新型疫苗佐剂—硫酸乙酰肝素刺激DCs后差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题主要研究新型疫苗佐剂---硫酸乙酰肝素(Heparan sulfate, HS)刺激人体重要的抗原提呈细胞---树突状细胞(Dendrtic Cells, DCs)后,DCs差异蛋白质组学的研究。
     实验设计如下:(1)采用免疫磁珠分选法分离人外周血来源的CD14+单核细胞,经细胞因子rhGM-CSF与rhIL-4刺激5天,诱导成为未成熟的树突状细胞(immature DCs, imDCs),分别设置不同的实验组,利用流式细胞仪检测HS在体外对DCs的刺激作用;(2)“5天培养法”获得的imDCs分为A与B两组,分别加入不同物质刺激。A组:①空白对照组、②佐剂组(HS);B组:①抗原组(HBsAg)、②抗原(HBsAg)+佐剂组(HS)。分别于刺激48h后提取DCs的总蛋白,经蛋白质沉淀、蛋白质定量、双向电泳、Image Scanner Ⅲ扫描、Image Master2D Platinum7.0软件分析凝胶差异蛋白点(Ratio>1.5倍)、MALDI-TOF/TOF串联质谱鉴定、生物信息学分析一系列的实验操作,鉴定差异表达的蛋白质并分析其生物学功能;(3)Western Blot实验鉴定差异表达蛋白质中几种重要的蛋白质分子的相对表达差异。
     实验结果如下:(1)在体外,HS能够促进DCs的成熟,但促成熟程度作用不显著,推测其发挥的更大作用可能是维持DCs处于一种未成熟状态,从而加强DCs对抗原的摄取与加工过程;(2)A组共发现28种差异表达的蛋白质(表达均上调),按功能分为7类:细胞骨架蛋白、生物大分子合成及代谢相关蛋白、细胞器相关蛋白、分子伴侣、组织蛋白酶、蛋白酶体及通道蛋白;B组共发现29种差异表达的蛋白质(除SERPINB1蛋白表达下调外,其余蛋白质表达均上调),按功能分为5类:细胞骨架蛋白、生物大分子合成及代谢相关蛋白、信号转导相关蛋白、组织蛋白酶及通道蛋白。两组共发现57种差异表达的蛋白质,通过对这些蛋白质功能的分析研究,证实大部分蛋白质在免疫反应系统中均发挥一定的作用,从而为硫酸乙酰肝素作为佐剂,在细胞内发挥作用的分子机制提供了一个很好的研究平台;(3)对差异表达蛋白质中的6种重要的蛋白质分子,分别为:CTSB、PSME1、LTA4H, LSP1、CTSD、SERPINB1进行Western Blot鉴定。其作用机制可能为:抗原的处理及提呈、促进DCs的成熟与稳定、相关细胞因子的分泌、启动细胞免疫应答等。通过Western Blot实验,既对Image Master2D Platinum7.0软件分析双向电泳凝胶点的结果进行了验证,也对实验中6种重要蛋白质的相对表达量的改变进行了鉴定。
     本实验利用差异蛋白质组学技术分析新型疫苗佐剂---硫酸乙酰肝素可能的佐剂作用机制,通过对57种差异表达的蛋白质的功能进行分析,对佐剂的作用机制研究提供了很好的后续研究的靶分子范围。之后可以从这些靶分子中挑选某种或多种蛋白质分子进行佐剂刺激DCs后,细胞内蛋白质相互作用及亚细胞定位的深入研究,不但可以进一步完善佐剂作用机制的理论基础,还可以为新型佐剂的开发提供新的靶点。
Objective:The subject mainly studies Heparan sulfate (HS) stimulate dendritic cells (DCs), which are the important antigen presenting cells (APCs) in the body, and then analysis the differential proteomics of DCs.
     Methods:(1) CD14+monocytes obtained from peripheral blood mononuclear cell (PBMC) with magnetic activated cell sorting (MACS), and cultured with rhGM-CSF and rhIL-4for5days to acquire the immature dendritic cells (imDCs). imDCs were divided into two groups according to whether treated by HS adjuvant and/or HBV antigen. They are A group:①blank control group;②adjuvant (HS) group and B group:①antigen (HBsAg) group;②antigen (HBsAg)+adjuvant (HS) group.(2) Extract the total proteins of DCs which were stimulated, and then a series of experiments had been performed to detect and analyse protein expression differences in DCs, such as protein precipitation and quantification, two-dimensional electrophoresis (2-DE), scanning, Image Master2D Platinum7.0analysis (Ratio>1.5), MALDI-TOF/TOF detection, and bio informatics analysis.(3) Relative expression differences of six key proteins were identified by Western Blot.
     Results:(1) In vitro, HS plays a little role in promoting DCs maturation, but probably plays a greater role in keeping immaturation of DCs to enhance those cells uptake and process antigen.(2)28differentially expressed proteins were found in A group (all of these proteins'expression are up-regulated), which were divided into7different function groups:Cytoskeleton proteins, Macromolecular Biosynthesis and Metabolism associate proteins, Organelle associate proteins, Molecular Chaperones, Cathepsins, Proteasome and Channel proteins.29differentially expressed proteins were found in B group (SERPINB1's expression was down-regulated while others expression were all up-regulated), which were divided into5different function groups:Cytoskeleton proteins, Macromolecular Biosynthesis and Metabolism associate proteins, Signaling Transduction associate proteins, Cathepsins and Channel proteins. Functions of those57differentially expressed proteins were analyzed, and approved that most of these proteins are playing a role in immune response system. So the study provides a good research platform for researching the molecular mechanism of HS in cells.(3) CTSB, PSME1, LTA4H, LSP1, CTSD and SERPINB1were selected to identify the relative expression differences by Western Blot. Western Blot verified the validity of2-DE spots analysis by Image Master2D Platinum7.0and the6important proteins'relative expression differences. From our studies, we suggest that the6proteins play key roles in the adjuvant molecular mechanism of HS. They may play a role in uptaking and procesing antigen, promoting the maturation of DCs, inducing the cellular immune response.
     Conclusions:The study found the probably molecular mechanism of HS by differential proteomics, and provided many target molecule for adjuvant mechanism intensive study. We also can select several proteins to study intracellular protein interactions and subcellular localization when adjuvant stimulate DCs, then it can not only further improve the adjuvant mechanism research, but also can provide new targets for adjuvant development.
引文
[1]Hunter RL. Overview of vaccine adjuvants:present and future [J]. Vaccine,2002,20 (3):7-12.
    [2]Coffman RL, Sher A, Seder RA. Vaccine adjuvants:putting innate immunity to work [J]. Immunity,2010,33(4):492-503.
    [3]Guy B. The perfect mix:recent progress in adjuvant research [J]. Nat Rev Microbiol,2007,5(7): 505-517.
    [4]Petrovsky N, Aguilar JC. Vaccine adjuvants:current state and future trends [J]. Immunol Cell Biol, 2004,82(5):488-496.
    [5]Aguilar JC, Rodriguez EG.. Vaccine adjuvants revisited [J]. Vaccine,2007,25(19):3752-3762.
    [6]Sivakumar SM, Safhi MM, Kannadasan M, et al. Vaccine adjuvants-current status and prospects on controlled release adjuvancity [J]. Saudi Pharmaceutical J,2011,19(4):197-206.
    [7]Mbow ML, Gregorio DE, Valiante NM, et al. New adjuvants for human vaccine [J]. Current Opinion in Immunology,2010,22(3):411-416.
    [8]Glenny AT. Insoluble precipitates in diphtheria and tetanus immunization [J]. Br Med J,1930,2 (3632):244-245.
    [9]HogenEsch H. Mechanism of stimulation of the immune response by aluminum adjuvants [J]. Vaccine,2002,20(3):34-39.
    [10]Rimaniol AC, Gras G, Verdier F, et al. Aluminum hydroxide adjuvant induces macrophage differentiation towards a specialized antigen-presenting cell type [J]. Vaccine,2004,22(23-24): 3127-3135.
    [11]Li H, Nookala S, Re F, et al. Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1β and IL-18 release [J]. J Immunol,2007,178(8):5271-5276.
    [12]Eisenbaeth SC, Colegio OR, Connor OW, et al. Crucial role for the Nalp3 infiammasome in the immunostimulatory properties of aluminium adjuvants [J]. Nature,2008,453(7198):1122-1126.
    [13]Kool M, Soullie T, Nimwegen VM, et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells [J]. J. Exp. Med,2008,205(4):869-882.
    [14]Martinon F, Petrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome [J]. Nature,2006,440:237-241.
    [15]Li H, Willingham SB, Ting JP, et al. Cutting Edge:Inflammasome Activation by Alum and Alum's Adjuvant Effect Are Mediated by NLRP3 [J]. J Immunol,2008,181(1):17-21.
    [16]Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 infiammasome through phagosomal destabilization [J]. Nat. Immunol,2008,9:847-856.
    [17]Franchi L, Nunez G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1b secretion but dispensable for adjuvant activity [J]. Eur. J.Immunol,2008,38(8):2085-2089.
    [18]Kool M, Petrilli V, Smedt DT, et al. Cutting Edge:Alum Adjuvant Stimulates Inflammatory Dendritic Cells through Activation of the NALP3 Inflammasome [J]. J. Immunol,2008,181(6): 3755-3759.
    [19]Duthie MS, Windish HP, Fox CB, et al. Use of defined TLR ligands as adjuvants within human vaccines [J]. Immunol Rev,2011,239(1):178-196.
    [20]Matzinger P. Tolerance, danger, and the extended family [J]. Annu Rev Immunol,1994,12: 991-1045.
    [21]Gallucci S, Matzinger P. Danger signals:SOS to the immune system [J]. Curr Opin Immunol, 2001,13(1):114-119.
    [22]Scheibner KA, Lutz MA, Boodoo S, et al. Hyaluronan Fragments Act as an Endogenous Danger Signal by Engaging TLR2 [J]. J Immunology,2006,177(2):1272-1281.
    [23]Gallucci S, Lolkema M, Matzinger P. Natural adjuvants:endogenous activators of dendritic cells [J].Nat Med,1999,5(11):1249-1255.
    [24]Matzinger P. The danger model:a renewed sense of self [J]. Science,2002,296(5566):301-105.
    [25]Paul P, Neefjes J. Studying MHC class Ⅱ transport in dendritic cells [J]. Methods Mol Biol, 2013,960:489-507.
    [26]Schlatzer DM, Sugalski J, Dazard JE, et al. A quantitative proteomic approach for detecting protein profiles of activated human myeloid dendritic cells [J]. J Immunol Methods,2012,375(1-2): 39-45.
    [27]Villadangos JA, Schnorrer P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo [J]. Nat Rev Immunol,2007,7(7):543-555.
    [28]Villadangos JA, Young L. Antigen-presentation properties of plasmacytoid dendritic cells [J]. Immunity,2008,29(3):352-361.
    [29]Alpan O, Bachelder E, Isil E, et al.'Educated' dendritic cells act as messengers from memory to naive T helper cells [J]. Nat Immunol,2004,5(6):615-622.
    [30]Sanderson RD. Heparan sulfate proteoglyeans in invasion and metastasis [J]. Semin Cell Dev Biol,2001,12(2):89-98.
    [31]Xu X, Jha AK, Harrington DA, et al. Hyaluronic Acid-Based Hydrogels:from a Natural Polysaccharide to Complex Networks [J]. Soft Matter,2012,8(12):3280-3294.
    [32]Ihrcke NS, Parker W, Reissner KJ, et al. Regulation of platelet heparanase during inflammation: role of pH and proteinases [J]. J Cell Physiol,1998,175(3):255-267.
    [33]Ihrcke NS, Platt JL. Shedding of heparan sulfate proteoglycan by stimulated endothelial cells: evidence for proteolysis of cell surface molecules [J]. J Cell Physiol,1996,168(3):625-637.
    [34]Johnson GB, Brunn GJ, Samstein B, et al. New insight into the pathogenesis of sepsis and the sepsis syndrome [J]. Surgery,2005,137(4):393-395.
    [35]Kodaira Y, Nair SK, Wrenshall LE, et al. Phenotypic and functional maturation of dendritic cells modulated by heparan sulfate [J]. J Immunol,2000,165(3):1599-1604.
    [36]Wrenshall LE, Cerra FB, Singh RK, et al. Heparan sulfate initiates signals in murine macrophages leading to divergent biological outcomes [J]. J Immunol,1995,154(2):871-880.
    [37]Wrenshall LE, Cerra FB, Carlson A, et al. Regulation of murine splenocyte responses by heparan sulfate [J]. J Immunol,1991,147(2):455-459.
    [38]Wrenshall LE, Stevens RB, Cerra FB, et al. Modulation of macrophage and B cell function by glycosaminoglycans [J]. J Leukocyte Biol,1999,66(3):391-400.
    [39]Ihrcke NS, Wrenshall LE, Lindman BJ, et al. Role of heparan sulfate in immune system-blood vessel interactions [J]. Immunol Today,1993,14(10):500-505.
    [40]Gilat D, Cahalon L, Hershkoviz R, et al. Interplay of T cells and cytokines in the context of enzymatically modified extracellular matrix [J]. Immunol Today,1996,17(1):16-20.
    [41]兰芸,王海漩,乌美妮,等.内源性危险信号低分子量硫酸乙酰肝素的免疫佐剂作用[J].中国生物制品学杂志,2011,24(1):5-9.
    [42]Yan M, Peng J, Jabbar IA, et al. Despite differences between dendritic cells and Langerhans cells in the mechanism of papillomavirus-like particle antigen uptake, both cells cross-prime T cells [J]. Virology,2004,324(2):297-310.
    [43]Matyszak MK, Young JL, Gaston JS. Uptake and processing of Chlamydia trachomatis by human dendritic cells [J]. Eur J Immunol,2002,32(3):742-751.
    [44]Mummert ME, Mummert D, Edelbaum D, et al. Synthesis and surface expression of hyaluronan by dendritic cells and its potential role in antigen presentation [J]. J Immunol,2002,169(8): 4322-4331.
    [45]Kodaira Y, Platt JL. Modification of antigen-presenting cell functions by heparan sulfate [J]. Transplant Proc,2000,32(5):947.
    [46]Johnson GB, Brunn GJ, Kodaira Y, et al. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by toll-like receptor 4 [J]. J Immunol,2002,168(10):5233-5239.
    [47]Akama K, Horikoshi T, Nakayama T, et al. Proteomic identification of differentially expressed genes during differentiation of cynomolgus monkey (Macaca fascicularis) embryonic stem cells to astrocyte progenitor cells in vitro [J]. Biochim Biophys Acta,2013,1834(2):601-610.
    [48]Butko MT, Savas JN, Friedman B, et al. In vivo quantitative proteomics of somatosensory cortical synapses shows which protein levels are modulated by sensory deprivation [J]. Proc Natl Acad Sci USA,2013,110(8):E726-35, doi:10.1073.
    [49]Venugopal AK, Ghantasala SS, Selvan LD, et al. Quantitative proteomics for identifying biomarkers for Rabies [J]. Clin Proteomics,2013,10(1):3.
    [50]Lee JR, Magee DM, Gaster RS, et al. Emerging protein array technologies for proteomics [J]. Expert Rev Proteomics,2013,10(1):65-75.
    [51]Rappsilber J, Mann M. What does it mean to identify a protein in proteomics [J]? Trends in Biochemical Science,2002,27(2):74-78.
    [52]Terence CW, Philip JJ. Proteome analysis and its impact on the discovery of serological tumor markers [J]. Clinica Chimica Aca,2001,313(1-2):231-239.
    [53]Paweletz C, Trock B, Pennanen M, et al. Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF:potential for new biomarkers to aid in the diagnosis of breast cancer [J]. Dis Marker, 2001,17(4):301-307.
    [54]Lopez MF, Kristal BS, Chernokalskaye E, et al. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation [J]. Electrophoresis,2000,21(16):3427-3440.
    [55]Becker L, Liu NC, Averill MM, et al. Unique Proteomic Signatures Distinguish Macrophages and Dendritic Cells [J]. PLoS ONE,2012,7(3):e33297, doi:10.1371.
    [56]Bernard SF, William Borges WC, Dowle AA, et al. Plasma membrane proteomes of differentially matured dendritic cells identified by LC-MS/MS combined with iTRAQ labeling [J]. J Proteomics, 2012,75(3):938-948.
    [57]Ding FX, Xian X, Guo YJ, et al. A preliminary study on the activation and antigen presentation of hepatitis B virus core protein virus-like particle-pulsed bone marrow-derived dendritic cells [J]. Mol Biosyst,2010,6(11):2192-2199.
    [58]Luber CA, Cox J, Lauterbach H, et al. Quantitative proteomics reveals subset-specific viral recognition in dendritic cells [J]. Immunity,2010,32(2):279-289.
    [59]Mellman I, Steinman RM. Dendritic cells:specialized and regulated antigen processing machines [J]. Cell,2001,106(3):255-258.
    [60]Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells [J]. Annu Rev Immunol [J].2000,18:767-811.
    [61]Gurti A, Isidori A, Ferri E, et al. Generation of dendritic cells from positively selected monocytes for anti-tumor immunotherapy [J]. Leuk Lymphoma,2004,45(7):1419-1428.
    [62]Hughes JA, Cooke-Yarborough CM, Chadwick NC, et al. High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors [J]. Glia,2003,42(1):25-35.
    [63]Iftner A, Klug SJ, Garbe C, et al. The prevalence of human papillomavirus genotypes in nonmelanoma skin cancers of nonimmunosuppressed individuals identifies high-risk genital types as possible risk factors [J]. Cancer Res,2003,63(21):7515-7519.
    [64]David R. Nucleoskeleton. Uncovering roles for lamin B [J]. Nat Rev Mol Cell Biol,2011,13(1): 3.
    [65]Chow KH, Factor RE, Ullman KS. The nuclear envelope environment and its cancer connections [J]. Nat Rev Cancer,2012,12(3):196-209.
    [66]Sun S, Xu MZ, Poon RT, et al. Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients [J]. J Proteome Res,2010,9(1):70-78.
    [67]Butin-Israeli V, Adam SA, Goldman AE, et al. Nuclear lamin functions and disease [J]. Trends Genet,2012,28(9):464-471.
    [68]Coulombe PA, Wong P. Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds [J]. Nat Cell Biol,2004,6:699-706.
    [69]Moisan E, Chiasson S, Girard D. The intriguing normal acute inflammatory response in mice lacking vimentin [J]. Clin Exp Immunol,2007,150(1):158-168.
    [70]Foulon T, Cadel S, Cohen P. Aminopeptidase B [J]. Int J Biochem Cell Biol,1999,31(7): 747-750.
    [71]Liao S, Li R, Wang J, et al. Functional analysis of an S-adenosylhomocysteine hydrolase homolog of chestnut blight fungus [J]. FEMS Microbiol Lett,2012,336(1):64-72.
    [72]Coffey MJ, Phare SM, Peters-Golden M. Role of leukotrienes in killing of Mycobacterium bovis by neutrophils [J]. Prostaglandins Leukot Essent Fatty Acids,2004,71(3):185-190.
    [73]Helgadottir A, Manolescu A, Helgason A, et al. A variant of the gene encoding leukotriene A4 hydrolase confers ethnicityspecific risk of myocardial infarction [J]. Nat Genet,2006,38(1):68-74.
    [74]Appenzeller-Herzog C, Ellgaard L, et al. The human PDI family:Versatility packed into a single fold [J]. Biochim Biophys Acta,2008,1783(4):535-548.
    [75]Ellgaard L, Ruddock L W. The human protein disulphide isomerase family:substrate interactions and functional properties [J]. EMBO Rep,2005,6:28-32.
    [76]Raghavan MN, Del C, Rizvi SM, et al. MHC class Ⅰ assembly:out and about [J]. Trends Immunol,2008,29(9):436-443.
    [77]Jordan PA, Stevens JM, Hubbard GP, et al. A role for the thiol isomerase protein ERP5 in platelet function [J]. Blood,2005,105(4):1500-1507.
    [78]Paytubi S, Morrice NA, Boudeau J, et al. The N-terminal region of ABC50 interacts with eukaryotic initiation factor eIF2 and is a target for regulatory phosphorylation by CK2 [J]. Biochem J, 2008,409(1):223-231.
    [79]Nishi T, Forgac M. The vacuolar (H+)-ATPases-nature's most versatile proton pumps [J]. Nat Rev Mol Cell Biol,2002,3(2):94-103.
    [80]Park YM, Hwang SJ, Masuda K, et al. Heterogeneous nuclear ribonucleoprotein C1/C2 controls the metastatic potential of glioblastoma by regulating PDCD4 [J]. Mol Cell Biol,2012,32(20): 4237-4244.
    [81]Eura Y, Ishihara N, Oka T, et al. Identification of a novel protein that regulates mitochondrial fusion by modulating mitofusin (Mfn) protein function [J]. J Cell Sci,2006,119(23):4913-4925.
    [82]Mertsch S, Becker M, Lichota A, et al. Vesicle amine transport protein-1 (VAT-1) is upregulated in glioblastomas and promotes migration[J]. Neuropathol Appl Neurobiol,2009,35(4):342-352.
    [83]Anelli T, Ceppi S, Bergamelli L, et al. Sequential steps and checkpoints in the early exocytic compartment during secretory IgM biogenesis [J]. Embo J,2007,26(19):4177-4188.
    [84]Wang AV, Schraw TD, Kim JY, et al. Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention [J]. Mol Cell Biol,2007,27(10): 3716-3731.
    [85]Suzuki CK, Bonifacino JS, Lin AY, et al. Regulating the retention of T-cell receptor alpha chain variants within the endoplasmic reticulum:Ca(2+)-dependent association with BiP [J]. J Cell Biol, 1991,114(2):189-205.
    [86]Yang Y, Rao R, Shen J, et al. Role of acetylation and extracellular location of heat shock protein 90a in tumor cell invasion [J]. Cancer Res,2008,68(12):4833-4842.
    [87]Berdowska 1. Cysteine proteases as disease markers [J]. Clin Chim Acta,2004,342(1-2):41-69.
    [88]Kokkonen N, Rivinoja A, Kauppila A, et al. De fective acid ifica tion o f intrace llular organelles results in aberrant secre tion of cathepsin D in cancer cells [J]. J Biol Chem,2004,279:39982-39988.
    [89]Gondi CS, Rao JS. Cathepsin B as a cancer target [J]. Expert Opin Ther Tarqets,2013,17(3): 281-291.
    [90]Tanaka K, Kasahara M. The MHC class Ⅰ ligand-generating system:roles of immunopro-teasomes and the interferon-gamma-inducible proteasome activator PA28 [J]. Immunol Rev,1998, 163:161-176.
    [91]Liu J, Nussinov R. The role of allostery in the ubiquitin-proteasome system [J]. Crit Rev Biochem Mol Biol,2013,48(2):89-97.
    [92]Basler M, Kirk CJ, Groettrup M. The immunoproteasome in antigen processing and other immunological functions [J]. Curr Opin Immunol,2013,25(1):74-80.
    [93]Ohnishi K, Nakahata E, Irie K, et al. Zerumbone, an electrophilic sesquiterpene, induces cellular proteo-stress leading to activation of ubiquitin-proteasome system and autophagy [J]. Biochem Biophys Res Commun,2013,430(2):616-622.
    [94]Zhang D, Lim SG, Koay ES. Proteomic identification of down-regulation of oncoprotein DJ-1 and proteasome activator subunit 1 in hepatitis B virus-infected well-differentiated hepatocellular carcinoma [J]. Int J Oncol,2007,31(3):577-584.
    [95]Sijts A, Sun Y, Janek K, et al. The role of the proteasome activator PA28 in MHC class Ⅰ antigen processing [J]. Mol Immunol,2002,39(3-4):165-169.
    [96]Sun Y, Sijts AJ, Song M, et al. Expression of the proteasome activator PA28 rescues the presentation of a cytotoxic T lymphocyte epitope on melanoma cells [J]. Cancer Res,2002,62(10): 2875-2882.
    [97]莫庆义,彭红娟.寄生虫26S蛋白酶体的研究进展[J].国外医学寄生虫分册,2002,23(2):55-57.
    [98]Fu H, Girod P A, Doelling JH, et al. Structure and functional analysis of the26S proteasome subunits from plants [J]. Mol Biol Rep,1999,26(1-2):137-146.
    [99]尹会男,柴家科.泛素-蛋白酶体途径研究进展[J].医学分子生物学杂志,200,1(1):47-50.
    [100]Ashley RH. Challenging accepted ion channel biology:p64 and the CLIC family of put ative intracellular anion channel proteins [J]. Mol Membr Biol,2003,20(1):1-11.
    [101]Fernandez-Salas E, SagarM, ChengC, et al. Weinberg WC:p53 and tumor necrosis factor a regulate the expression of a mitochondrial chloride channel protein [J]. J Biol Chem,1999,274(51): 36488-36497.
    [102]Suh KS, Mutoh M, Gerdes M, et al. Antisense suppression of the chloride intracellular channel family induces apoptosis, enhances tumor-inecrosis factor a-induced apoptosis, and inhibits tumor growth [J]. Cancer Res,2005,65(2):562-571.
    [103]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interferencein cultured mammalian cells [J]. Nature,2001,411(6836):494-498.
    [104]Suh KS, Mutoh M, Nagashima K, et al. The organellular chloride channel protein CLIC4/mt CLIC4 translocates to the nucleus in response to cellular stress and accelerates apoptosis [J]. J Biol Chem,2004,279(6):4632-4641.
    [105]Hall PA, Russell SH. The pathobiology of the septin gene family [J]. J Pathol,2004,204(4): 489-505.
    [106]Danen-Van Oorschot AA, Fischer DF, Grimbergen JM, et al. Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells [J]. Proc Natl Acad Sci USA,1997, 94(11):5843-5847.
    [107]Hsu SC, Hazuka CD, Roth R, et al. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments [J]. Neuron,1998,20(6):1111-1122.
    [108]Gottfried Y, Rotem A, Lotan R, et al. The mitochondrial ARTS protein promotes apoptosis through targeting XIAP [J]. EMBO J,2004,23(7):1627-1635.
    [109]吕炳建,来茂德.Septin基因家族与人类疾病.国际遗传学杂志,2006,29(6):441-445.
    [110]Angelastro JM, Ho CL, Frappier T, et al. Peripherin is tyrosine-phosphorylated at its carboxyl-terminal tyrosine [J]. J Neurochem,1998,70(2):540-549.
    [111]李占梅,别建波,宋宏锐,等.果糖-1,6-二磷酸酶AMP变构抑制剂的研究进展[J].药学学报,2011,46(11):1291-1300.
    [112]Brendel C, Rehbein M, Kreienkamp HJ, et al. Characterization of Staufen 1 ribonucleoprotein complexes [J]. Biochem J,2004,384(Pt 2):239-246.
    [113]Laury-K leintop LD, Tresini M, Hammond O. Compartmentalization of hnRNP-K during cell cycle progression and its interaction with calponin in the cytoplasm [J]. J Cell Biochem,2005,95(5): 1042-1056.
    [114]Bomsztyk K, Denisenko O, Ostrowski J. hnRNPK:one protein multiple processes [J]. Bioessays,2004,26(6):629-638.
    [115]Pena P, Risopatron J, Villegas J, et al. Alpha-glucosidase in the human epididymis:topographic distribution and clinical application [J]. Andrologia,2004,36(5):315-320.
    [116]Gee MA, Heuser JE, Vallee RB. An extended microtubule-binding structure within the dynein motor domain [J].Nature,1997,390(6660):636-639.
    [117]Nishiura M, Kon T, Shiroguchi K, et al. A single-headed recombinant fragment of Dictyostelium cytoplasmic dynein can drive the robust sliding of microtubules [J]. J Biol Chem,2004, 279(22):22799-22802.
    [118]Oiwa K, Sakakibara H. Recent progress in dynein structure and mechanism [J]. Curr Opin Cell Biol,2005,17(1):98-103.
    [119]Blagden SP, Glover DM. Polar expeditions-provisioning the centrosome for mitosis [J]. Nat Cell Biol,2003,5(6):505-511.
    [120]Vale RD. The molecular motor toolbox for intracellular transport [J]. Cell,2003,112(4): 467-480.
    [121]Chevalier-Larsen E, Holzbaur EL. Axonal transport and neurodegenerative disease [J]. Biochim Biophys Acta,2006,1762(11-12):1094-1108.
    [122]Tan QP, Hu JA, Huang Y, et al. Advance in research of lipoxy-genase and cancer [J]. J Toxicol, 2007,21(2):76-79.
    [123]Balakirev MY, Tcherniuk SO, Jaquinod M, et al. Otubains:a new family of cysteine proteases in the ubiquitin pathway [J]. EMBO Rep,2003,4(5):517-522.
    [124]Soares L, Seroogy C, Skrenta H, et al. Two isoforms of otubain 1 regulate T cell anergy via GRAIL [J]. Nat Immunol,2004,5(1):45-54.
    [125]Zhang H, Kobayashi R, Galaktionov K, et al. p19 Skpl and p45 Skp2 are essential dements of the cyclin A-CDK2 S phase kinase [J]. Cell,1995,82(6):915-925.
    [126]Cha H, Shapiro P. Role of the F-box protein Skp2 in adhesion dependent cell cycle progression [J]. The Journal of cell biology,2001,153(7):1381-90.
    [127]Fang YH, Ren ZJ, Ma JJ, et al. Leukocyte-specific protein 1 inhibits Bortezomib induced apoptosis in multiple myeloma cells [J]. Journal of university of science and technology of China, 2010,40(4):346-351.
    [128]Mahalingam D, Swords R, Carew JS, et al. Targeting HSP90 for cancer therapy [J]. Br J Cancer, 2009,100(10):1523-1529.
    [129]李岩,李建远.磷酸化应激蛋白的研究进展[J].中外医学研究,2011,9(12):116-118.
    [130]Rudel T, Bokoch GM. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2 [J]. Science,1997,276(5318):1571-1574.
    [131]Walter BN, Huang Z, Jakobi R, et al. Cleavage and activation of p21-activated protein kinase gamma-PAK by CPP32 (caspase 3) [J]. Effects of autophosphorylation on activity. J Biol Chem,1998, 273(44):28733-28739.
    [132]Lim L, Manser E, Leung T, et al. Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorylation signalling pathways [J]. Eur J Biochem, 1996,242(2):171-185.
    [133]Sells MA, Chernoff J. Emerging from the Pak:the p21-activated protein kinase family [J]. Trends Cell Biol,1997,7(4):162-167.
    [134]Bagrodia S, Cerione R A. Pak to the future [J]. Trends Cell Biol,1999,9:350-355.
    [135]Jakobi R, McCarthy CC, Koeppel MA, et al. Caspase-activated PAK-2 is regulated by subcellular targeting and proteasomal degradation [J]. J Biol Chem,2003,278(40):38675-38685.
    [136]Koeppel MA, McCarthy CC, Moertl E, et al. Identification and characterization of PS-GAP as a novel regulator of caspase-activated PAK-2 [J]. J Biol Chem,2004,279(51):38653-38664.
    [137]Luo W, Slebos RJ, Hill S, et al. Global impact of oncogenic Src on a phosphotyrosine proteome [J]. J Prot Res,2008,7(8):3447-3460.
    [138]Brown MT, Cooper JA. Regulation, substrates and functions of Src [J]. Biochim Biophys Acta, 1996,1287(3):121-149.
    [139]Frame MC. Src in caner:deregulation and consequences for cell behaviour [J]. Biochim Biophys Acta,2002,1602(2):114-130.
    [140]Wang Q, Song C, Lic C. Molecular perspectives on p97-VCP:progress in understanding it's structure and diverse biological functions [J]. J Struct Biol,2004,146(1-2):44-57.
    [141]Dai RM, Chen E, Longo DL, et al. Involvement of valosin-containing protein, an ATPase Co-purified with IkappaBalpha and 26S proteasome, in ubiquitin-proteasome-mediated degradation of IkappaBalpha [J]. J Biol Chem,1998,273(6):3562-2573.
    [142]Steinbrecher T, Hrenn A, Dormann KL, et al. Bornyl (3,4,5-trihydroxy)-cinnamate:an optimized human neutrophil elastase inhibitor designed by free energy calculations [J]. Bioorg Med Chem,2008,16(5):2385-2390.
    [143]Xu GH, Kim YH, Chi SW, et al. Evaluation of human neutrophil elastase inhibitory effect of iridoid glycosides from Hedyotis diffusa [J]. Bioorg Med Chem Lett,2010,20(2):513-515.
    [144]Schorr K, Rott A, Da Costa F, et al. Optimisation of a human neutrophil elastase assay and investigation of the effect of sesquiterpene lactones [J]. Biologicals,2005,33(3):175-184.
    [145]Inoue Y, Omodani T, Shiratake R,et al. Development of a highly water-soluble peptide-based human neutrophil elastase inhibitor; AE-3763 for treatment of acute organ injury [J]. Bioorg Med Chem,2009,17(21):7477-7486.
    [146]Alla V, Kashyap A, Gregor S, et al. Human leukocyte elastase counteracts matrix metalloproteinase-7 induced apoptosis resistance of tumor cells [J]. Cancer Lett,2008,268(2): 331-339.
    [147]Sun Z, Yang P. Role of imbalance between neutrophil elastase and alpha 1-antitrypsin in cancer development and progression [J]. Lancet Oncol,2004,5(3):182-190.
    [148]Ralf P, Francis J, Stefani B, et al. The vascular NADPH oxidase subunit NCF1 is involved in redox-mediated gene expression [J]. Free Radical Bio Med,2002,32(11):1116-1122.
    [149]Hagenow K, Gelderman KA, Hultqvist M, et al. Ncfl-associated reduced oxidative burst promotes IL-33R+T cell-mediated adjuvant-free arthritis in mice [J]. J Immunol,2009,183(2): 874-881.
    [150]Castier Y, BrandesR P, Leseche G, et al. p47phox-dependent NADPH oxidase regulates flow-induced vascular remodeling [J]. Circ Res,2005,97(6):533-540.
    [151]Muslin AJ, Tanner JW, Allen PM, et al Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine [J]. Cell,1996,84(6):889-897.
    [152]Won J, Kim DY, La M, et al. Cleavage of 14-3-3 protein by caspase-3 facilitates bad interaction with Bc-lx (L) during apoptosis [J]. J Biol Chem,2003,278 (21):19347-19351.
    [153]Mao X, Kikani CK, Riojas RA, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and functionJ [J]. Nat Cell Biol,2006,8(5):516-523.
    [154]Fang QC, Jia WP, Gao F, et al Association of variants in APPL1 gene with body fat and its distribution in Chinese patients with type 2 diabetic mellitus [J]. J Clin Endocrinol Metab,2008,88(6): 369-373.
    [155]Staiger H, Machicao F, Machann J, et al. Geneticvariation within the APPL locus is not associated with metabolic or inflammatory traits in a healthy Whitepopulation [J]. Diabet Med,2007, 24(8):817-822.
    [156]Cheng KK, Lam KS, WangY, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells [J]. Diabetes,2007, 56(5):1387-1394.
    [157]Gant-Branum RL, Broussard JA, Mahsut A, et al. Identification of phosphorylation sites within the signaling adaptor APPL1 by mass spectrometry [J]. J Proteome Res,2010,9(3):1541-1548.
    [158]Bae GU, Lee JR, Kim BG, et al. Cdo interacts with APPL1 and activates Akt in myoblast differentiation [J]. Mol Biol Cell,2010,21(14):2399-2411.
    [159]Chial HJ, Wu R, Ustach CV, et al. Membrane targeting by APPL1 and APPL2:dynamic scaffolds that oligomerize and bind phosphoinositides [J]. Traffic,2008,9(2):215-229.
    [160]Creuta CE, Pazoles CJ, Pollard HB. Identification and purification of an adrenal medullary protein (synexin) that cause calcium-dependent aggregation of isolated chromaffin granules [J]. J Biol Chem,1978,253(8):2858-2866.
    [161]Huang KS, Wallner B P, Mattaliano RJ, et al. Two human 35kD inhibitors of phospholipase A2 are related to substrates of pp60v-src and of the epidermal growth factor receptor/kinase [J]. Cell, 1986,46(2):191-199.
    [162]Mortimer JC, Laohavisit A, Macpherson N, et al. Annexins:multifunctional components of growth and adaptation [J]. J Exp Bot,2008,59(3):533-544.
    [163]Chander A, Chen XL, Naidu DG. A role for diacylglycerol in annexin A7-mediated fusion of lung lamellar bodies [J]. Biochim Biophys Acta,2007,1771(10):1308-1318.
    [164]Vito T, Boris T, Dusan T, et al. Lysosomal cysteine proteases:Facts and opportunities [J]. The Embo J,2001,20(17):4629-4633.
    [165]周国宏,于文贞,黎晓新.组织蛋白酶B抑制干预鼠视网膜新生血管形成的研究[J].中华眼科杂志,2008,44(3):207-211.
    [166]余念祖,王中,赵宏祥,等.组织蛋白酶B在人颅内动脉瘤瘤壁的表达及意义[J].中华外科杂志,2010,48(6):457-460.
    [167]Werneburg N, Guicciardi ME, Yin XM, et al. TNF-alpha-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent [J]. Am J Physiol Gastrointest Liver Physiol.2004,287(2): 436-443.
    [168]Guicciardi ME, Miyoshi H, Bronk SF, et al. Cathepsin B knockout mice are resistant to tumor necrosis factor-alpha-mediated hepatocyte apoptosis and liver injury:implications for therapeutic applications [J]. Am J Pathol,2001,159(6):2045-2054.
    [169]Foghsgaard L, Wissing D, MauchD, et al. Cathepsin B acts as a dominant execution protease in rumor cell apoptosis induced by tumor necrosis factor [J]. J Cell Biol,2001,153(5):999-1010.
    [170]Trombetta ES, Ebersold M, Garrett W, et al. Activation of lysosomal function during dendritic cell maturation [J]. Science,2003,299(5611):1400-1409.
    [171]Guo X, Dhodapkar KM. Central and overlapping role of Cathepsin B and inflammasome adaptor ASC in antigen presenting function of human dendritic cells [J]. Hum Immunol,2012,73(9): 871-878.
    [172]Tim B, Thierry G, Martin E, et al. Influenza A virus elevates active cathepsin B in primary murine DC [J]. International Immunology,19(5):645-655.
    [173]Cooper A, Shaul Y. Clathrin-mediated endocytosis and lysosomal cleavage of hepatitis B virus capsid-like core particles [J]. J Biol Chem,2006,281:16563-16569.
    [174]Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells [J]. Nature,2006,440:808-812.
    [175]Kiluk M, Skrzydlewski Z, Kiluk A, et al. Activity of cathepsin D in some neoplasms of the gastrointestinal tract [J]. Pol Merkur Lekaski,1997,2(11):307-308.
    [176]Kantsaliev AL, Kushlinskii NE, et al. Proteolygic enzyme activity in stomach cancer patients with various prognosis [J]. Vopr Med Khim,1994,40(3):41-43.
    [177]Brouillet JP, Theillet C, Maudelonde T, et al. Cathepsin D assay in primary breast cancer and lymph nodes:relationship with c-myc, c-erb-B-2 and int-2 oncogene amplification and node invasiveness [J]. Eur J Cancer,1990,26(4):437-441.
    [178]Kagedal K, Johansson AC, Johansson U, et al. Lysosomal membrane permeabilization during apoptosis-involvement of bax [J]. Int J Exp Pathol,2005,86(5):309-321.
    [179]Castino R, Bellio N, Nicotra G, et al. Cathepsin D-Bax death pathway in oxidative stressed neuroblastoma cells [J]. Free Radic Biol Med,2007,42(9):1305-1316.
    [180]Yue XL, Lehri S, Li P, et al. Insights on a new path of pre-mitochondrial apoptosis regulation by a glycosaminoglycan mimetic [J]. Cell Death Differ,2009, (16):770-781.
    [181]Lutz MB, Rovere P, Kleijmeer MJ, et al. Intracellular routes and selective retention of antigens in mildly acidic cathepsin D/lysosome-associated membrane protein-1/MHC class Ⅱ-positive vesicles in immature dendritic cells [J]. J Immunology,1997,159(8):3707-3716.
    [182]Wetterhdm A, Macchia L, Haeggstrom JZ. Zinc and other divalent cations inhibit purified LTA4 hydrolase and LTB4 biosynthesis in human PMN cells [J]. Arch Biochem Biochys,1994, 311(2):263-271.
    [183]Rosenbach T, Czarnetzki BM. Comparison of the generation in vitro of chemotactically active LTB4 and its omega-metabolites by human neutrophils and lymphocytes/monocytes [J]. Clin Exp Immunol,1987,69(1):221-228.
    [184]Oyoshi MK, He R, Li Y, et al. Leukotriene B4-driven neutrophil recruitment to the skin is essential for allergic skin inflammation [J]. Immunity,2012,37(4):747-758.
    [185]Milano S, Arcoleo F, Diel M, et al. Ex vivo evidence for PGE2 and LTB4 involvement in cutaneous eishmaniasis:relation with infection status and cytokine production [J]. Parasitology,1996, 112(1):13-19.
    [186]Soare EM, Mason KL, Rogers LM, et al. Leukotriene B4 enhances innate immune defense against the puerperal sepsis agent Streptococcus pyogenes [J]. J Immunol,2013,190(4):1614-1622.
    [187]Lefebvre JS, Marleau S, Milot V, et al. Toll-like receptor ligands induce polymorphonuclear leukocyte migration:key roles for leukotriene B4 and platelet-activating factor [J]. FASEB J,2010, 24(2):637-647.
    [188]Hattermann K, Picard S, Borgeat M, et al. The Toll-like receptor 7/8-ligand resiquimod (R-848) primes human neutrophils for leukotriene B4, prostaglandin E2 and platelet-activating factor biosynthesis [J]. FASEB J,2007,21(7):1575-1585.
    [189]Jongstra-Bilen J, Misener VL, Wang C, et al. LSP1 modulates leukocyte populations in resting and inflamed peritoneum [J]. Blood,2000,96(5):1827-1835.
    [190]Palker TJ, Fong AM, Scearce RM, et al. Developmental regulation of lymphocyte-specific protein 1 (LSP1) expression in thymus during human T-cell maturation [J]. Hybridoma,1998,17(6): 497-507.
    [191]Ariel A, Yavin EJ, Hershkoviz R, et al. IL-2 induces T cell adherence to extracellular matrix: inhibition of adherence and migration by IL-2 peptides generated by leukocyte elastase [J]. J Immunol, 1998,161(5):2465-2472.
    [192]余初浪,严顺平,孙卫宁,等.适于水稻根、叶、悬浮细胞总蛋白分析的高分辨率双向电泳方法[J].中国水稻科学,2006,20(5):549-552.
    [193]Neuhoff V, Arnold N, Taube D, et al. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250 [J]. Electrophoresis,1985,9(6):255-262.
    [194]Candiano G, Bruschi M, Musante L, et al. Blue ilver:A very sensitive colloidal Coomassie G-250 staining for proteome analysis [J]. Electrophoresis,2004,25(9):1327-1333.
    [195]Khan MF, Bennett MJ, Jumper CC, et al. Proteomics by mass spectrometry-Go big or go home [J]? J Pharm Biomed Anal,2011,55(4):832-841.
    [196]Chamrad DC, Koerting G, Gobom J, et al. Interpretation of mass spectrometry data for high-throughput proteomics [J]. Anal Bioanal Chem,2003,376(7):1014-1022.
    [197]Guerrera IC, Kleiner O. Application of mass spectrometry in proteomics [J]. Biosci Rep,2005, 25(12):71-93.
    [198]Lamer S, Jungblut PR. Matrix-assisted laser desorption-ionization mass spectrometry peptide mass fingerprinting for proteome analysis:identification efficiency after on-blot or in-gel digestion with and without desalting procedures [J]. J Chromatogr B Biomed Sci,2001,752(2):311-322.
    [199]Jahn O, Hesse D, Reinelt M, et al. Technical innovations for the automated identification of gel-separated proteins by MALDI-TOF mass spectrometry [J]. Anal Bioanal Chem,2006,386(1): 92-103.
    [200]Newton RP, Brenton AG, Smith CJ, et al. Plant proteome analysis by massspectrometry: principles, problems, pitfalls and recent developments [J]. Phytochemistry,2004,65(11):1449-1485.
    [1]Jastrebova N, Vanwildemeersch M, Rapraeger AC, et al. Heparan sulfate-related oligosaccharides in ternary complex formation with fibroblast growth factors 1 and 2 and their receptors [J]. J Biol Chem,2006,281(37):26884-26892.
    [2]Sanderson RD. Heparan sulfate proteoglyeans in invasion and metastasis [J]. Semin Cell Dev Biol, 2001,12(2):89-98.
    [3]Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans [J]. Cold Spring Harb Perspect Biol,2011,3(7):pii:a004952.
    [4]Esko JD, Lindahl U. Molecular diversity of heparin sulfate [J]. J Clin Invest,2001, 108(2):169-173.
    [5]Kato M, Wang H, Bernfield M, et al. Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains [J]. J Biol Chem,1994, 269(29):18881-18890.
    [6]Kato M, Wang H, Kainulainen V, et al. Physiological degradation converts the soluble syndecan-1 ectodom-ain from an inhibitor to a potent activator of FGF-2 [J]. Nat Med,1998,4(6):691-697.
    [7]Vilar RE, Ghael D, Li M, et al. Nitric oxide degradation of heparin and heparan sulphate [J]. Biochem J,1997,324(pt 2):473-479.
    [8]Spear PG. Entry of alpha herpes viruses into cells [J]. Semin Virol,1993,4:167-80.
    [9]Compton T, Dawn M. Initiation of human cytomegalovirus infection require initial interaction with cell surface heparan sulfate [J]. Virology,1993,193 (2):834-841.
    [10]Adamiak B, Ekblad M, Bergstrom T, et al. Herpes simplex virus type 2 glycoprotein G is targeted by the sulfated oligo-and polysaccharide inhibitors of virus attachment to cells [J]. J Virol,2007, 81(24):13424-13434.
    [11]Jackson T, Ellard M. Efficient infection of cells in culture by type O Foot-and-Mouth disease virus requires binding to cell surface heparen sulfate [J]. J Virol,2006,70(8):5282-5287.
    [12]Zhu W, Li J, Liang G. How does cellular heparan sulfate function in viral pathogenicity [J]? Biomed Environ Sci,2011,24(1):81-87.
    [13]Bernfield M, Gotte M, Park PW, et al. Functions of cell surface heparin sulfate proteoglycans [J]. Ann Rev Biochem,1999,68:729-777.
    [14]Shriver Z, Capila L, Venkataraman G, et al. Heparin and heparin sulfate:analyzing structure and microheterogeneity [J]. Handb Exp Pharmacol,2012, (207):159-176.
    [15]Kreuger J, Spillmann D, Li JP, et al. Interactions between heparan sulfate and proteins:the concept of specificity [J]. J Cell Biol,2006,174(3):323-327.
    [16]Blcakhall FH, Merry CL, Davies EJ, et al. Heparan sulfate proteoglycans and cancer [J]. British journal of Cancer,2001,85(8):1094-1098.
    [17]Shinyo Y, Kodama J, Hasengaowa, et al. Loss of cell-surface heparin sulfate expression in both cervical intraepithelial neoplasm and invasive cervical cancer [J]. Gynecol Oncol,2005,96(3): 776-783.
    [18]McCarthy KJ, Wassenhove-McCarthy DJ. The glomerular basement membrane as a model system to study the bioactivity of heparan sulfate glycosaminoglycans [J]. Microsc Microanal,2012, 18(1):3-21.
    [19]Hasengaowa, Kodama J, Kusmoto T, et al. Loss of basement membrane heparan sulfate expression is associated with tumor progression in endometrial cancer [J]. Eur J Gynaecol Oncol, 2005,26(4):403-406.
    [20]Deepa SS, Yamade S, Zako M, et al. Chondroitin sulfate chains on syndecan-1 and syndecan-4 from normal murine mammary gland epithelial cells are structurally and functionally distinct and cooperate with heparan sulfatechains to bind growth factors. A novel function to control binding of midkine, pleiotrophin, and basic fibroblast growth factor [J]. J Biol Chem,2004,279(36): 37368-37376.
    [21]Westergren-Thorsson G, Onnervik PO, Fransson LA, et al. Proliferation of cultured fibroblasts is inhibited by L-iduronate-containing glycosaminoglycans [J]. J Cell Physiol,1991,147(3):523-530.
    [22]Khurana A, Beleford D, He X, et al. Role of heparin sulfateses in ovarian and breast cancer [J]. Am J Cancer Res,2013,3(1):34-35.
    [23]Whitelock J M, Murdoch AD, Iozzo RV, et al. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases [J]. J Biol Chem,1996,271(1):10079-10086.
    [24]Gallagher JT, Lyon M, Steward WP. Structure and function of heparan sulphate proteoglycans [J]. Biochem J,1986,236(2):313-325.
    [25]Arroyo-Yanguas Y, Cheng F, Isaksson A, et al. Binding, internalization and degradation of antiproliferative heparan sulfate by human embryonic lung fibroblasts [J]. J Cell Biochem,1997, 64(4):595-604.
    [26]Kreuqer J, Kjellen L. Heparan sulfate biosynthesis:regulation and variability [J]. J Histochen Cytochem,2012,60(12):898-907.
    [27]Belting M, Borsig 1, Fuster MM, et al. Tumor attenuation by combined heparan sulfate and polyamine depletion [J]. Proc Natl Acad Sci USA,2002,99(1):371-376.
    [28]Nagg A, Casu B, Perez M, et al. Modulation of the Heparanase-inhibiting activity of Heparan through selective desulfation, graded N-acetylation, and glycol splitting [J]. J Biol Chem,2005, 280(13):12103-12113.
    [29]Liu D, Shriver Z, Venkataraman G, etal. Tumor cell surface heparan sulfate as cryptic promoters of inhibitors or tumor growth and metastasis [J]. Proc Natl Acad Sci USA,2002,2(99):568-573.
    [30]Sadir R, Forest E, Lortat-Jacob H. The heparin sulfate binding sequence of interferon-gamma increased the on rate of the interferon-gamma receptor complex formation [J]. J Biol Chem,1998, 273(18):10919-10925.
    [31]Ihrcke NS, Parker W, Reissner KJ, et al. Regulation of platelet heparanase during inflammation: role of pH and proteinases [J]. J Cell Physiol,1998,175(3):255-267.
    [32]Ihrcke NS, Platt JL. Shedding of heparan sulfate proteoglycan by stimulated endothelial cells: evidence for proteolysis of cell surface molecules [J]. J Cell Physiol,1996,168(3):625-637.
    [33]Johnson GB, Brunn GJ, Samstein B, et al. New insight into the pathogenesis of sepsis and the sepsis syndrome [J]. Surgery,2005,137(4):393-395.
    [34]Kodaira Y, Nair SK, Wrenshall LE, et al. Phenotypic and functional maturation of dendritic cells modulated by heparan sulfate [J]. J Immunol,2000,165(3):1599-1604.
    [35]Wrenshall LE, Cerra FB, Singh RK, et al. Heparan sulfate initiates signals in murine macrophages leading to divergent biological outcomes [J]. J Immunol,1995,154(2):871-880.
    [36]Wrenshall LE, Cerra FB, Carlson A, et al. Regulation of murine splenocyte responses by heparan sulfate [J]. J Immunol,1991,147(2):455-459.
    [37]Wrenshall LE, Stevens RB, Cerra FB, et al. Modulation of macrophage and B cell function by glycosaminoglycans [J]. J Leukocyte Biol,1999,66(3):391-400.
    [38]Ihrcke NS, Wrenshall LE, Lindman BJ, et al. Role of heparan sulfate in immune system-blood vessel interactions [J]. Immunol Today,1993,14(10):500-505.
    [39]Gilat D, Cahalon L, Hershkoviz R, et al. Interplay of T cells and cytokines in the context of enzymatically modified extracellular matrix [J]. Immunol Today,1996,17(1):16-20.
    [40]Yan M, Peng J, Jabbar IA, et al. Despite differences between dendritic cells and Langerhans cells in the mechanism of papillomavirus-like particle antigen uptake, both cells cross-prime T cells [J]. Virology,2004,324(2):297-310.
    [41]Matyszak MK, Young JL, Gaston JS. Uptake and processing of Chlamydia trachomatis by human dendritic cells [J]. Eur J Immunol,2002,32(3):742-751.
    [42]Mummert ME, Mummert D, Edelbaum D, et al. Synthesis and surface expression of hyaluronan by dendritic cells and its potential role in antigen presentation [J]. J Immunol,2002,169(8): 4322-4331.
    [43]Kodaira Y, Platt JL. Modification of antigen-presenting cell functions by heparan sulfate [J]. Transplant Proc,2000,32(5):947.
    [44]Akbarshahi H, Axelsson JB, Said K, et al. TLR4 dependent heparan sulphate-induced pancreatic inflammatory response is IRF3-mediated [J]. J Transl Med,2011,9:219-221.
    [45]兰芸,王海漩,乌美妮,等.内源性危险信号分子低分子量硫酸乙酰肝素的免疫佐剂作用[J].中国生物制品学杂志,2011,24(1):5-9.
    [46]McEwen I, Mulloy B, Hellwig E, et al. Determination of oversulphated chondroitin sulphate and dermatan sulphate in unfractionated heparin by (1) H-NMR-Collaborative study for quantification and analutical determination of LoD [J]. Pharmeuropa Bio,2008,2008(1):31-39.
    [47]Casu BA, Naggi A, Torri G. Heparin-derived heparan sulfate mimics to modulate heparin sulfate-protein interaction in inflammation an cancer [J]. Matrix Biol,2010,29(6):442-452.