鸳鸯鸭恒定链基因的克隆、分子特征及其组织表达特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恒定链(Invariant chain,Ii)分子作为MHC II分子的伴侣分子在内质网中促进了MHC II分子正确折叠、九聚体化及靶向内体的转运,在酸性内体中外源性表位与CLIP序列交换并结合到MHC II分子沟槽,进而抗原被呈递到细胞表面。Ii对MHC II分子的靶向机理已被应用到基于Ii的基因疫苗设计,取得了较好免疫效果,为基因疫苗设计开拓了新思路。除此,Ii还作为多种活性分子的受体参与多种生理过程,因此也成为多种疾病治疗的新靶点。但有关Ii的研究主要集中在人类和小鼠,对于禽类Ii结构与功能研究尚处起步阶段,而禽类生产却面临越来越多的病原挑战,禽类疾病防治也需探索新方法。为此我们以鸳鸯鸭(Moscovy duck,Cairina moschata)为研究对象,对其恒定链及其异构体进行基因克隆、生物信息学分析和结构建模,为深入研究禽类恒定链结构功能、进化趋势与应用等积累理论基础,同时对恒定链在鸳鸯鸭不同组织中的定量表达和定位表达特征进行研究,初步探讨了Ii表达与不同组织器官结构、功能之间的关系。
     首先,利用RACE等技术成功获得了1188bp的鸳鸯鸭恒定链(MDIi-1,Genebankno. HQ909102)和1377bp的恒定链异构体(MDIi-2)cDNA序列,其中MDIi-2含有189bp插入序列Tg区,从而证明鸳鸯鸭存在两种恒定链异构体形式。生物信息学分析表明MDIi-1编码222个氨基酸,MDIi-1在核苷酸水平、氨基酸水平及空间结构等方面高度保守,与其他物种Ii比对有相同的功能区,在进化上与其他鸟类Ii高度同源。在不同物种Ii各保守功能区中,CLIP区虽然保持着不低于50%的保守性,但不同物种CLIP区也呈现明显的可变性,这可能是系统进化中环境压力下的适应性选择的结果。MDIi-2编码285个氨基酸,其Tg区高度保守,蛋白质高级结构与其他物种Tg区高度相似。但MDIi-2不是Ii的主要表达形式。
     第二,以β-actin基因为内参基因,在十二种组织中分别对MDIi-1和MDIi-2进行实时相对定量PCR。结果表明MDIi-1和MDIi-2两种异构体在同一组织中相伴表达,但MDIi-1是主要表达形式,而且表达水平显著高于MDIi-2。MDIi-1和MDIi-2在被检的十二种器官或组织中分别呈现明显差异表达。脾、胸腺、法氏囊等经典免疫器官呈现MDIi-1的高水平表达,可能与担负机体主要免疫功能有关,但机体成年后胸腺和法氏囊MDIi-1表达水平可能随年龄增长而降低。小肠、肝脏、肾脏等器官也呈现MDIi-1的较高水平表达,其中在小肠粘膜表达水平仅次于脾脏表达,MDIi-1在这些非传统免疫器官可能担负重要局部免疫功能。恒定链在不同组织均有表达暗示其对各种组织都是需要的,只是表达量高低与不同组织先天性结构及所承担的主要功能相关。恒定链不同异构体形式在不同组织细胞中呈现基本一致的差异表达还暗示不同组织细胞存在保守的异构体差异表达调节机制。
     第三,原核表达MDIi-1,以表达蛋白免疫小鼠制备抗MDIi-1的抗血清。应用冷冻组织切片技术制备鸳鸯鸭消化管各段、肝脏、脾、胸腺、法氏囊、肺、肾、骨骼肌、心肌等组织切片,以抗MDIi-1血清为一抗、Dylight488标记的兔抗鼠IgG为二抗对MDIi-1在多个器官组织中的分布规律进行了荧光免疫组化定位检测。显示消化管各段粘膜层存在MDIi的高表达巨噬细胞、树突细胞等,MDIi在粘膜上皮和固有层腺体上皮细胞呈弱表达且极性分布;肝细胞不表达MDIi,肝板之间存在个体较大的疑似Kupffer细胞、树突细胞等强表达细胞;胸腺组织中T细胞不表达MDIi,由皮质部向髓质部逐渐增多的网状上皮细胞和交错突细胞等呈现MDIi的强表达;脾组织充满大量强表达MDIi的B细胞;MDIi主要在法氏囊粘膜层表达,其中上皮细胞弱表达且极性分布,固有层淋巴滤泡含有大量高表达MDIi的B细胞,B细胞分布由皮质向髓质逐渐增多、表达增强;肺组织各级支气管上皮细胞不表达MDIi,上皮下结缔组织存少量散在强表达MDIi的疑似巨噬细胞;肾实质的间质中散布MDIi表达细胞,血管球和肾小管上皮不表达MDIi;骨骼肌和心肌组织只在肌纤维间结缔组织存在很少量MDIi表达细胞。
     最后,用抗鸡Ii血清和抗鸳鸯鸭Ii血清分别和异种禽类Ii之间存在交叉免疫反应的免疫学方法证明了物种间Ii结构的高度保守性。
Invariant chain (Ii) participates in several key processes of the immune system. Inendoplasmic reticulum, Ii acts as molecular chaperon to facilitate MHC II correctly foldedinto (α:β:Ii)3, and directs (α:β:Ii)3being transported to endocytic compartments via thesorting signal in the cytoplasmic tail of Ii. In endosomal compartments the exogenousepitope exchange class-associated Ii-derived peptide(CLIP) and binds to the groove ofMHC II before being presented to the surface of APCs. Several strategies for Ii-mediatedepitope delivery have been used in the gene vaccine designs which have resulted in moreefficient antigen presentation. In addition to participate in antigen presentation, Ii also actsas active molecular receptors which involve in various physical process. Thus Ii is alsotreated as new target for disease therapies. But research always focuses on the Ii of humanand mouse, research on Ii of poultry is in the beginning stage. Because more and morepathogen challenges are faced in poultry production, new methods for disease control andprevention are needed. So Moscovy duck (Cairina moschata) is selected in this study. Thecloning, characterization and homology analysis of muscovy duck Ii (MDIi) are reportedfor further research on the structure, function, evolution tendency and application of Ii inbirds. The tissue-specific quantitative and positioning expression are also detected todiscuss the relationship between Ii expression and tissue structure&function in the body.
     First, the full-length cDNA sequences of MDIi-1(Genebank no. HQ909102) and MDIi-2are obtained by rapid amplification of cDNA ends PCR (RACE).Thus two isoforms of Iiare proved in muscovy duck. The sequence of MDIi-1has1188bp nucleotides andencodes222amino acids. The sequence of MDIi-2, containing a189bp insert sequencenamed as Tg region, has1377bp nucleotides and encodes285amino acids. Bioinformaticsanalysis shows that MDIi-1has high similarity with Ii of other species not only innucleotide and amino acid level, but also in space structure. Characteristic functionaldomains found in Ii of other species, such as cytoplasmic domain, transmembrane domain,CLIP and trimerization domain, are identified in MDIi. MDIi also show highly homologyin evolution with Ii of other birds. Although all functional domains of Ii show highconservation, a slight diversity in CLIP sequence exists among various species. Thediversity in various CLIP may be adaptability of balance selection under environmentalpressure in evolution. The Tg region in MDIi-2is one of the most conservative sequences.The protein structure of Tg is almost same as that of other species.
     Second, tissue-specific quantitative expression of MDIi-1and MDIi-2are respectivelydetected by real-time relativity quantitative PCR in twelve tissues of moscovy duck.β-actin was used as internal control. The results show that MDIi-1and MDIi-2aresimultaneously expressed in the same tissue, but MDIi-1is the main form of expressionbecause its expression level was significantly higher than MDIi-2in various tissues. TheMDIi-1are detected in all tested tissues at different levels. Especially, a higher level is found in spleen, thymus and bursa of fabricius, which are traditional immune tissues, thanother tissues. The high expression of Ii maybe relates to immune function for the wholebody. But Ii expression in thymus and bursa of fabricius maybe decrease along with theage when moscovy duck grows up. Small intestine, liver and kidney as non-traditionalimmune organs also presents high level of MDIi-1. The expression of MDIi-1in smallintestine mucosa is only second to the expression in spleen. MDIi-1in these organs cantake an important local immune function. The tissue-specific expression suggests thatMDIi plays an essential role in all tissues and differential expression maybe relates to theinnate structures and essential functions of these tissues. The almost same models ofdifferential expression of two MDIi isoforms in various tissues also suggest that there areconservative mechanisms regulating expression of two MDIi isoforms in these tissues.
     Third, MDIi-1protein is obtained by prokaryotic expression and serum anti-MDIi isprepared by immunizating mice. Tissue-slices are prepared from variant parts of primaeviae, liver, spleen, thymus, bursa of fabricius, lung, kidney, muscle and heart by frozentissue slice technology. Fluorescence immunohistochemical techniques are used to detectMDIi positioning expression in tissues with serum anti-MDIi and Rabbit anti-Rat IgGlabeled by Dylight488. Lots of macrophages and dendritic cells are found to stronglyexpress MDIi in mucosa of primae viae, while MDIi is weakly expressed and distributed inpolarity style in epithelium of mucosa and glands epitheliums of lamina propria.Hepatocytes don’t express MDIi, but MDIi are strongly expressed in larger suspectedKupffers or dendritic cells among hepatic cords in liver. T cells don't express MDIi, whileepithelial reticular cells and interdigitating cells, which are gradually increased from thecortex to the medullary in thymus, strongly express MDIi. Many strongly MDIi expressingB cells are full of the tissue of spleen. The MDIi expressing cells mainly lie in mucosalayer in bursa of fabricius. In bursa of fabricius MDIi is weakly expressed and distributedin polarity style in epithelium of mucosa, however, lots of strongly MDIi expressing Bcells lie in many lymphoid follicles of the lamina propria. These B cells is graduallyincreased and the MDIi expressions are strengthened in them from the cortex to themedullary of lymphoid follicles. MDIi is not expressed in bronchial epithelium cells in thelung, but a small number of suspected macrophages under epithelial layer strongly expressMDIi. The MDIi expressing cells sparsely exist in the gap among renal parenchyma;epitheliums of glomerulus and kidney tubules don't express MDIi. Only few cellsexpressing MDIi exist in connective tissue among muscle fibers in muscle and heart.
     Finally, cross immune response are carried out between the serum anti-chicken Ii (oranti-MDIi) and the Ii of heterogeneous poultry, so that the highly conservative property ofIi structure is proved by immunological method.
引文
1. Faure-Andre G, Vargas P, Yuseff M I, et al. Regulation of Dendritic Cell Migration by CD74, the MHCClass II-Associated Invariant Chain. Science,2008.322(5908):1705-1710.
    2. Jones PP, Murphy D B., Hewgill D, et al. Detection of a common polypeptide chain in I--A and I--Esub-region immunoprecipitates. Mol Immunol.,1979.16(1):51-60.
    3. Stockinger B, Pessara U, Lin RH, et al. A role of Ia-associated invariant chains in antigen processingand presentation. cell,1989.56(4):683-689.
    4. Strubin M, Berte C, Mach B. Alternative splicing and alternative initiation of translation explain thefour forms of the Ia antigen-associated invariant chain. EMBO J.,1986.5(13):3483-3488.
    5. Warmerdam PA, Long EO. Roche PA, Isoforms of the invariant chain regulatr transport of MHc classII molecules to antigen processing compartments. J Cell boil,1996.133:281-291.
    6. Gedde-Dahl M, Freisewinkel I, Staschewski M, et al. Exon6is essential for invariant chaintrimerization and induction of large endosomal structures. J Biol Chem.,1997.272(13):8281-8287.
    7. Guncar G, Pungercic G, Klemencic I, et al. Crystal structure of MHC class II-associated p41Iifragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L andS. Embo Journal,1999.18(4):793-803.
    8. Osullivan D M, Noonan D, and Quaranta V.4Ia invariant chain forms derive from a single gene byalternate splicing and alternate initiation of transcription translation. Journal of Experimental Medicine,
    1987.166(2):444-460.
    9. Weenink S M and Gauta A M. Antigen presentation by MHC class II molecules. Immunology and CellBiology,1997.75(1):69-81.
    10. Khalil H, Brunet A and Thibodeau J. A three-amino-acid-long HLA-DR beta cytoplasmic tail issufficient to overcome ER retention of invariant-chain p35. Journal of Cell Science,2005.118(20):4679-4687.
    11. Khalil H, Brunet A, Saba I, et al. The MHC class II beta chain cytoplasmic tail overcomes theinvariant chain p35-encoded endoplasmic reticulum retention signal. International Immunology,2003.15(10):1249-1263.
    12. Wright R J, Bikofft EK, and Stockinger B. The Ii41isoform of invariant chain mediates both positiveand negative selection events in T-cell receptor transgenic mice. Immunology,1998.95:309-313.
    13. Yamamoto K, Floyd-Smith G, Francke U,et al. The gene encoding the Ia-associated invariant chain islocated o chromosome18in the mouse. Immunogenetics,1985.21:83-90.
    14. Arneson L S and Miller J. The chondroitin sulfate form of invariant chain trimerizes with conventionalinvariant chain and these complexes are rapidly transported from the trans-Golgi network to the cellsurface. Biochemical Journal,2007.406:97-103.
    15. Liu S J, Chen F F, Dai Y, et al. Molecular Characterization and Tissue specific Expression of InvariantChain in Muscovy Duck (Cairina moschata). Genetics and Molecular Research,2011.10(4):2867-2880.
    16. Chen F F, Pan L, Dai Y, et al. Characteristics of expression of goose invariant chain gene andcomparison of its structure among different species. Poult Sci.,2011.90(8):1664-1670.
    17. Zhong D, Yu W Y, Liu Y H, et al. Molecular cloning and expression of two chicken invariant chainisoforms produced by alternative splicing. Immunogenetics.,2004.56(9):650-656.
    18. Moore B B, Cao Z A, McRae T L,et al. The invariant chain gene intronic enhancer shows homology toclass II promoter elements. Journal of Immunology,1998.161(4):1844-1852.
    19. Brown A M, Wright K L and Ting J P. Human major histocompatibility complex class II-associatedinvariant chain gene promoter. Functional analysis and in vivo protein/DNA interactions ofconstitutive and IFN-gamma-induced expression. J Biol Chem.,1993.268(35):26328-33.
    20. K mper N, Franken S, Temme S, et al. γ-Interferon-regulated chaperone governs human lymphocyteantigen class II expression. FASEB J.,2012.26(1):104-116.
    21. Wright K L, Moore T L, Vilen BJ, et al. Major histocompatibility complex class II-associated invariantchain gene expression is up-regulated by cooperative interactions of Sp1and NF-Y. J Biol Chem.,1995.270(36):20978-86.
    22. Henne C, Schwenk F, Koch N, et al. Surface expression of the invariant chain (CD74) is independentof concomitant expression of major histocompatibility complex class II antigens. Immunology,1995.84:177-182.
    23. Borghese F and Clanchy FI. CD74: an emerging opportunity as a therapeutic target in cancer andautoimmune disease. Expert Opin Ther Targets.,2011.15(3):237-251.
    24. Claesson L and Peterson P A. Association of human gamma chain with class II transplantation antigensduring intracellular transport. Biochemistry,198322(13):8.
    25. Bremnes B, Rode M, Gedde-Dahl M, et al. The MHC class II-associated chicken invariant chainshares functional properties with its mammalian homologs. Experimental Cell Research,2000.259(2):360-369.
    26. Richards J E, Pravtcheva D D, Day C, et al. Murine Invariant Chain Gene: Chromosomal Assignmentand Segregation in Recombinant Inbred Strains. hnmunogenetics,1985.22:193-199.
    27. Stumptner-Cuvelette P and Benaroch P. Multiple roles of the invariant chain in MHC class II function.Biochimica Et Biophysica Acta-Molecular Cell Research,2002.1542(1-3):1-13.
    28. Beswick EJ and Reyes VE. CD74in antigen presentation, inflammation, and cancers of thegastrointestinal tract. World J Gastroenterol.,2009.15(23):2855-2861.
    29. Shachar I and Haran M. The secret second life of an innocent chaperone: the story of CD74and Bcell/chronic lymphocytic leukemia cell survival. Leuk Lymphoma.,2011.52(8):1446-1454.
    30. Gupta P, Goldenberg D M, Rossi EA, et al. Dual-targeting immunotherapy of lymphoma: potentcytotoxicity of anti-CD20/CD74bispecific antibodies in mantle cell and other lymphomas. Blood.,2012.23(Epub ahead of print).
    31. Maffei A and Harris P E. Harris, Peptides bound to major histocompatibility complex molecules.Peptides,1998.19(1):179-198.
    32. Landsverk O J B, Bakke O and Gregers T F. MHC II and the Endocytic Pathway: Regulation byInvariant Chain. Scandinavian Journal of Immunology,2009.70(3):184-193.
    33. Dixon A M, Stanley B J, Matthews E E, et al. Invariant chain transmembrane domain trimerization: astep in MHC class II assembly. Biochemistry.,2006.45(16):5228-5234.
    34. Bijlmakers MJ, Benaroch P and Ploegh H L. Mapping functional regions in the lumenal domain of theclass II-associated invariant chain. J Exp Med.,1994.180(2):623-629.
    35. Pieters J. MHC class II restricted antigen presentation. Curr Opin Immunol.,1997.9(1):89-96.
    36. Günter J H mmerling and JoséMoreno. The function of the invariant chain in antigen presentation byMHC class II molecules. Trends in Immunology,1990.11:4.
    37. Maharshak N, Cohen S, Lantner F, et al. CD74is a survival receptor on colon epithelial cells. WorldJournal of Gastroenterology,2010.16(26):3258-3266.
    38. Sette A, Southwood S, MillerJ, et al. Binding of major histocompatibility complex class II to theinvariant chain-derived peptide, CLIP, is regulated by allelic polymorphism in class II. Journal ofExperimental Medicine,1995.181(2):677-683.
    39. Xu F Z, Ye H, Wang J J, et al. The effect of site-directed mutagenesis of the ambient amino acids ofleucine-based sorting motifs on the localization of chicken invariant chain. Poultry Science,2008.87(10):1980-1986.
    40. Roche P A and Cresswell P. Proteolysis of the class II-associated invariant chain generates a peptidebinding site in intracellular HLA-DR molecules. Proc. Nad. Acad. Sci. USA,1991.88:3150-3154.
    41. Gauvreau M E, Cote M H, Bourgeois-Daigneault M C, et al. Sorting of MHC Class II Molecules intoExosomes through a Ubiquitin-Independent Pathway. Traffic,2009.10(10):1518-1527.
    42. Roche P A, Teletski C L, Stang E, et al. Cell surface HLA-DR-invariant chain complexes are argetedto endsome by rapid internalization. Proc Natl Acad Sci USA,1993.90:8581-8585.
    43. Bakke O and Dobberstein B. MHC class II-associated invariant chain contains a sorting signal forendosomal compartments. Cell,1990.63:707–16.
    44. Barrera C A, Ye G, Espejo R, et al. Expression of cathepsins B, L, S, and D by gastric epithelial cellsimplicates them as antigen presenting cells in local immune responses. Human Immunology,2001.62(10):1081-1091.
    45. Rodionov DG and Bakke O. Medium chains of adaptor complexes AP-1and AP-2recognizeleucine-based sorting signals from the invariant chain.. J Biol Chem.,1998.273:6005-6008.
    46. Hofmann M W, Honing S, Rodionov D, et al. The Leucine-based Sorting Motifs in the CytoplasmicDomain of the Invariant Chain Are Recognized by the Clathrin Adaptors AP1and AP2and theirMedium Chains.. J Biol Chem,1999.274:36153-36158.
    47. Bonifacino J S and Traub LM. Signals for sorting of transmembrane proteins to endosomes andlysosomes. Annu Rev Biochem.,2003.72:395-447.
    48. McCormick P J, Martina J A and Bonifacino J S. Involvement of clathrin and AP-2in the trafficking ofMHC class II molecules to antigen-processing compartments. Proceedings of the National Academy ofSciences of the United States of America,2005.102(22):7910-7915.
    49. Lizee G, Basha G and Jefferies W A. Tails of wonder: endocytic-sorting motifs key for exogenousantigen presentation. Trends in Immunology,2005.26(3):141-149.
    50. Prydz K and Dalen K T. Synthesis and sorting of proteoglycans. J. Cell Sci.,2000.113:193–205.
    51. Ashman J B and Miller J. A role for the transmembrane domain in the trimerization of the MHC classII-associated invariant chain. J Immunol.,1999.163(5):2702-12.
    52. Kukol A, Torres J and Arkin I T. A structure for the trimeric MHC class II-associated invariant chaintransmembrane domain. J Mol Biol.,2002.320(5):1109–1117.
    53. King G and Dixon A M. Evidence for role of transmembrane helix-helix interactions in the assemblyof the Class II major histocompatibility complex. Molecular Biosystems,2010.6(9):1650-1661.
    54. Frauwirth K. and Shastri N. Mutation of the invariant chain transmembrane region inhibits Iidegradation, prolongs association with MHC class II, and selectively disrupts antigen presentation.Cellular Immunology,2001.209(2):97-108.
    55. Castellino F, Han R and Germain R N. The transmembrane segment of invariant chain mediatesbinding to MHC class II molecules in a CLIP-independent manner. European Journal of Immunology,2001.31(3):841-850.
    56. Romagnoli P and Germain R N. The CLIP region of invariant chain plays a critical role in regulatingmajor histocompatibility complex class II folding, transport, and peptide occupancy. Journal ofExperimental Medicine,1994.180(3):1107-1113.
    57. Stumptner P and Benaroch P. Interaction of MHC class II molecules with the invariant chain: role ofthe invariant chain (81-90) region. Embo Journal,1997.16(19):5807-5818.
    58. Rinderknecht C H, Lu N, Crespo O, et al., I-A(g7) is subject to post-translational chaperoning by CLIP.International Immunology,2010.22(8):705-716.
    59. Gautam A M, Yang M, Milburn P J, et al. Identification of residues in the class II-associated Ii peptide(CLIP) region of invariant chain that affect efficiency of MHC class II-mediated antigen presentationin an allele-dependent manner. Journal of Immunology,1997.159(6):2782-2788.
    60. Bangia N and Watts TH. Evidence for invariant chain85-101(CLIP) binding in the antigen binding siteof MHC class II molecules. Int Immunol.,1995.7(10):1585-1591.
    61. Fallang L E, Roh S, Holm A, et al. Complexes of two cohorts of CLIP peptides and HLA-DQ2of theautoimmune DR3-DQ2haplotype are poor substrates for HLA-DM. Journal of Immunology,2008.181(8):5451-5461.
    62. van Lith M, McEwen-Smith RM and Benham AM., HLA-DP, HLA-DQ, and HLA-DR have differentrequirements for invariant chain and HLA-DM. J Biol Chem.,2010.285(52):40800-8..
    63. Busch R, Rinderknecht C H, Roh S, et al. Achieving stability through editing and chaperoning:regulation of MHC class II peptide binding and expression. Immunological Reviews,2005.207:242-260.
    64. Yaneva R, Springer S, and Zacharias M. Flexibility of the MHC Class II Peptide Binding Cleft in theBound, Partially Filled, and Empty States: A molecular Dynamics Simulation Study. Biopolymers,2009.91(1):14-27.
    65. Thayer W P, Ignatowicz L, Weber D A, et al. Class II-associated invariant chain peptide-independentbinding of invariant chain to class II MHC molecules. Journal of Immunology,1999.162(3):1502-1509.
    66. Sotiriadou N N, Gritzapis A D, Voutsas I F, et al. Ii-Key/HER-2/neu(776-790) hybrid peptides inducemore effective immunological responses over the native peptide in lymphocyte cultures from patientswith HER-2/neu+tumors. Cancer Immunol Immunother.,2007.56(5):601-613.
    67. Honey K, Forbush K, Jensen PE, et al. Effect of decreasing the affinity of the class II-associatedinvariant chain peptide on the MHC class II peptide repertoire in the presence or absence of H-2M. JImmunol.,2004.172(7):4142-4150.
    68. Silva D S P, Reis M I R, Nascimento D S, et al. Sea bass (Dicentrarchus labrax) invariant chain andclass II major histocompatibility complex: Sequencing and structural analysis using3D homologymodelling. Molecular Immunology,2007.44(15):3758-3776.
    69. Zwart W, Peperzak V, de Vries E. et al. The invariant chain transports TNF family member CD70toMHC class II compartments in dendritic cells. Journal of Cell Science,2010.123(21):3817-3827.
    70. Koch KS and Leffert HL. Ectopic expression of CD74in Ikkβ-deleted mouse hepatocytes. ActaHistochem.,2011.113(4):428-435.
    71. Lantner F, Gore Y, Flaishon L, et al. CD74induces TAp63expression leading to B-cell survival.Blood.,2007.110(13):4303-4311.
    72. Gordin M, Tesio M, Cohen S, et al. c-Met and Its Ligand Hepatocyte Growth Factor/Scatter FactorRegulate Mature B Cell Survival in a Pathway Induced by CD74. Journal of Immunology,2010.185(4):2020-2031.
    73. Gore Y, Starlets D, Maharshak N, et al. Macrophage migration inhibitory factor induces B cellsurvival by activation of a CD74-CD44receptor complex. Journal of Biological Chemistry,2008.283(5):2784-2792.
    74. Matza D, Wolstein O, Dikstein R, et al. Invariant chain induces B cell maturation by activating aTAF(II)105-NF-B-dependent transcription program. J. Biol. Chem.,2001.276:27203–27206.
    75. Beswick E J, Pinchuk I V, Suarez G, et al. Helicobacter pylori CagA-dependent macrophage migrationinhibitory factor produced by gastric epithelial cells binds to CD74and stimulates procarcinogenicevents. Journal of Immunology,2006.176(11):6794-6801.
    76. Schwartz V, Krüttgen A, Weis J, et al. Role for CD74and CXCR4in clathrin-dependent endocytosisof the cytokine MIF. Eur J Cell Biol.,2011. Epub ahead of print.
    77. Lue H, Dewor M, Leng L, et al. Activation of the JNK signalling pathway by macrophage migrationinhibitory factor (MIF) and dependence on CXCR4and CD74. Cell Signal.,2011.23(1):135-144.
    78. Heinrichs D, Knauel M, Offermanns C, et al. Macrophage migration inhibitory factor (MIF) exertsantifibrotic effects in experimental liver fibrosis via CD74. Proc Natl Acad Sci U S A,2011.108(42):17444-17449.
    79. Fan H, Hall P, Santos L L, et al. Macrophage migration inhibitory factor and CD74regulatemacrophage chemotactic responses via MAPK and Rho GTPase. J Immunol.,2011.186(8):4915-4924.
    80. Matza D, Kerem A and Shachar I. Invariant chain, a chain of command. Trends Immunol.,2003.24(5):264-268.
    81. Shachar I and Flavell RA. Requirement for invariant chain in B cell maturation and function. Science,
    1996.274:106–108.
    82. Matza D, Kerem A, Medvedovsky H, et al. Invariant chain-induced B cell differentiation requiresintramembrane proteolytic release of the cytosolic domain. Immunity,2002.17(5):549-560.
    83. Becker-Herman S, Arie G, Medvedovsky H, et al. CD74is a member of the regulated intramembraneproteolysis-processed protein family. Mol Biol Cell.,2005.16(11):5061-5069.
    84. Brown MS, Ye J, Rawson RB, et al. Regulated intramembrane proteolysis: a control mechanismconserved from bacteria to humans. Cell.,2000.100(4):391-398.
    85. Maehr R, Kraus M and Ploegh HL. Mice deficient in invariant-chain and MHC class II exhibit anormal mature B2cell compartment. Eur J Immunol.,2004.34(8):2230-2236.
    86. Beswick E J, Bland D A, Suarez G,et al. Helicobacter pylori binds to CD74on gastric epithelial cellsand stimulates interleukin-8production. Infection and Immunity,2005.73(5):2736-2743.
    87. Smoot D T. How does Helicobacter pylori cause mucosal damage? Direct mechanisms.Gastroenterology1997.113: S31-S34.
    88. Rieder G, Hatz R A, Moran A P, et al. Role of adherence in interleukin-8induction in Helicobacterpylori-associated gastritis. Infect. Immun.,1997.65:3622-3630.
    89. Beswick E J, Pinchuk I V, Minch K, et al. The Helicobacter pylori urease B subunit binds to CD74ongastric epithelial cells and induces NF-kappa B activation and interleukin-8production. Infection andImmunity,2006.74(2):1148-1155.
    90. Szaszak M, Chen H D, Chen H C, et al. Identification of the invariant chain (CD74) as an angiotensinAGTR1-interacting protein. Journal of Endocrinology,2008.199(2):165-176.
    91. Ye L, W Tuo, X Liu, et al. Identification and characterization of an alternatively spliced variant of theMHC class I-related porcine neonatal Fc receptor for IgG. Dev. Comp. Immunol.2008.32:966-979.
    92. Zhu X, Dickinson B L, Li X, et al. MHC class I-related Fc Receptor for IgG is functionally expressedin monocytes, intestinal macrophages, and dendritic cells.. J. Immunol.,2001..166:3266-3276.
    93. Zeng, Z, Castano A R, Segelke B W, et al. Crystal structure of mouse CD1: an MHC-like fold with alarge hydrophobic binding groove. Science,1997.277:339-345.
    94. Ghetie V and Ward E S. Multiple roles for the major histocompatibility complex class I-relatedreceptor FcRn. Annu. Rev. Immunol.,2000.18:739-766.
    95. Raghavan M, Bonagura V R, Morrison S L. et al. Analysis of the pH dependence of the neonatal Fcreceptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry1995.34:14649-14657.
    96. Lilin Ye, Xindong Liu, Subrat N Rout, et al. The MHC Class II-Associated Invariant Chain Interactswith the Neonatal Fc Receptor and Modulates Its Trafficking to Endosomal/LysosomalCompartments. The Journal of Immunology,2008.181:2572-2585.
    97. Barrera CA, Almanza R J, Ogra P L, et al. The role of the invariant chain in mucosal immunity.International Archives of Allergy and Immunology,1998.117(2):85-93.
    98. Barrera C A, Beswick E J, Sierra J C, et al. Polarized expression of CD74by gastric epithelial cells.Journal of Histochemistry&Cytochemistry,2005.53(12):1481-1489.
    99. Gold DV, Stein R, Burton J, et al. Enhanced expression of CD74in gastrointestinal cancers and benigntissues. Int J Clin Exp Pathol,2010.4(1):1-12.
    100.Leigh M. Marsh, Lidija Cakarova, Grazyna Kwapiszewska, et al. Surface expression of CD74by typeII alveolar epithelial cells: a potential mechanism for macrophage migration inhibitory factor-inducedepithelial repair Am J Physiol Lung Cell Mol Physiol,2009.296(3):442-452.
    101.Jones E Y, Fugger L, Strominger J L, et al., MHC class II proteins and disease: a structural perspective.Nature Reviews Immunology,2006.6(4):271-282.
    102.Schindler M, Wurfl S, Benaroch P, et al. Down-modulation of mature major histocompatibilitycomplex class II and up-regulation of invariant chain cell surface expression are well-conservedfunctions of human and simian immunodeficiency virus nef alleles. Journal of Virology,2003.77:10548-10556.
    103.Hussain A, Wesley C, Khalid M, et al. Human immunodeficiency virus type1Vpu protein interactswith CD74and modulates major histocompatibility complex class II presentation. Journal of Virology,
    2008.82(2):893-902.
    104.Thanthrige-Don N, Read L R, Abdul-Careem M F, et al., Marek's Disease Virus Influences theExpression of Genes Associated with IFN-gamma-Inducible MHC Class II Expression. ViralImmunology,2010.23(2):227-232.
    105.Lehmann LE, Book M, Hartmann W, et al. A MIF haplotype is associated with the outcome of patientswith severe sepsis: a case control study.. J Transl Med,2009.7:100.
    106.Vazquez A, Grochola L F, Bond E E, et al. Chemosensitivity profiles identify polymorphisms in thep53network genes14-3-3tau and CD44that affect sarcoma incidence and survival. Cancer Res.,2010.70(1):172-180.
    107.Holoshitz J. The rheumatoid arthritis HLA-DRB1shared epitope. Curr Opin Rheumatol2010.22(3):293-298.
    108.Xia H H, Lam S K, Chan A O, et al. Macrophage migration inhibitory factor stimulated byHelicobacter pylori increases proliferation of gastric epithelial cells. World J. Gastroenterol.,2005.11:1946-1950.
    109.Lin Leng, Christine N. Metz, Yan Fang, et al. MIF signal transduction initiated by binding to CD74. JExp Med.,2003.197(11):1467-1476.
    110.Xu M, Lu X, Kallinteris N L, et al. Immunotherapy of cancer by antisense inhibition of Ii protein, animmunoregulator of antigen selection by MHC class II molecules.. Curr. Opin. Mol. Ther.,2004(6):160–165.
    111. Burton J D, Ely S, Reddy P K, et al. CD74is expressed by multiple myeloma and is a promising targetfor therapy. Clinical Cancer Research,2004.10(19):6606-6611.
    112.Stein R, Mattes M J, Cardillo T M, et al. CD74: A new candidate target for the immunotherapy ofB-Cell neoplasms. Clinical Cancer Research,2007.13(18):5556S-5563S.
    113.Cuthbert R J, Wilson J M, Scott N, et al. Differential CD74(major histocompatibility complex Class IIinvariant chain) expression in mouse and human intestinal adenomas. European Journal of Cancer,
    2009.45(9):1654-1663.
    114.Takahashi K, Koga K, Linge HM, et al. Macrophage CD74contributes to MIF-induced pulmonaryinflammation. Respir Res.,2009.10:33.
    115.Sanchez-Nino M D, Sanz A B, Ihalmo P, et al. The MIF Receptor CD74in Diabetic Podocyte Injury.Journal of the American Society of Nephrology,2009.20(2):353-362.
    116.Beers C, Burich A, Kleijmeer MJ, et al. Cathepsin S controls MHC class II-mediated antigenpresentation by epithelial cells in vivo. J Immunol.,2005.174(3):1205-1212.
    117.Jiang Z, Xu M Z, Savas L, et al. Invariant chain expression in colon neoplasms. Virchows Archiv-anInternational Journal of Pathology,1999.435(1):32-36.
    118.Yoshiyama Y, Arai K, Oki T, et al. Expression of invariant chain and pro-cathepsin L in Alzheimer'sbrain. Neurosci Lett,2000.290(2):125-128.
    119.Momburg F, Koch N, M ller P, et al. Differential expression of Ia and Ia-associated invariant chain inmouse tissues after in vivo treatment with IFN-gamma. J Immunol.,1986.136(3):940-948.
    120.陈芳芳,余为一.一种新型的免疫载体——MHC Ⅱ类分子的恒定链.中国免疫学杂志,2010.26(6):573-576.
    121.Wu A, Zeng Q, Kang T H, et al. Innovative DNA vaccine for human papillomavirus (HPV)-associatedhead and neck cancer. Gene Ther,2011.18(3):304-312.
    122.Sponaas A, Carstens C and Koch N. C-terminal extension of the MHC class II-associated invariantchain by an antigenic sequence triggers activation of naive T cells. Gene Ther,1999.6(11):1826-1834.
    123.Fujii S, Senju S, Chen YZ, et al. The CLIP-substituted invariant chain efficiently targets an antigenicpeptide to HLA class II pathway in L cells. Hum Immunol.,1998.59(10):607-614.
    124.Holst P J, Christensen J P and Thomsen AR. Vaccination against lymphocytic choriomeningitis virusinfection in MHC class II-deficient mice. J Immunol,2011.186(7):3997-4007.
    125.Holst P J, Sorensen M R, Jensen C M M, et al. MHC class II-associated invariant chain linkage ofantigen dramatically improves cell-mediated immunity induced by adenovirus vaccines. Journal ofImmunology,2008.180(5):3339-3346.
    126.Toda M, Kasai M, Hosokawa H, et al. DNA vaccine using invariant chain gene for delivery of CD4(+)T cell epitope peptide derived from Japanese cedar pollen allergen inhibits allergen-specific IgEresponse. European Journal of Immunology,2002.32(6):1631-1639.
    127.Gregers T F, Fleckenstein B, Vartdal F, et al. MHC class II loading of high or low affinity peptidesdirected by Ii/peptide fusion constructs: implications for T cell activation. Int Immunol.,2003.15(11):1291-1299.
    128.许发芝,叶红,余为一.以鸡恒定链(Ii)为载体的新城疫病毒-F蛋白表位基因疫苗的免疫原性.农业生物技术学报,2010.18(6):1215-1220.
    129.Vadacca M, Valorani M G, von Hofe E, et al. Recognition of Ii-Key/MHC Class II Epitope HybridsDerived from Proinsulin and GAD Peptides by T Cells in Type1Diabetes. Hormone and MetabolicResearch,2011.43(7):483-488.
    130.Humphreys R E, Adams S, Koldzic G, et al. Increasing the potency of MHC class II-presentedepitopes by linkage to Ii-Key peptide. Vaccine,2000.18(24):2693-2697.
    131.Perez SA, Kallinteris N L, Bisias S, et al. Results from a Phase I Clinical Study of the NovelIi-Key/HER-2/neu(776-790) Hybrid Peptide Vaccine in Patients with Prostate Cancer. Clinical CancerResearch,2010.16(13):3495-3506.
    132.Xu M, Li J, Gulfo JV, et al. MHC class II allosteric site drugs: new immunotherapeutics for malignant,infectious and autoimmune diseases. Scand J Immunol.,2001.54(1-2):39-44.
    133.Kallinteris N L, Wu S Z, Lu X Q, et al. Linkage of Ii-Key segment to gp100(46-58) epitope enhancesthe production of epitope-specific antibodies. Vaccine,2005.23(17-18):2336-2338.
    134.Cho Y, Crichlow G V, Vermeire J J, et al. Allosteric inhibition of macrophage migration inhibitoryfactor revealed by ibudilast. Proc Natl Acad Sci USA,2010.107(25):11313-11318.
    135.Hare AA, Leng L, Gandavadi S, et al. Optimization of N-benzyl-benzoxazol-2-ones as receptorantagonists of macrophage migration inhibitory factor (MIF).. Bioorg Med Chem Lett,2010.20(19):5811-5814.
    136.Ouertatani-Sakouhi H, El-Turk F, Fauvet B, et al. Identification and characterization of novel classes ofmacrophage migration inhibitory factor (MIF) inhibitors with distinct mechanisms of action. J BiolChem,2010.285(34):26581-26598.
    137.Saegusa K, Ishimaru N, Yanagi K, et al. Cathepsin S inhibitor prevents autoantigen presentation andautoimmunity.. J Clin Invest.,2002.110(3):361-369.
    138.Berkova Z, Tao RH, Samaniego F. Milatuzumab-a promising new immunotherapeutic agent. ExpertOpin Investig Drugs.,2010.19(1):141-149.
    139.Sanchez-Ni o MD, Benito-Martin A, Ortiz A. New paradigms in cell death in human diabeticnephropathy. Kidney Int.,2010.78(8):737-744.
    140.Sekiguchi H, Irie K, Murakami A. Suppression of CD74expression and Helicobacter pylori adhesionby auraptene targeting serum starvation-activated ERK1/2in NCI-N87gastric carcinoma cells. BiosciBiotechnol Biochem.,2010.74(5):1018-1024.
    141.Ke S, Chen X H, Li H, et al. Silencing invariant chain of DCs enhances Th1response using smallinterfering RNA. Cell Biology International,2007.31(7):663-671.
    142.Bourlet Y, Behar G, Guillemot F, et al. Isolation of chicken major histocompatibility complex class II(B-L) beta chain sequences: Comparison with mammalian beta chains and expression in lymphoidorgans. EMBO J.,1988.7:1031-1039.
    143.Zhong D L, Yu W Y, Bao M, et al. Molecular cloning and rnRNA expression of duck invariant chain.Veterinary Immunology and Immunopathology,2006.110(3-4):293-302.
    144.刘岗,仲大莲,刘雪兰,等.应用RACE法克隆鸽恒定链基因的研究.遗传,2008.30(1):77-80.
    145.Ye H, Xu F Z, Yu WY. The intracellular localization and oligomerization of chicken invariant chainwith major histocompatibility complex class II subunits. Poult Sci.,2009.88(8):1594-1600.
    146.叶红,许发芝,余为一.鸡Ⅰ类抗原递呈分子亚单位与恒定链的细胞定位及相互关系研究.中国免疫学杂志,2010.26(6):528-532.
    147.Zhang S C, Ma G P, Xiang J, et al. Expressing gK gene of duck enteritis virus guided bybioinformatics and its applied prospect in diagnosis. Virology Journal,2010.7.
    148.Lennon-Dumenil A M, Roberts R A, Valentijn K, et al. The p41isoform of invariant chain is achaperone for cathepsin L. Embo Journal,2001.20(15):4055-4064.
    149.Voutsas I F, Gritzapis A D, Mahaira L G, et al. Induction of potent CD4+T cell-mediated antitumorresponses by a helper HER-2/neu peptide linked to the Ii-Key moiety of the invariant chain. Int JCancer.,2007.121(9):2031-2041.
    150.Ghosh P, Amaya M, Mellins E, et al. The structure of an intermediate in class II MHC maturation:CLIP bound to HLA-DR3. Nature,1995.378(6556):457-462.
    151.Adams S, Albericio F, Alsina J, et al. Biological activity and therapeutic potential of homologs of an Iipeptide which regulates antigenic peptide binding to cell surface MHC class II molecules.Arzneimittel-Forschung/Drug Research,1997.47(9):1069-1077.
    152.Nagata T, Higashi T, Aoshi T, et al. Immunization with plasmid DNA encoding MHC class II bindingpeptide/CLIP-replaced invariant chain (Ii) induces specific helper T cells in vivo: the assessment of Iip31and p41isoforms as vehicles for immunization. Vaccine,2001.20(1-2):105-114.
    153.Hung C F, Tsai Y C, He L M, et al. DNA vaccines encoding li-PADRE generates potentPADRE-specific CD4+T-cell immune responses and enhances vaccine potency. Molecular Therapy,2007.15(6):1211-1219.
    154.Nagaraj S, Neumann J, Winzen B, et al. Pancreas Carcinoma Antigen Fused to Invariant Chain ElicitsT-Cell Response and Tumor Growth Inhibition. Pancreas,2008.37(3):321-327.
    155.Wei K, Zhang Z H, Wang X F, et al. Lineage pattern, trans-species polymorphism, and selectionpressure among the major lineages of feline Mhc-DRB peptide-binding region. Immunogenetics,2010.62(5):307-317.
    156.Surridge A K, van der Loo W, Abrantes J, et al. Diversity and evolutionary history of the MHC DQAgene in leporids. Immunogenetics,2008.60(9):515-525.
    157.Meyer-Lucht Y, Otten C, Puttker T, et al. Variety matters: adaptive genetic diversity and parasite loadin two mouse opossums from the Brazilian Atlantic forest. Conservation Genetics,2010.11(5):2001-2013.
    158.Marchalonis J J, Kaveri S, Lacroix-Desmazes S, et al. Natural recognition repertoire and theevolutionary emergence of the combinatorial immune system. Faseb Journal,2002.16(8):842-848.
    159.C G Odorizzi, I S Trowbridge, L Xue, et al. Sorting signals in the MHC class II invariant chaincytoplasmic tail and transmembrane region determine trafficking to an endocytic processingcompartment. The Journal of Cell Biology,1994.126(2):317-330.
    160.Shirly Becker-Herman, Galit Arie, Helena Medvedovsky. CD74Is a Member of the RegulatedIntramembrane Proteolysis-processed Protein Family. Molecular Biology of the Cell,2005.16:9.
    161.Lipp J and Dobberstein B. The membrane-spanning segment of invariant chain (I gamma) contains apotentially cleavable signal sequence. Cell,1986.46(7):10.
    162.Chapman H. Endosomal proteolysis and MHC class II function. Curr Opin Immunol.,1998.10(1):93-102.
    163.Wiesner M, Stepniak D, de Ru A H, et al. Dominance of an alternative CLIP sequence in the celiacdisease associated HLA-DQ2molecule. Immunogenetics,2008.60(9):551-555.
    164.Partho Ghosh, Miguel Amaya, Elizabeth Mellins, et al. The structure of an intermediate in class IIMHC maturation: CLIP bound to HLA-DR3. Nature,1995.378:457-462.
    165.Xu M Z, Lu X Q, Sposato M, et al. Ii-Key/HPV16E7hybrid peptide immunotherapy forHPV16+cancers. Vaccine,2009.27(34):4641-4647.
    166.Peterson M and Miller J. Invariant chain influences the immunological recognition of MHC class IImolecules. Nature,1990.345(6271):172-174.
    167.Jasanoff A, Wagner G and Wiley D C. Structure of a trimeric domain of the MHC class II-associatedchaperonin and targeting protein Ii. EMBO J.,1998.17(23):6812-6818.
    168.Jasanoff A, Park S J and Wiley D C. Direct observation of disordered regions in the majorhistocompatibility complex class II-associated invariant chain. Proc Natl Acad Sci U S A.,1995.92(21):9900-9904.
    169.Park S J, Sadegh-Nasseri S and Wiley DC. Invariant chain made in Escherichia coli has an exposedN-terminal segment that blocks antigen binding to HLA-DR1and a trimeric C-terminal segment thatbinds empty HLA-DR1. Proc Natl Acad Sci U S A.,1995.92(24):11289-11293.
    170.Veneziani B M. Giallauria F, Gentile F. The disulfide bond pattern between fragments obtained by thelimited proteolysis of bovine thyroglobulin. Biochimie199981:517-525.
    171.刘志刚,朱健奇,黄海珍,等.真核表达与原核表达的德国小蠊变应原Blag2蛋白结构的光谱学研究.光谱学与光谱分析,2006.26(5):879-883.
    172.Bajaj M and Blundell T. Evolution and the tertiary structure of proteins. Ann.Rev.Biophys Bioeng.,
    1984.13:453-492.
    173.Bevec T, Stoka V, Pungercic G, et al. Major histocompatibility complex class II-associated p41invariant chain fragment is a strong inhibitor of lysosomal cathepsin L. J. Exp. Med.,1996183:1331-1338.
    174.Koch N, Wong G H W and Schrader J W. Ia antigens and associated invariant chain are inducedsimultanxeously in lines of T-dependent mast-cells by recombinant interferon-gamma. Journal ofImmunology,1984.132(3):1361-1369.
    175.Cortes A, Fonfria J, Vicente A, et al. T-dependent areas in the chicken Bursa of fabricius-animmunohistological study. Anatomical Record,1995.242(1):91-95.
    176.祁保民,陈晓燕.番鸭法氏囊相关淋巴组织的分布及组织学研究.福建农业学报,2006(02).
    177.Hershberg R M and Mayer L F. Antigen processing and presentation by intestinal epithelial cells-polarity and complexity. Immunology Today,2000.21(3):123-128.
    178.Tamori Y, Tan X D, Nakagawa K, et al. Clinical significance of MHC class II-associated invariant chainexpression in human gastric carcinoma. Oncology Reports,2005.14(4):873-877.
    179.Mallegol J, van Niel G and Heyman M. Phenotypic and functional characterization of intestinalepithelial exosomes. Blood Cells Molecules and Diseases,2005.35(1):11-16.
    180.Seki S, Habu Y, Kawamura T, et al. The liver as a crucial organ in the first line of host defense: theroles of Kupffer cells, natural killer (NK) cells and NK1.1Ag+T cells in T helper1immune responses.Immunol Rev.,2000.174:35-46.
    181.Gao B, Jeong WI and Tian Z. Liver: An organ with predominant innate immunity. Hepatology,2008.47(2):729-736.
    182.Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol2009.27:147–63.
    183.Almolda B, Gonzalez B and Castellano B. Antigen presentation in EAE: role of microglia,macrophages and dendritic cells. Front Biosci,2011.16:1157-1171.
    184.Chastain E M, Duncan D S, Rodgers J M, et al. The role of antigen presenting cells in multiplesclerosis. Biochim Biophys Acta.,2011.1812(2):265-274.
    185.Bryan KJ, Zhu X W, Harris P L, et al. Expression of CD74is increased in neurofibrillary tangles inAlzheimer's disease. Molecular Neurodegeneration,2008.3.
    186.Proteintech Group. ELISA原理及常见问题. www.immuexp.com.
    187.ELISA的影响因素. http://www.51protocol.com/pro/immu/immu1/20090406/63880.html,2009.
    188.李永明,宋朝君,张葵,等. Triton X100洗涤剂对抗原包被效率的影响及其对策.http://journal.9med.net/,2008.
    189.武国军,王禾,王栋,等.抗人精浆蛋白单链抗体基因在HeLa细胞中的表达和活性鉴定.西安交通大学学报(医学版),2003.24(5):420-422.
    190.赵福广,王占才,余涛,等.以重组P-gp为抗原建立检测MDR1抗体间接ELISA方法的研究.中国生物工程杂志,2007.27(5):70-74.
    191.高茂英主编,组织学与胚胎学(双语版).北京:科学出版社,2005:126.
    192.Brandtzaeg P. Overview of the mucosal immune system. Curr. Top. Microbiol. Immunol.,1989.146:13-25.
    193.Round J L and Mazmanian SK. The gut microbiota shapes intestinal immune responses during healthand disease. Nat. Rev. Immunol.,2009(9):313-323.
    194.Esbj rn Telemo, Marina Korotkova, Lars. Hanson. Antigen presentation and processing in theintestinal mucosa and lymphocyte homing. Annals of Allergy, Asthma&Immunology,2003.90(6):28-33.
    195.Macdonald T T. The mucosal immune system. Parasite Immunology,2003.25:235-246.
    196.Marina Cella, Federica Sallusto, Antonio Lanzavecchia. Origin, maturation and antigen presentingfunction of dendritic cells. Current Opinion in Immunology,2002.9(1):10-16.
    197.Nagashima R, Maeda K, Imai Y. et al. Lamina propria macrophages in the human gastrointestinalmucosa: Their distribution, immunohistological phenotype, and function. Journal of Histochemistry&Cytochemistry,1996.44(7):721-731.
    198.Smith P D, Smythies L E, Shen R, et al. Intestinal macrophages and response to microbialencroachment. Mucosal Immunol.,2011.4(1):31-42.
    199.Lee S H, Starkey P M, and Gordon S. Quantitative analysis of total macrophage content in adultmouse tissues: Immunochemical studies with monoclonal Ab F4/80. J. Exp. Med.,1985.161:475-489.
    200.Lin X P, Almqvist N, and Telemo E. Human small intestinal epithelial cells constitutively express thekey elements for antigen processing and the production of exosomes. Blood Cells Molecules andDiseases,2005.35(2):122-128.
    201.Smith P D, Ochsenbauer-Jambor C, Smythies L E, Intestinal macrophages: unique effector cells of theinnate immune system. Immunol Rev.,2005.206:149-159.
    202.Barrera C, Espejo R and Reyes VE. Differential glycosylation of MHC class II molecules on gastricepithelial cells: implications in local immune responses. Hum Immunol.,2002.63(5):384-393.
    203.Buning J, von Smolinski D, Tafazzoli K, et al. Multivesicular bodies in intestinal epithelial cells:responsible for MHC class II-restricted antigen processing and origin of exosomes. Immunology,2008.125(4):510-521.
    204.Kobayashi M, Lee H, Schaffer L, et al. A distinctive set of genes is upregulated during theinflammation-carcinoma sequence in mouse stomach infected by helicobacter felis. Journal ofHistochemistry&Cytochemistry,2007.55(3):263-274.
    205.Burlak C. Immunobiology of the Liver. Practical Hepatic Pathology: A Diagnostic Approach2011:29-35.
    206.谢小军. Kupffer细胞调控Th17细胞分化及其在大鼠肝移植急性排斥反应中的作用研究[博士学位论文].杭州:浙江大学,2011.
    207.Bouwens L, De Bleser P, Vanderkerken K, et al. Liver cell heterogeneity:functions ofnon-Parenchynlal cells. Enzyme.,1992.46(1-3):155-168.
    208.廖汪洋. Kupffer细胞通过表达IDO诱导大鼠移植肝脏产生免疫耐受[硕士毕业论文].重庆:重庆医科大学,2010.
    209.Annette E, Markus B, Thomas p, et al. IL-10, regulatory Tcells, and Kupffer cells mediate tolerance inconcanavalin A-induced Iiver injury in mice. HePatology,2007.45:475-485.
    210.Chen Y, Chen J, Liu Z J, et al. Relationship between Th1/Th2cytokines and immune tolerance in livertransplantation in rats. Transplant Proc,2008.40(8):2691-2695.
    211.Benseler V, McCaughan G W, Schlitt HJ, et al. The liver: a special case transplantation tolerance.Semin Liver Dis,2007.27(2):194-213.
    212.Tiegs G and Lohse AW. Immune tolerance: what is unique about the liver. J Autoimmun.,2010.34(1):1-6.
    213.金伯泉主编.细胞和分子免疫学(第二版).北京:科学出版社,2001,305.
    214.Surh CD, Lee DS, Fung-Leung WP, et al. Thymic selection by a single MHC/peptide ligand producesa semidiverse repertoire of CD4+T cells. Immunity,1997.7(2):209-219.
    215.Scholz J, Lukacs-Kornek V, Engel DR, et al. Renal dendritic cells stimulate IL-10production andattenuate nephrotoxic nephritis. J Am Soc Nephrol2008.19:527–37.