66.
    70. Tsai HC, Wu R. Cholera Toxin Directly Enhances IL-17A Production from HumanCD4+T Cells. J Immunol.2013Sep16.
    71. Troncone E, Marafini I, Pallone F, Monteleone G. Th17Cytokines in InflammatoryBowel Diseases: Discerning the Good from the Bad. Int Rev Immunol.2013Sep16.[Epub ahead of print]
    72. M osm ann TR, CherwinskiH, BondMW, et al. Two types of murine helper T cellclone. I. Definition according to profiles of lymphokine activities and secretedproteins.1986. J Immunol,2005,175(1):5-14.
    73. Rom agnan i S. Biology of human TH1and TH2cells. J C lin Imm unol,1995,15(3):121-129.
    74. Usui T. Transcription factors that regulate helper T cell differentiation. N ihon R insho eneki Gakka iK aish i,2007,30(6):419-427.
    75. Paradow ska A, M as li isk iW, Grzybow ska-Kow alczyk A, et al. The function ofin terleuk in17in th e pathogenesis of rheumatoid arthritis. Arch Immunol Th er Exp(Warsz),2007,55(5):329-334.
    76. BettelliE, Korn T, Kuch roo VK. Th17: Th e th irdm em ber of the effector T celltrilogy. Curr Op in Imm unol,2007,19(6):652-657.
    77. Aggarw al S, Gh ilard iN, X ieMH, et al. Interleukin-23prom otes a d istin ct CD4T cell activation state characterized by the production of interleukin-17. J Biol Chem,2003,278(3):1910-1914.
    78. Mudter J, Neu rath M F. IL-6signaling in inflammatory boweld isease: Pathophysiolog ical role and clinical relevance[J]. Inflamm Bowel Dis,2007,13(8):1016-1023.
    79. Mangan PR, H arrington LE, OcQu inn DB, e t al. Transforming growth factor-betainduces developm en t of the T (H)17lineage. Nature,2006,441(7090):231-234.
    80. Romagnani S. Th1/Th2cells. Inflamm Bowel Dis.1999Nov;5(4):285-94.
    81. Romagnani S. Th1and Th2in human diseases. Clin Immunol Immunopathol,1996,80(3Pt1):225-235.
    82.王婷婷,赵辉,任贺,等.慢性特发性血小板减少性紫癜患者Ⅰ类和Ⅱ类T细胞特点的研究.中华医学杂志,2006,86(10):669-673.
    83. Panitsas FP, Theodoropoulou M, Kouraklis A, et al. Adult chronic idiopathicthrombocytopenic purpura (ITP) is the manifestation of a type-1polarized immuneresponse. Blood,2004,103(7):2645-2647.
    84. Zhao H, Du W, Wang D, et al. The expression of IFN-γ, IL-4, Foxp3and perforingenes are not correlated with DNA methylation status in patients with immunethrombocytopenic purpura. Platelets,2010,21(2):137-143.
    85. H ill JA, Benoist C, M ath isD. Treg cel ls: guardians for life. Nature Immuno l,2007,8(2):124-125.
    86. N agaham aK, N ish im ura E, Sakagu chi S. Induction of to lerance by adopt ive transfer of Treg cells. M ethodsM ol B io,l2007,80:431-442.
    87.杨默,李桂霞.调控巨核系造血的细胞因子和转录因子.中国实验血液学杂志,2002,10(6):580-585.
    88. Leonidas C. Abnormalities in Th17cells in a plastic anemia. Blood,2011,116(20):4039-4045.
    89. Semple J.W. Immune pathophysiology of autoimmune thrombocytopenic purpura.Blood Rev.2002;16:9-12.
    90. George J.N., Woolf S.H., Raskob G.E., Wasser J.S., Aledort L.M., Ballem P.J.,Blanchette V.S., Bussel J.B., Cines D.B., Kelton J.G., Lichtin A.E., McMillan R.,Okerbloom J.A., Regan D.H., Warrier I. Idiopathic thrombocytopenic purpura: apractice guideline developed by explicit methods for the American Society ofHematology. Blood.1996;88:3-40.
    91. Chu Y.W., Korb J., Sakamoto K.M. Idiopathic thrombocytopenic purpura. PediatrRev.2000;21:95-104.
    92. Panitsas F.P., Theodoropoulou M., Kouraklis A., Karakantza M., Theodorou G.L.,Zoumbos N.C., Maniatis A., Mouzaki A. Adult chronic idiopathic thrombocytopenicpurpura (ITP) is the manifestation of a type-1polarized immune response. Blood.2004;103:2645-2647
    93. Ji L., Zhan Y., Hua F., Li F., Zou S., Wang W., Song D., Min Z., Chen H., Cheng Y.The Ratio of Treg/Th17Cells Correlates with the Disease Activity of PrimaryImmune Thrombocytopenia. PLoS One.2012;7(12):e50909.
    94. Olsson B., Andersson P.O., Jern s M., Jacobsson S., Carlsson B., Carlsson L.M.,Wadenvik H. T-cellmediated cytotoxicity toward platelets in chronic idiopathicthrombocytopenic purpura. Nat Med.2003;9(9):1123-4.
    95. Semple J.W., Freedman J. Increased antiplatelet T helper lymphocyte reactivity inpatients with autoimmune thrombocytopenia. Blood.1991;78(10):2619-25.
    96. Mosmann T.R., Coffman R.L. TH1and TH2cells: different patterns of lymphokinesecretion lead to different functional properties. Annu Rev Immunol.1989;7:145–173.
    97. Ogawara H., Handa H., Morita K., Hayakawa M., Kojima J., Amagai H., Tsumita Y.,Kaneko Y., Tsukamoto N., Nojima Y., Murakami H. High Th1/Th2ratio in patientswith chronic idiopathic thrombocytopenic purpura. Eur J Haematol.2003;71(4):283-8.
    98. Liu B., Zhao H., Poon M.C., Han Z., Gu D., Xu M., Jia H., Yang R., Han Z.C.Abnormality of CD4(+)CD25(+) regulatory T cells in idiopathic thrombocytopenicpurpura. Eur J Haematol.2007;78(2):139-43.
    99. Pène J., Chevalier S., Preisser L., Vénéreau E., Guilleux M.H., Ghannam S., MolèsJ.P., Danger Y., Ravon E., Lesaux S., Yssel H., Gascan H. Chronically inflamedhuman tissues are infiltrated by highly differentiated Th17lymphocytes. J Immunol.2008;180(11):7423-30.
    100. Zhu X., Ma D., Zhang J., Peng J., Qu X., Ji C., Hou M. Elevated interleukin-21correlated to Th17and Th1cells in patients with immune thrombocytopenia. J ClinImmunol.2010;30(2):253-9.
    101. Szabo S.J., Kim S.T., Costa G.L., Zhang X., Fathman C.G., Glimcher L.H. A noveltranscription factor, T-bet, directs Th1lineage commitment. Cell.2000;100:655-69.
    102. Yu H.R., Chang J.C., Chen R.F., Chuang H., Hong K.C., Wang L., Yang K.D.Different antigens trigger different Th1/Th2reactions in neonatal mononuclear cells(MNCs) relating to T-bet/GATA-3expression. J Leukoc Biol.2003;74:952-8.
    103. Zhang L., Zhao Y. The regulation of Foxp3expression in regulatoryCD4(+)CD25(+)T cells: multiple pathways on the road. J Cell Physiol.2007:211:590–597.
    104. Eberl J.G., Littman D.R. Thymic origin of intestinal alphabeta T cells revealed by fatemapping of RORgammat+cells. Science.2004;305:248–51.
    105. Dong C. TH17cells in development: an updated view of their molecular identity andgenetic programming. Nat Rev Immunol.2008;8:337-48.
    106. Mazzucconi M.G., Fazi P., Bernasconi S., De Rossi G., Leone G., Gugliotta L.,Vianelli N., Avvisati G., Rodeghiero F., Amendola A., Baronci C., Carbone C.,Quattrin S., Fioritoni G., D'Alfonso G., Mandelli F. Therapy with high-dosedexamethasone (HD-DXM) in previously untreated patients affected by idiopathicthrombocytopenic purpura: a GIMEMA experience. Blood.2007;109:1401-1407.
    107. Cheng Y., Wong R.S., Soo Y.O., Chui C.H., Lau F.Y., Chan N.P., Wong W.S., ChengG. Initial Treatment of Immune Thrombocytopenic Purpura with High-DoseDexamethasone. N Engl J Med.2003;349(9):831-6.
    108. Guo C., Chu X., Shi Y., He W., Li L., Wang L., Wang Y., Peng J., Hou M. Correctionof Th1-dominant Cytokine Profiles by High-dose Dexamethasone in Patients withChronic Idiopathic Thrombocytopenic Purpura. Journal of Clinical Immunology.2007;27:557-562.
    109. Kim E.J., Cho D., Kim T.S.. Efficient induction of T helper type1-mediated immuneresponses in antigen-primed mice by anti-CD3single-chain Fv/interleukin-18fusionDNA. Immunology.2004;111:27-34.
    110. Pène J., Chevalier S., Preisser L., Vénéreau E., Guilleux M.H., Ghannam S., MolèsJ.P., Danger Y., Ravon E., Lesaux S., Yssel H., Gascan H. Chronically inflamedhuman tissues are infiltrated by highly differentiated Th17lymphocytes. J Immunol.2008;180:7423-30.
    111. Zhang J., Ma D., Zhu X., Qu X., Ji C., Hou M. Elevated profile of Th17, Th1and Tc1cells in patients with immune thrombocytopenic purpura. Haematologica.2009;94:1326-9.
    112. Rocha A.M., Souza C., Rocha G.A., Melo F.F., Clementino N.C., Marino M.C., BozziA., Silva M.L., Martins Filho O.A., Queiroz D.M. The levels of IL-17A and of thecytokines involved in Th17cell commitment are increased in patients with chronicimmune thrombocytopenia. Haematologica.2011;96:1560-4.
    113. Zhu X., Ma D., Zhang J., Peng J., Qu X., Ji C., Hou M. Elevated interleukin-21correlated to Th17and Th1cells in patients with immune thrombocytopenia. J ClinImmunol.2010;30:253-9.
    114. Hu Y., Ma D.X., Shan N.N., Zhu Y.Y., Liu X.G., Zhang L., Yu S., Ji C.Y., Hou M.Increased number of Tc17and correlation with Th17cells in patients with immunethrombocytopenia. PLoS One.2011;6:e26522.
    115. Lazarevic V., Glimcher LH. T-bet in disease. Nat Immunol.2011;12(7):597-606.
    116. Ouyang W., Ranganath S.H., Weindel K., Bhattacharya D., Murphy T.L., Sha W.C.Inhibition of Th1development mediated by GATA-3through an IL-4-independentmechanism. Immunity.1998;9:745-55.