FLEP新辅助化疗对胃癌患者免疫功能影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分FLEP新辅助化疗对胃癌治疗效果的影响
     目的:给予胃癌患者FLEP新辅助化疗,通过比较化疗前后肿瘤组织病理学及影像学改变,研究该方案在胃癌治疗中的作用。
     方法:自2012年7月至2013年6月广东医学院附属医院胃肠外科收治的晚期胃癌36例,男29例,女7例,男女之比4.1:1,平均年龄51.6±14.8岁,病程1周~3年不等。将其随机分为两组(每组18例):实验组(FLEP NACT+手术+术后辅助化疗组,即CSC组)及对照组(手术+术后辅助化疗组,即S组)。FLEP方案进行2-4周期NACT,2和4周期化疗结束后分别重新进行临床分期的评估,继而进行手术。术后行常规方案辅助化疗。
     结果:CSC组18例中,4例完全缓解(胃镜未见明显病灶,活检未发现癌细胞);10例部分缓解(病灶明显缩小、浸润深度变浅);其余4例病变无进展。有效率为77.8%(14/18)。CSC组18名患者大部分得到不同程度的临床降期,Ⅲ期以上患者所占比重由化疗前的66.7%降至11.1%。与S组相比,CSC组RO切除率显著增加,淋巴结转移数量显著下降,肿瘤的浸润范围明显缩小。CSC组所有患者均完成了NACT,2个周期的4例,8个周期的3例,4个周期的6例。按照新的药物毒副反应判定标准有2例后白细胞偏低,但计数都≥3×109/L;有1例粒细胞<1.5×109/L,所有患者未有Ⅲ级以上毒副反应发生。
     结论:FLEP方案NACT能显著降低胃癌的临床分期,减少淋巴结转移数量,提高胃癌根治性切除机会;同时不增加手术并发症的发生几率,NACT对胃癌手术操作和术后恢复无明显不良影响。
     第二部分FlEP新辅助化疗对胃癌肿瘤细胞生物学行为的影响
     目的:给予胃癌患者FLEP新辅助化疗,通过检测细胞凋亡指数(AI)、MVD及PCNA表达水平,探讨FLEP新辅助化疗对诱导细胞凋亡、抑制细胞增殖和肿瘤血管新生的作用,以助于评估治疗效果及判断其预后。
     方法:自2012年7月至2013年6月广东医学院附属医院胃肠外科收治的晚期胃癌36例,男29例,女7例,男女之比4.1:1,平均年龄51.6±14.8岁,病程1周~3年不等。将其随机分为两组(每组18例):实验组(FLEP NACT+手术+术后辅助化疗组,即CSC组)及对照组(手术+术后辅助化疗组,即S组)。FLEP方案进行2-4周期NACT,2和4周期化疗结束后分别重新进行临床分期的评估,继而进行手术。术后行常规方案辅助化疗。
     结果:CSC组标本胃癌细胞AI最高为13.06%,最低为3.82%,平均为6.15士2.03%;S组标本胃癌细胞AI最高为8.64%,最低为2.37%,平均为4.44士1.68%,p值小于0.05,提示NACT后胃癌细胞凋亡指数比化疗前增高。CSC组胃癌细胞PCNA表达阳性率最高为85.94%,最低为41.18%,平均56.97士14.39%,S组胃癌细胞PCNA表达阳性率最高为59.07%,最低为19.23%,平均40.86士7.92%,差异有统计学意义,说明新辅助化疗后胃癌细胞PCNA表达较未化疗者明显降低。检测CSC组和S组MVD,结果显示两组MVD具有统计学差异,说明CSC组行新辅助化疗后MVD明显低于S组。
     结论:FLEP方案新辅助化疗可通过诱导进展期胃癌细胞的凋亡、抑制胃癌细胞增殖和肿瘤血管生成,以到达治疗效果。肿瘤微血管形成及细胞增殖可成为判断FLEP方案新辅助化疗用于恶性肿瘤转移治疗效果的重要指标之一。
     第三部分FLEP新辅助化疗对CD4+CD25+调节性T细胞的影响
     目的:给予胃癌患者FLEP新辅助化疗,通过分析外周血中CD4+CD25+调节性T (Treg)细胞比例,及其抑制T细胞增殖能力和免疫抑制细胞因子分泌,明确CD4+CD25+Treg细胞与胃癌临床分期关系,及其在胃癌FLEP新辅助化疗中的作用。
     方法:收集CSC组、S组患者及正常健康周外周血,分离外周血单个核细胞(PBMCs),流式细胞术检测外周血中CD4+CD25+Treg细胞比例,免疫磁珠分选法分离外周血中CD4+CD25+Treg细胞。流式细胞术检测分选所得CD4+CD25+Treg细胞纯度,台盼蓝染色检测其细胞活力,3H掺入法检测体外增殖能力。混合淋巴细胞反应分析CD4+CD25+Treg细胞抑制T细胞体外增殖能力。流式细胞术和ELISA检测CD4+CD25+Treg细胞的免疫抑制细胞因子的分泌。
     结果:与Ⅰ、Ⅱ期胃癌相比,Ⅲ、Ⅳ期胃癌患者外周血中CD4+CD25+Treg细胞占CD4+T细胞的比例显著增加。胃癌患者外周血中CD4+CD25+Treg细胞比例显著高于正常人;CSC组新辅助化疗后CD4+CD25+Treg细胞比例显著下降,而术后CD4+CD25+Treg细胞比例无显著变化;S组术后CD4+CD25+Treg细胞比例虽有所下降,却不具有统计学差异;CSC组与S组术后相比,CD4+CD25+Treg细胞比例明显下降,具有统计学差异。这说明手术对患者外周血中CD4+CD25+Treg细胞比例无影响,新辅助化疗可显著降低胃癌患者外周血中CD4+CD25+Treg细胞的比例。CD4+CD25+Treg细胞可显著抑制CD4+CD25-T细胞增殖,随着CD4+CD25+Treg细胞数的增加,这种抑制增殖的能力也相应增加;新辅助化疗后,CD4+CD25+Treg细胞对CD4+CD25-T细胞的抑制率显著下降;而手术并不明显改变CD4+CD25+Treg细胞对CD4+CD25-T细胞的抑制作用。胃癌患者CD4+CD25+Treg细胞分泌TGF-β、IL-4、IL-10水平要明显高于与健康人群;新辅助化疗后,CD4+CD25+Treg细胞分泌TGF-β、IL-4、IL-10水平显著降低;手术对上述细胞因子无影响。
     结论:胃癌分期越高,外周血中CD4+CD25+T细胞比例越高。新辅助化疗可显著降低胃癌患者外周血中CD4+CD25+T细胞的比例,抑制CD4+CD25+T细胞抑制CD4+CD25-T细胞的作用,影响免疫抑制因子工L-10和TGF-β等的分泌,是新辅助化疗通过调控机体免疫反应达到治疗作用的重要机制。
Part Ⅰ The impact of neoadjuvant chemotherapy with FLEP regimen on the therapeutic effects of gastric carcinoma patients
     Objective:Giving FLEP neoadjuvant chemotherapy to gastric cancer patients, and comparing the changes of tumor tissue pathology and imaging before and after chemotherapy, to evaluate the therapeutic effects of FLEP neoadjuvant chemotherapy for gastric cancer.
     Methods and materials:Collecting36cases of advanced gastric cancer admitted in general surgery fron Guangdong Medical college affiliated hospital(July2012to June2013). Randomly dividing them into two groups (18cases in each group):the experimental group (FLEP NACT+surgery+postoperative adjuvant chemotherapy group, the CSC group) and control group (surgery+postoperative adjuvant chemotherapy group, the group S). FLEP-based NACT for2~4cycles, and evaluating the clinical stage after2or4cycles of NACT. Routine postoperative adjuvant chemotherapy after surgery.
     Results:In18cases from group CSC, four people were complete remission,10 people partially alleviated and four people had no progress. The effective rate was77.8%(14/18). The clinical stage of gastric cancer reduced in group CSC. Compared with S group, the RO resection rate increased significantly, lymph node metastasis reduced and tumor infiltrating significantly narrowed down in group CSC. According to the grading evaluation criterion of NCI-CTC adverse reactions, the numbers of leucocytes were on the low side in2patients after chemotherapy, skin pigmentation occured in1case, belonging to the adverse reaction grade Ⅰ. No patient had Ⅲ magnitude adverse reactions.
     Conclusions:FLEP-based neoadjuvant chemotherapy can significantly reduce the clinical stage of gastric cancer, reduce lymph node metastasis, and improve the radical resection opportunities of gastric cancer. At the same time, FLEP-based neoadjuvant chemotherapy do not increase the risk of surgical complications, the difficulty of gastric cancer surgery and has no obvious effects on the recovery of postoperative patients.
     Part Ⅱ The impact of neoadjuvant chemotherapy FLEP on biological behavior of gastric cancer tumor cells
     Objective:Giving FLEP neoadjuvant chemotherapy to gastric cancer patients, and detecting tumor cell apoptosis index (AI), MVD and PCNA expression level, to discusses the effects of FLEP neoadjuvant chemotherapy on apoptosis induction, cell proliferation inhibition and tumor angiogenesis and help evaluate and judging treatment effects and prognosis.
     Methods and materials:Collecting36cases of advanced gastric cancer admitted in general surgery fron Guangdong Medical college affiliated hospital(July2012to June2013). Randomly dividing them into two groups (18cases in each group):the experimental group (FLEP NACT+surgery+postoperative adjuvant chemotherapy group, the CSC group) and control group (surgery+postoperative adjuvant chemotherapy group, the group S). FLEP-based NACT for2-4cycles, and evaluating the clinical stage after2or4cycles of NACT. Routine postoperative adjuvant chemotherapy after surgery.
     Results:There are significant differences between AI of gastric cancer tumor cells in group CSC and S, indicating higher AI of gastric cancer tumor cells after neoadjuvant chemotherapy. There are also significant differences between the positive rate of PCNA expression of gastric cancer tumor cells in group CSC and S, indicating lower PCNA expression of gastric cancer tumor cells after neoadjuvant chemotherapy.Detecting MVD of group CSC and S showed significant differences, suggesting lower MVD after neoadjuvant chemotherapy.
     Conclusions:FLEP neoadjuvant chemotherapy can induce apoptosis of advanced gastric cancer tumor cells, inhibit gastric cancer tumor cell proliferation and tumor angiogenesis, reaching effective treatment. Tumor microvascular formation and cell proliferation can be important indexes for judging therapeutic effects prognosis of FLEP-based neoadjuvant chemotherapy for malignant tumor.
     Part Ⅲ The impact of neoadjuvant chemotherapy FLEP on CD4+CD25+regulatory T cells in the peripheral blood of patients with gastric cancer
     Objective:Giving FLEP neoadjuvant chemotherapy to gastric cancer patients, and analyzing the ratio of CD4+CD25+regulatory T (Treg) cells peripheral blood, the ability of CD4+CD25+Treg cells suppressing T cell proliferation and immune suppression secreted factors of CD4+CD25+Treg cells, to clear the association between CD4+CD25+Treg cells and clinical stage of gastric cancer, and its role in FLEP neoadjuvant chemotherapy for gastric cancer.
     Methods and materials:Collecting peripheral blood of healthy people and patients in group CSC and S for separation of peripheral blood mononuclear cells (PBMCs). Then testing proportions of CD4+CD25+Treg cells in peripheral blood by flow cytometry and separating CD4+CD25+Treg cells from peripheral blood by MACs. Detecting the purity of sorted CD4+CD25+Treg cells, the cell vitality by trypan blue staining, and proliferation in vitro by H mixed method. Analyzingthe ability of CD4+CD25+Treg cells suppressing T cell proliferation in vitro by mixed lymphocyte reaction. Detecting immune suppression secreted factors of CD4+CD25+Treg cells by flow cytometry and ELISA.
     Results:Compared with Ⅰ, Ⅱ stage gastric cancer, the proportion of CD4+CD25+Treg cells in peripheral blood from Ⅲand IVgastric cancer patients increased significantly, the proportion of CD4+CD25+Treg cells in peripheral blood from gastric cancer patients is higher than healthy people; the proportion in group CSC after neoadjuvant chemotherapy decreased; compared with the group S, the proportion in group CSC also decreased, suggesting that neoadjuvant chemotherapy can significantly reduce the proportion of CD4+CD25+Treg cells in peripheral blood from gastric cancer patients. CD4+CD25+Treg cells can significantly inhibit the CD4+CD25"T cells proliferation, and the ability increased accordingly with the increasing number of CD4+CD25+Treg cells; after neoadjuvant chemotherapy, the ability of CD4+CD25+Treg cells suppressing T cell proliferation dropped significantly. CD4+CD25+Treg cells from gastric cancer could secrete higher TGF-P, IL-4and IL-10level than healthy people; after neoadjuvant chemotherapy, immune suppression secreted factors of CD4+CD25+Treg cellsdecreased.
     Conclusions:The higher the staging of gastric cancer is associated with higher proportion of CD4+CD25+Treg cells in peripheral blood. Neoadjuvant chemotherapy can significantly lower the ratio of CD4+CD25+Treg cells in gastric cancer patients, inhibit the ability of CD4+CD25+Treg cells suppressing T cell proliferation, and impair immune suppression secreted factors of CD4+CD25+Treg cells, indicating an important mechanism for neoadjuvant chemotherapy to achieve therapeutic effects by modulating the immune responses.
引文
1. Shen L, Shan YS, Hu HM,et al. Management of gastric cancer in Asia: resource-stratified guidelines.[J] Lancet Oncol.2013 Nov;14(12):e535-47.
    2. Macdonald JS. Role of post-operative chemoradiation in resected gastric cancer. J Surg Oncol,2005,90:166-170.
    3. Rocken C. Ways to personalized medicine for gastric cancer.[J] Pathologe.2013 Sep; 34(5):403-12.
    4. Arkenau HT, Saggese M, Lemech C. Advanced gastric cancer:is there enough evidence to call second-line therapy standard? World J Gastroenterol..[J] 2012 Nov 28;18(44):6376-8.
    5. Li C, Yan M, Zhu ZG. Nonpalliative surgical resection for gastric cancer patients with distant metastasis. J Invest Surg..[J] 2012 Apr;25(2):100-6..
    6. Sun W, Haller DG. Recent advances in the treatment of gastric cancer. [J] Drugs, 2001,61:1545-1551.
    7. Dicken BJ, Bigam DL, Cass C, et al. Gastric adenocarcinoma:review and considerations for future directions. Am Surg, [J]2005,241:27-39.
    8. Meng QB, Yu JC, Ma ZQ,et al. Benefits of intra-operative systemic chemotherapy during curative surgery in patients with locally advancedgastric cancer. [J] Chin Med J (Engl) 2013;126(18):3493-8..
    9. Wiike H, Preusser P, Fink U, et al. Preoperative chemotherapy in locally advanced and nonresectable gastric cancer:a phase Ⅱ study with etoposide doxorubicin, and cisplatin. J Clin Oncol,1989,7:1318-1326.
    10. Nagashima F, Boku N, Ohtsu A, et al. Biological markers as a predictor for response and prognosis of unresectable gastric cancer patients treated with irinotecan and cisplatin. Jpn J Clin Oncol,2005,35:714-719.
    11.Persiani R, D'Ugo D, Rausei S, et al. Prognostic indicators in locally advanced gastric cancer treated with preoprative chemotherapy and D2-gastrectomy. J Surg Oncol,2005,89:227-236.
    12. Nagahama T,Ando M, Seki R,et al. Preoperative chemotherapy for advanced gastric cancer. Gan To Kagaku Ryoho.2013 Nov;40(12):2217-9.
    13. Cananzi FC, Biondi A, Cozzaglio L, et al. Preoperative chemotherapy in gastric cancer:expanding the indications, limiting the overuse. Gastric Cancer.2014 Mar 29.
    14. Andre T, de Gramont A. study group of clinical research in radiotherapy oncolgy, oncology multiciplinary research group:an overview of adjuvant systematic chemotherapy for colon cancer. Clin Colorectal Cancer, 2004,1:S22-28.
    15. De Gramont A, Lourvet C, Andre T, et al. A review of GERCOD trials of bimonthly leucovorin plus 5-fluorouracil 48h continuous infusion in advance colorectal cancer:evolution of a regimen. Euro J Cancer,1998,34:619-626.
    16.吴垠垠,陈波,曹建民,等。进展期胃癌术前动静脉联合化疗的临床研究。医学研究生学报,2012,25:363-365。
    17. Wang LB, Shen JG, Xu CY, et al. Neoadjuvant chemotherapy versus surgery alone for locally advanced gastric cancer:a retrospective comparative study. Hepatogastroenterology.2008 Sep-Oct;55(86-87):1895-8.
    18. Lee DJ, Sohn TS, Lim do H,et al. Phase I study of neoadjuvant chemoradiotherapy with S-1 and oxaliplatin in patients with locally advancedgastric cancer. Cancer Chemother Pharmacol.2012 May;69(5):1333-8.
    19. Iwasaki Y, Sasako M, Yamamoto S,et al. Phase II study of preoperative chemotherapy with S-1 and cisplatin followed by gastrectomy for clinically resectable type 4 and large type3 gastric cancers (JCOG0210). J Surg Oncol.2013 Jun;107(7):741-5.
    20. Ataera H, Simkins HM, Hyde E, et al. The control of CD8+T cell responses is preserved in perforin-deficient mice and released by depletion of CD4+CD25+ regulatory T cells. J Leukoc Biol.2013 Oct;94(4):825-33.
    21. Saha A, Chatterjee SK. Combination of CTL-associated antigen-4 blockade and depletion of CD25 regulatory T cells enhance tumour immunity of dendritic cell-based vaccine in a mouse model of colon cancer. Scand J Immunol.2010 Feb;71(2):70-82.
    22. Centuori SM, Trad M, LaCasse CJ, et al. Myeloid-derived suppressor cells from tumor-bearing mice impair TGF-β-induced differentiation ofCD4+CD25+FoxP3+ Tregs from CD4+CD25-FoxP3- T cells. J Leukoc Biol.2012 Nov;92(5):987-97.
    23. Darrasse-Jeze G, Podsypanina K. How Numbers, Nature, and Immune Status of Foxp3+Regulatory T-Cells Shape the Early Immunological Events in Tumor Development. Front Immunol.2013 Sep 26;4:292.
    24. Jonuleit H, Schmitt E. Regulatory T-cells in antitumor therapy:isolation and functionaltesting of CD4+CD25+regulatory T-cells. Methods Mol Med. 2005;109:285-296.
    1. Zeng HM, Zheng RS, Zhang SW, et al. Trend analysis of cancer mortality in China between 1989 and 2008. Zhonghua Zhong Liu Za Zhi.2012 Jul;34(7):525-31.
    2. Ali Z, Deng Y, Ma C. Progress of research in gastric cancer. J Nanosci Nanotechnol.2012 Nov;12(11):8241-8.
    3..吴垠垠,陈波,曹建民,等。进展期胃癌术前动静脉联合化疗的临床研究。医学研究生学报,2012,25:363-365.
    4..Yamada S, Ritchim P, Charkrabandhu T,et al. Combination 5-fluoruracil/cisplatinum versus 5-fluoruracil/leucovorin adjuvant chemotherapy efficacy for ROgastric resection in locally invasive gastric cancer. J Med Assoc Thai.2012 Dec;95(12):1517-23.
    5..Mai M, Takahashi Y, Fujimoto T, et al. Neoadjuvant chemotherapy for far-advanced gastric carcinoma. Gan To Kagaku Ryoho,1994,21:431-439.
    6..Newman E, Marcus SG, Potmesil M, et al. Neoadjuvant chemotherapy with CPT-11 and cisplatin downstages locally advanced gastic cancer. Gastrointest Surg. 2002,6:212-223.
    7.Cascinu S, Graziano F, Barbi S, et al. A phase Ⅱ study of sequential chemotherapy with docetaxel after the weekly PELF regimen in advanced gastric cancer:A report from the italian group for the study of digestive tract cancer. Br J Cancer,2001,84:470-474.
    8. Chen SS, Yang XC, Chi F, et,al. A phase Ⅱ study of preoperative chemotherapy with modified FOLFOX6 followed by surgery and postoperative chemoradiation in patients with localized gastric adenocarcinoma.[J] Oncol Res.2013;20(7):327-32
    1. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics[J]. Cancer J Clin, 2005,55:74-108.
    2. Bauer K, Porzsolt F, Henne-Bruns D. Can perioperative chemotherapy for advanced gastric cancer be recommended on the basis of current research? A critical analysis. J Gastric Cancer.2014 Mar;14(l):39-46.
    3. Hao CY, Ji JF. Surgical treatment of liver metastases of colorectal Cancer: Strategies and controversies in 2006[J]. Eur J Surg Oncol.2006,32:473-483.
    4. Cunningham D, Allum WH, Stenning SP, et al. Perioperative chemotherapy versus surgery alone for respectable gastroesophageal cancer[J]. N Engl J Med. 2006,355:11-20.
    5. Terada R, Yasutake,T, Nasutake S,et,al. Evaluation of metastatic potential of gastric tumors by staining for proliferating cell nuclear antigen and churomosome 17 numerical aberration[J]. Ann Surg Oncol,2011,8(6):525-532.
    6. Ding S,Li C, Lin S, et al,Distinct roles of VEGF-A and VEGF-C in tumour metastasis of gastric carcinom[J]a. Oncol Rep.2007 Feb;17(2):369-75.
    1. Akbari A, Rezaei A. In vitro selective depletion of CD4(+)CD25(+) regulatory T-cells from PBMC using anti-tac-SAP. J Immunotoxicol.2012 Oct-Dec; 9(4):368-73.
    2. Kekilli M, Tunc B, Beyazit Y,et al. Circulating CD4+CD25+regulatory T cells in the pathobiology of ulcerative colitis and concurrent primary sclerosing cholangitis. Dig Dis Sci.2013 May;58(5):1250-5.
    3. Kumar S, Naqvi RA, Ali R, et al. CD4+CD25+ T regs with acetylated FoxP3 are associated with immune suppression in human leprosy. Mol Immunol.2013 Dec;56(4):513-20.
    4. Zhao X, Ding HF, Guo CS,et al. In vitro effects of mesenchymal stem cells on secreting function of T lymphocytes and CD4+CD25+T cells from patients with immune thrombocytopenia. Zhonghua Xue Ye Xue Za Zhi.2013 Dec;34(12):1015-9.
    5. Kawaida H, Kono K, Takahashi A, et al. Distribution of CD4+CD25high regulatory T-cells in tumor-draining lymph nodes in patients with gastric cancer. J Surg Res,2005,124:151-157.
    6. Miller MM, Petty CS, Tompkins MB, et al. CD4+CD25+ T regulatory cells activated during feline immunodeficiency virus infection convert T helper cellsinto functional suppressors through a membrane-bound TGFβ/ GARP-mediated mechanism. Virol J.2014 Jan 18;11:7.
    7. Anna MW, Dominik W, Michael S, et al. Increase of regulatory T ceils in the peripheral blood ofcancer patients. Clin Cancer Res,2003,9:606-612.
    8. Preston CC, Maurer MJ, Oberg AL, et al. The ratios of CD8+ T cells to CD4+CD25+FOXP3+ and FOXP3-T cells correlate with poor clinical outcome in human serous ovarian cancer. PLoS One.2013 Nov 14;8(11)
    9. Shimizu J, Yamazald S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+T cells:a common basis between tumor immunity and autoimmunity. J Immunol,1999,163:5211-5218.
    10. Sasada T, Kimura M, Yoshida Y, et al. CD4+CD25+regulatory T cells in patients with gastrointestinal malignancies:possible involvement of regulatory Tcells in disease progression. Cancer,2003,98:1089-1099.
    11.Guo T, Luo S, Xu J,et al.. Infusion of ex vivo expanded homologous CD4(+);CD25(+); regulatory T cells promotes the susceptibility to tumor in mice. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi.2014 May;30(5):466-70.
    12. Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol,2002,169:2756-2761.
    13. Cao D, Malmstrom V, Baeeher-Allan C, et al. Isolation and functional characterization of regulatory CD25brightCD4+T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol,2003,33:215-223.
    14.Dimova T, Nagaeva O, Stenqvist AC, et al. Maternal Foxp3 expressing CD4+CD25+and CD4+CD25-regulatory T-cell populations are enriched in human early normal pregnancy decidua:a phenotypic study of paired decidual and peripheral blood samples. Am J Reprod Immunol.2011 Jul;66 Suppl 1:44-56.
    15.Maslanka T, Jaroszewski JJ. Dexamethasone, but not meloxicam, suppresses proliferation of bovine CD25+CD4+and CD25-CD4+T cells. Pol J Vet Sci.2013;16(2):219-22.
    16. Anil N, Singh M. CD4+CD25 high FOXP3+ Regulatory T Cells Correlate with FEV1 in North Indian Children with Cystic Fibrosis. Immunol Invest.2014 Mar 24.
    17. Stephens LA, Mottet C, Mason D, et al. Human CD4(+)CD25(+)thymocytes and peripheral T cells have ilnnlune suppressive activity in vitro. Eur J Immunol, 2001,31:1247-1254.
    18. Ng wF, Duggan PJ, Ponchel F, et al. Human CD4(+)CD25(+)cells:a naturally occurring population of regulatory T cells. Blood,2011,98:2736-2744.
    19.Ammann JU, Cooke A, Trowsdale J. Butyrophilin Btn2a2 inhibits TCR activation and phosphatidylinositol 3-kinase/Akt pathway signaling and induces Foxp3 expression in T lymphocytes. J Immunol.2013 May 15;190(10):5030-6.
    20. Jonuleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4(+)CD25(+)T cells with regulatory properties isolated from peripheral blood. J Exp Med,2011,193:1285-1294.
    21. Bencsath M, Blaskovits A, Borvendeg J. Biomolecular cytokine therapy. Pathol Oncol Res,2003,9:24-29.
    22. Krause I, Valesini G, Scrivo R, et al. Autoimmune aspects of cytokine and anticytokine therapies. Am J Med,2003,115:390-397.
    23. Tagawa M. Cytokine therapy for cancer. Curr Pharm Des,2010,6:681-699.
    24. Vanden Berghe W, Vermeulen L, De Wilde G, et al. Signal transduction by tumor necrosis factor and gene regulation of the inflammatory cytokine interleukin-6. Biochem Pharmacol,2010,60:1185-1195.
    25. Alkharfy KM, Kellum JA, Frye RF, et al. Effect of ceftazidime on systemic cytokine concentrations in rats. Antimicrob Agents Chemother,2010,44: 3217-3219.
    26. Kawamura K, Bahar R, Natsume W, et al. Secretion of interleukin-10 from murine colon carcinoma cells suppresses systemic antitumor immunity and impairs protective immunity induced against the tumors. Cancer Gene Ther, 2002,9:109-115.
    27. Chamoto K, Kosaka A, Tsuji T, et al. Critical role ofthe Th1/Tcl circuit for the generation oftumor-specific CTL during tumor eradication in vivo by Th1-cell therapy. Cancer Sci,2003,94:924-928.
    28.Whiteside TL. What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol.2012 Aug;22(4):327-34.
    29.Cecere TE, Todd SM, Leroith T. Regulatory T cells in arterivirus and coronavirus infections:do they protect against disease or enhance it? Viruses.2012 May;4(5):833-46.
    30.Vasanthakumar A, Kallies A. IL-27 paves different roads to Tr1. Eur J Immunol.2013 Apr;43(4):882-5.
    31.Metenou S, Nutman TB. Regulatory T Cell Subsets in Filarial Infection and Their Function. Front Immunol.2013 Sep 30;4:305.
    32.Pellerin L, Jenks JA, Begin P, Bacchetta R, Nadeau KC. Regulatory T cells and their roles in immune dysregulation and allergy. Immunol Res.2014 Apr 30.
    33. Jonuleit H, Schmitt E. Regulatory T cells in antitumor therapy:isolation and functional testing of CD4+CD25+regulatory T ceils. Methods Mol Med,2005, 109:285-296.
    34. Taams LS, Smith J, Rustin MH, et al. Human anergic/suppressive CD4(+) CD25(+1 T cells:a highly differentiated and apoptosis-prone population. Eur J Immunol,2001,31:1122-1131.
    35.Hiraki S, Ono S, Tsujimoto H, et al. Neutralization of interleukin-10 or transforming growth factor-β decreases the percentages of CD4+CD25+Foxp3+ regulatory T cells in septic mice, thereby leading to an improved survival. Surgery.2012 Feb;151(2):313-22.
    36.Kim SJ, Lee H, Lee G, et al. CD4+CD25+ regulatory T cell depletion modulates anxiety and depression-like behaviors in mice. PLoS One.2012;7(7):e42054.
    37.Plain KM, Verma ND, Tran GT, et al. Cytokines affecting CD4(+) T regulatory cells in transplant tolerance. Interleukin-4 does not maintain alloantigen specific CD4(+)CD25(+) Treg. Transpl Immunol.2013 Dec;29(1-4):51-9.
    1. Parkin DM, Bray F, Ferlay J, Pisani P.、CA Cancer J Clin.2005;55(2):74-108.
    2. Patru CL, Surlin V, Georgescu I, et al. Current issues in gastric cancer epidemiology. Rev Med Chir Soc Med Nat Iasi.2013 Jan-Mar; 117(1):199-204.
    3. Tanaka H. Advances in cancer epidemiology in Japan. Int J Cancer.2014 Feb 15;134(4):747-54.
    4. Jinnail D, Tanaka H. Significance of preoperative use of antineoplastic angents and extensive radical surgery in stomach neoplasms. Rinsho Geka.1963,18: 305-313.
    5. San W, Haller DG. Recent advances in the treatment of gastric cancer. Drug,2001, 61(11):1545-1551.
    6. Frei E. Clinical cancer research:an embattled species. Cancer.1982,50: 1979-1992.
    7 Crookes P, Leichman CG, Leichman, et al. Systemic chemotherapy for gastric carcinoma followed by postoperative intraperitoneal therapy:a final report. Cancer,1997,79(9):1767-1775.
    8. Elliot Newman E, Marcus SG, Potmesil M, et al. Neoadjuvant chemotherapy with CPT211 and cisplatin downstages locally advanced gastric cancer. J Gastrointest Surg,2002,6(2):212-223.
    9. John E, Niederhuber MD. Neoadjuvant therapy. Ann Surg,1999,229(3):309-312.
    10. Kollmannsberger C, Quietzsch D, Haag C, et al. A phase Ⅱ study of paclitaxel, weekly,42 hour continuous infusion 5-fluor-ouracil, folinicacid and cisplatin in patients with advanced gastric cancer. Br J, Cancer,2000,83(4):458-462.
    11. Chung HC, Roh JK, Park YJ, et al. Locally advanced unresectable gastric cancer successfully resected after neoadjuvant chemotherapy with FADE regimen. Yonsei Med J.1990,31(1):74-79.
    12. Yoshikawa T, Tsuburaya A, Kobayashi O, et al. Neoadjuvant chemotherapy with a combination of irinotecan and cisplatin in advanced gastric cancer-a case report. Hepatogastroenteropogy,2000,47 (36):1575-1578.
    13. Ma Y, Qin H, Zheng Q, et al. Neoadjuvant chemotherapy with a combination of docetaxel, cisplatin, fluorouracil, and leucovorin in nonresectable advanced gastric cancer:a short communication. Med Oncol.2010 Dec;27(4):1089-95.
    14. Ott K, Vogelsang H, Mueller J, et al. Chromosomal instability rather than p53 mutation is associated with response to neoadjuvant cisplatin-based chemotherapy in gastric carcinoma. Clin Cancer Res,2003.9(6):2307-2315.
    15. Mai M, Takahashi Y, Fujimoto T, et al. Neoadjuvant chemotherapy for far advanced gastric carcinoma. Gan To Kagaku Ryoho.1994,21(4):431-439.
    16. Newman E, Marcus SG, Potmesil M, et al. Neoadjuvant chemotherapy with CPT-Ⅱ and Cisplatin down-stage locally advanced gastric cancer. J Gastrointest Surg,2002,6-21:212-223.
    17. Becker K, Mueller JD, Schulmacher C, et al. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer, 2003,98(7):1521-1530.
    18. Ferron JG, Uzan C, Rey A, et al. Histological response is not a prognostic factor after neoadjuvant chemotherapy in advanced-stage ovarian cancer with no residual disease. Eur J Obstet Gynecol Reprod Biol.2009 Nov;147(l):101-5.
    19. Wang Y, Wang Y, Zheng W. Cytologic changes of ovarian epithelial cancer induced by neoadjuvant chemotherapy. Int J Clin Exp Pathol.2013 Sep 15;6(10):2121-8.
    20. Yu DH, Li JH, Wang YC, et al. Serum anti-p53 antibody detection in carcinomas and the predictive values of serum p53 antibodies, carcino-embryonic antigen and carbohydrate antigen 12-5 in the neoadjuvant chemotherapy treatment for III stage non-small cell lung cancer patients. Clin Chim Acta.2011 May 12;412(11-12):930-5.
    21. Motoori M, Yano M, Yasuda T,et al. Relationship between immunological parameters and the severity of neutropenia and effect of enteral nutrition on immune status during neoadjuvant chemotherapy on patients with advanced esophageal cancer. Oncology.2012;83(2):91-100.
    22. Suga S, Hirota Y, Shimhji T, et al. Chemotherapy of gastric cancer-combination chemotherapy of mitomycinC,5-flurouracil and cytosine arabinoside. Gan No Rinsho.1972,18(3):209-213.
    23. Kiyabu M, Liechman L, Chandrasoma P. Effects of preoperative chemotherapy on gastric adenocarcinomas:a morphologic study of 25 cases. Cancer.1992,70(9): 2239-2245.
    24. Wang XL, Wu GX, Zhang MD, et al. A favorable impact of preoperative FPLC chemotherapy on patients with gastric cardia cancer. Oncol Rep.2010.7(2): 241-244.
    25. Tewari M, Pradhan S, Singh U, Singh TB, Shukla HS. Assessment of predictive markers of response to neoadjuvant chemotherapy in breast cancer. Asian J Surg.2010 Oct;33(4):157-67.
    26. Hartkopf AD, Taran FA, Wallwiener M,et al. The presence and prognostic impact of apoptotic and nonapoptotic disseminated tumor cells in the bone marrow of primary breast cancer patients after neoadjuvant chemotherapy. Breast Cancer Res.2013;15(5):R94.
    27. Kuo CH, Hu HM, Tsai PY,et al. Short-term celecoxib intervention is a safe and effective chemopreventive for gastric carcinogenesis based on a Mongolian gerbil model. World J Gastroenterol.2009 Oct 21;15(39):4907-14.
    28.Zhao Q,Li Y, Tan BB, et al. Effects of XELOX regimen as neoadjuvant chemotherapy on radical resection rate and prognosis in patients with advanced gastric cancer. Zhonghua Zhong Liu Za Zhi.2013 Oct;35(10):773-7.
    29.Macdonald JS, Smalley SR, Benedetti J, et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastro-esophageal junction. N Engl J Med,2001,345:725-730.