水电站地下主变洞火灾烟气流动及机械排烟模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国水电资源开发建设进入了快速发展的时期,水电站地下洞室及主要作业场所的火灾安全问题也就显得尤为重要。主变洞属于水电站地下洞室群中火灾危险性较高的区域,因此,研究主变洞火灾的烟气流动特性及其烟气控制模式具有重要意义。
     火灾烟气流动是一种复杂的浮力驱动流,由于水电站地下主变洞的特殊性,其烟气流动相比于一般建筑火灾的烟气流动更为特殊。本文通过FDS数值模拟、1:12比例模型试验和1:50比例模型的2DPIV激光粒子试验的方法,对水电站地下主变室发生火灾时主变室内的机械排烟效果、着火主变室溢出烟气在搬运道内的烟气蔓延特性和搬运道内溢流烟气控制、以及主变室和搬运道烟羽流区的流动特征等进行了研究。论文的主要工作包括:
     (1)采用1:12模型试验和FDS数值模拟相结合的方法,对水电站地下主变室火灾时主变室的机械排烟效率进行了研究。讨论了主变室内烟气层高度的变化、烟气温度的分布、补风口位置对排烟效率的影响以及主变室内CO浓度的变化。结果表明主变室内烟气层平均温度随火源强度的增大而升高。补风口位置对于机械排烟效率的影响较小,为了不影响主变室防火卷帘的安装,补风口宜设置在主变室上部。机械排烟量越大,CO浓度降低越快。在火灾发生后40min左右工作人员即可进入主变室进行火灾后的维修工作。
     (2)火灾发生在主变室内,存在有一个烟气溢流过程,且属于墙壁附着溢流。探讨了极限情况——无排烟工况下(机械排烟故障工况)水电站地下主变室火灾产生的溢流烟气在搬运道内的蔓延情况以及不同火源强度下搬运道内溢流烟气的流动特点,结果表明搬运道内溢流烟气温度衰减呈现指数分布。
     (3)研究了不同机械排烟量下主变室火灾产生的溢流烟气在搬运道内的排烟过程。结果表明按照《水力发电厂厂房采暖通风与空气调节设计规程》(修编稿)中规定的机械排烟量进行搬运道机械排烟时,搬运道内的机械排烟系统可以将主变室溢出的烟气控制在一定的高度,且从搬运道内烟气温度、可见度等方面,都满足人员安全逃生的要求,为水电站地下洞室机械排烟的设计及规范的修订提供了理论依据。
     (4)为进一步观察封闭空间的烟羽流流动特性,建立了水电站地下主变洞1:50可视化模型,采用2DPIV技术对主变洞火灾的烟气流动以及机械排烟进行了可视化研究。结果表明主变室属于典型受限空间,环境空气会受到浮力羽流的卷吸作用,从而形成大空间尺度的环流。不同的补风口位置对主变室内烟气流动的整场速度分布影响较小。而搬运道内排烟口和补风口处的烟气速度明显大于其他位置,在搬运道入口上方形成明显的漩涡,有利于火灾时人员的逃生。
At present the hydropower resources development and construction in our country has entered a period of rapid development, and the fire safety problems of underground hydropower station appear particularly important. The main transformer halls belong to underground cavites of higher fire possibility, therefore, it is very important to study the smoke movement and smoke control in the main transformer halls.
     The interaction of the two factors:the fire induced buoyancy and the special configuration of the main transformer hall makes the movement of smoke induced by fire in the main transformer hall more complex than that in normal compartment. In this thesis, reduced-scale model experiments were conducted, along with FDS simulations and2DPIV tests, to study the dynamics and thermal physics of fire induced smoke movement in the main transformer hall. Through comparing with the results of the scale model tests, the accuracy and feasibility of FDS simulation and PIV technology used in the main transformer hall fires were verified. Works include:
     (1) This paper presented the results of physical model studies on the smoke exhaust effectiveness of the main transformer hall of underground hydropower station, as well as a comparison between experimental data and FDS predicted results. It also investigated the effect of air supply opening location and the CO concentration in the main transformer hall. The results indicated that the effects of the air supply opening location in the transformer hall are minor, but considering the real construction of transformer halls, the air supply opening should be located near the ceiling to avoid affecting the installation of the fire resisting shutters.The measured results showed t the upper layer temperature increases with higher heat release rate and was unrelatec the mechanical exhaust rate which could be obviously seen in Klote's equation. The CO concentration reduced faster with larger mechanical exhaust rate and it would take at least about40mins for the three different mechanical exhaust rates that the staff can enter the transformer hall.
     (2) The fire locations in this paper were placed in the adjacent main transformer hall, not directly in the transport passage. This means the smoke spread within the passage has spilled out of the main transformer hall, and is an adhered spill plume. The characteristics of spill plume movement in the transport passage were studied with no smoke extration (Fault Condition). Results showed that temperature distribution along the transport passage of the spill plume from fired main transformer hall could fall into exponential decays.
     (3) The smoke movement in the transport passage under different mechanical exhaust rates was studied. It was indicated that when the mechanical exhaust rate was designed according to the standard, the smoke layer height in the transport passage could be controlled at some height by the mechanical exhaust system. It can be concluded from smoke temperature and visibility in the main transformer hall that people could escape safely. Results could provide a theoretical basis to develop guidelines for the mechanical exhaust design of the underground hydropower station.
     (4) The1/50th model of the main transformer hall was constructed and PIV laser particle technology was applied to investigate the smoke movement and mechanical exhaust in the main transformer hall. Results showed that due to the main transformer hall belonged to confined space; environment air would be entrainmented by the buoyancy plumes, and form large scale circulation. The velocity distribution on the height direction of the smoke plume center was found to fall into the Gaussion distribution. Air supply would affect the velocity field significantly, and as the smoke velocities at the exhaust port and air supply port were greater, clear eddy would form above the entrance of the transport passage, which would help the human evacuation.
引文
[1]杨述仁等.地下水电站厂房设计[M].北京.水利电力出版社.1993
    [2]水电发展“十二五”规划.国能新能[2012]200号,2012.7.7
    [3]水力发电厂厂房采暖通风与空气调节设计规范[S],中华人民共和国电力行业标准,DL/T5165-2002
    [4]付祥钊,高志明,地下水电站主变压器室排烟计算[J],暖通空调,1994,4,19-22
    [5]丁皋生,邹旭昭,220kV及以上大型主变压器消防灭火对策研究(一)[J],上海电力,2004,2,142-145
    [6]Jukka Hietaniemi, Raija Kallonen, Esko Mikkola. Burning characteristics of selected substances:production of heat, smoke and chemical species [J], Fire and Materials,1999,3(4):171-185.
    [7]Levin B.C. et al., Further development of the n-gas mathematical model [M], American Chemical Society,1995, Chapter20.
    [8]Morton B.R., Taylor G.I. and Turner J.S., Turbulent gravitational convection from maintained and instantaneous sources [J], Proc. Royal Society A,1956,234:1-23.
    [9]Lee S.L., Emmons H.W., A study of natural convection above a line fire [J], Journal of Fluid Mechanics,1961,11:353-368.
    [10]Thomas P.H., Hinkley P.L., Theobald C.R., Simms D.L., Investigations into the flow of hot gases in roof venting [M], Fire Research Technical Paper7, London: HMSO,1963.
    [11]Zukoski E.E., Kubota T. and Cetegen B., Entrainment in fire plumes [J], Fire Safety Journal,1980,3(3):107-121.
    [12]McCaffery B.J., Purely buoyant diffusion flames:some experimental results [J], National Bureau of Standards, NBSIR79-1910, Washington D.C.,1979.
    [13]McCaffery B.J., Momentum implications for buoyant diffusion flames [J], Fire Engineers Journal,1983,51(149).
    [14]Heskestad G., Virtual origins of fire plumes [J]. Fire Safety Journal,1983,5(2):174-185.
    [15]Heskestad G., Engineering relations for fire plumes [J], Fire Safety Journal,1984,7(1):25-32.
    [16]Rouse H. et al., Gravitational convection form a buoyance source [J], Tellus,1952,4:202-210.
    [17]Yokoi S., Study on the prevention of fire spread caused by hot upward current [R]. Building Research Report34, Japanese Ministry of Construction,1960.
    [18]Steward F.R., Linear flame heights for various fuels [J], Combustion and Flame,1964,8:171-178.
    [19]Cox G, Chitty R,. A study of the deterministic properties of unbounded fire plumes [J], Combustion and Flame,1980,39:191-209.
    [20]Delichatsios M. A., Air entrainment into buoyant jet flames and pool fires [J], Combustion and Flame,1987,70:33-46.
    [21]Hasemi Y, Nishihata M., Fuel shape effect on the deterministic properties of turbulent diffusion flames [C], Proceeding of2nd International Symposium on Fire Safety Science, Hemisphere, New York,1988,275-284.
    [22]Yuan L., Cox G, An experimental study of some line fires [J], Fire Safety Journal,1996,27:123-139.
    [23]Morgan H.P., The horizontal flow of buoyant gases toward an opening [J], Fire Safety Journal,1986,11:193-200.
    [24]Marshall N.R., Morgan H.P., User's Guide to BRE Spill Model Calculations [J], Fire Surveyor, Dec.1992,11-15.
    [25]Law M., A note on smoke plumes from fires in multi-level shopping malls [J], Fire Safety Journal,1986,10:197-202.
    [26]Law M., Measurements of balcony smoke flow [J], Fire Safety Journal,1995,24:189-195.
    [27]Thomas P.H., On the upward movement of smoke and related shopping mall problems [J], Fire Safety Journal,1987,12:191-203.
    [28]NFPA, Guide for smoke management systems in malls [M], Atria and Large Areas, NFPA92B, National Fire Protection Association, Quincy, MA, USA,2000.
    [29]Beyler C., DiNeno P.J., Introduction to fire models [M], chapter4-11, SFPE Handbook of Fire Protection Engineering,2nd Edition, Society of Fire Protection Engineers and National Fire Protection Association, Quincy, USA,1995.
    [30]Morgan H.P., Marshall N.R., Goldstone B.M., Smoke hazards in covered multilevel shopping malls:some studies using a model2-storey mall [J], Building Research Establishment Current Paper, CP45/76,1976.
    [31]Morgan H.P., Smoke control method in enclosed shopping complexes of one or more storeys:a design summary [J], Building Research Establishment Report, CP11/79, London,1979.
    [32]Morgan H.P., Gardiner J.P., Design principles for smoke ventilation in enclosed shopping centers [J], BR186, Building Research Establishment, UK,1990.
    [33]Hansell G.O., Morgan H.P., Design approaches for smoke control in atrium buildings [J], Buildings Research Establishment Report BR258, Building Research Establishment, UK,1994.
    [34]NFPA and SFPE, The SFPE Handbook of Fire Protection Engineering [M],3nd Edition, National Fire Protection Association, Quincy, MA,2002.
    [35]Tanaka T., Yamana T., Smoke control in large scale spaces [J], Fire Science&Technology,1985,5(1):31-54.
    [36]周允基,范维澄,陈莉,关于中庭火灾的全尺寸实验[J],火灾科学,1993,2(2):61-64.
    [37]霍然,范维澄,袁理明等,大空间火灾试验厅的建造与初步试验[J],火灾科学,1998,7(1):8-13.
    [38]霍然,李元洲,金旭辉等,大空间内火灾烟气填充研究[J],火灾科学,2001,7(3):219-222.
    [39]R. Huo, W.K. Chow, X.H. Jin et al., Experimental studies on natural smoke filling in atrium due to a shop fire [J], Building and Environment,40(2005):1185-1193.
    [40]W.K. Chow, Y.Z. Li, E. Cui et al., Natural smoke filling in atrium with liquid pool fires up to1.6MW [J], Building and Environment,36(2001):121-127.
    [41]天津消防科学研究所,地下大型商场火灾特性专题研究报告[R],2000.
    [1]James G. Quintiere, Fundamentals of Fire Phenomena [M], John Wiley&Sons LTD,2006.
    [2]Heskestad, G., Modeling of enclosure fires [J], Proc. Comb. Inst,1973,14, pp.1021-30.
    [3]Croce, P. A., Modeling of vented enclosure fires, Part1. Quasi-steady wood-crib source fires [M], FMRCJ.I.7AOR5.G0, Factory Mutual Research, Norwood, Massachusetts, July1978.
    [4]Quintiere, J. G., McCaffrey, B. J. and Kashiwagi, T., A scaling study of a corridor subject to a room fire [J], Combust. Sci. Technol.,1978,18,1-19.
    [5]Emori, R. I. and Saito, K., A study of scaling laws in pool and crib fires [J], Combust. Sci. Technol.,1983,31,217-31.
    [6]Thomas, P. H., Modeling of compartment fires [J], Fire Safety J.,1983,5,181-90.
    [7]Thomas, P. H., Dimensional analysis:a magic art in fire research [J], Fire Safety J.,2000,34,111-41.
    [8]Quintiere, J. G., Scaling applications in fire research [J], Fire Safety J.,1989,15,3-29.
    [9]Alpert, R. L., Pressure modeling of fires controlled by radiation [J], Proc. Comb. Inst.,1977,16, pp.1489-500.
    [10]Steckler, K. D., Baum, H. R. and Quintiere, J. G, Salt water modeling of fire induce flows in multi-compartment enclosures [J], Proc. Comb. Inst.,1986,21, pp.143-9.
    [11]Parker, W. J. An assessment of correlations between laboratory experiments for the FAA Aircraft Fire Safety Program, Part6:reduced-scale modeling of compartment at atmospheric pressure [M], NBS-GCR83448, National Bureau of Standards, February1985.
    [12]James, G. Quintiere, Scaling applications in fire research [J], Fire Safety Journal,15(1989):3-29.
    [13]刘方,付祥钊,廖曙江等.中庭火灾烟流的相似模型[J],中国安全科学学报,2001,11(4):17-20
    [14]D.Yang, L.H.Hu, R.Huo, et al. Experimental study on buoyant flow stratification induced by a fire in a horizontal channel [J], Applied Thermal Engineering,2009:1-33
    [15]L.H.Hua, S.Liu, W.Peng, et al. Experimental study on burning rates of square/rectangular gasoline and methanol pool fires under longitudinal airflow in a wind tunnel [J] JournalofHazardousMaterials,169(2009)972-979
    [16]杜红兵,戚宜欣,袁绪忠等.运行列车车厢内火灾烟气特性与温度场分布的实验研究[J],中国铁道科学,1999,21(3):31-37
    [17]Jong-Yoon Kim, Sung-Wook Yoon, Ji-Oh Yoo,et al. A Study on the Smoke Control Characteristic of the Longitudinally Ventilated Tunnel Fire Using PIV [J], Tunnelling and Underground Space Technology,200621:1-7
    [18]马江燕,水电站地下主厂房火灾烟气流动规律及机械排烟研究[D],西安建筑科技大学硕士论文,2010
    [19]胡江,地下水电站母线洞火灾烟气流动与机械排烟研究[D],西安建筑科技大学硕士论文,2011
    [20]张和平.火灾烟气流动盐水实验模拟和受限空间初期火灾烟气流动特性的研究[D],中国科学技术大学博士论文,1996
    [21]麻柏坤,张人杰,张和平.氢气泡技术在烟气运动盐水模拟实验中的运用[J],火灾科学,1995,4(3):71-75
    [22]张和平,张人杰,麻柏坤等.建筑物内火灾烟羽流和顶蓬射流诱发的空气运动盐水模拟实验研究[J].实验力学,1997,12(1):70-77
    [23]霍然,董华,张和平等.大空间火灾烟气填充过程的盐水模拟研究[J],中国科学技术大学学报,1999,29(1):38-42
    [24]彭小勇,邓进波谢东等.大空间建筑火灾烟气扩散的盐水实验与PIV测试[J],全国暖通空调制冷2004年学术文集[C],105-111
    [25]毛洪伟.体育馆高大空间建筑火灾烟气流动研究[D],广州大学硕士论文,2005
    [26]邱绪光,实用相似理论[M],北京:北京航空学院出版社,1988
    [27]王丰,相似理论及其在传热学中的应用[M],北京:高等教育出版社,1990
    [28]丁广镶等,采用复杂流场的流体动力相似与模化问题[J],中国矿业大学学报,1995
    [29]魏润柏,通风工程空气流动理论[M],北京:中国建筑工业出版社,1978
    [30]李之光,热力设备模型实验研究基础[M],北京:国防工业出版社,1973
    [31]NFPA92B. Guide for smoke management system in malls, atria and large area. Quincy, Mass [M]:National Fire Protection Association,2000
    [32]Markatos.N.C.The Mathematieal Modeling Of Turbulent Flows [J]. APPI.Math Modeling Vol.10.1986.
    [33]范维澄,孙金华,火灾风险评估方法学[M],北京:科学出版社,2004:437-488
    [34]胡隆华,霍然,李元洲等,大尺度空间中烟气流动工程分析的多单元区域模拟方法[J],中国工程科学,2003,5(8):59-63
    [35]霍然,胡源,李元洲,建筑火灾安全工程导论[M],中国科学技术大学出版社,2009
    [36]William N.Brooks.Predicting the Postion of the Smoke Layer Interface Height Using NFPA92B Calculation Metheods and a CFD Fire Model. ASHRAE Transaction [J],1999,105(1):414-425
    [37]John H. Klote.Predition of Smoke Movement in Atria:Part1-Physical Concepts, ASHAE Transactions [J],1997,103(2):534-544
    [38]John H. Klote.Predition of Smoke Movement in Atria:Part2-Appliction to smoke Managment, ASHAE Transactions[J],1997,103(2):545-553
    [39]Kevin McGrattan, Fire Dynamics Simulator (Version5)-User's Guide [M]. National Institute of Standards and Technology,2008
    [40]Kevin McGrattan, Fire Dynamics Simulator (Version5)-Technical Reference Guide [M], National Institute of Standards and Technology,2008
    [41]Development of a Particle Image Velocimetry for Measuring Air Velocity in Large-Scale Room Airflow Applications [J]. ASHRAE TRANSACTIONS2002 Part2.1164-1172
    [42]Adrian R. J. Multi-Point optical Measurement of Simulation Vector in Unsteady Flow-a Review [J]. Int.J.Heat and Fluid Flow.1986,7
    [43]范吉川,近代流动显示技术[M],国防工业出版社,2002
    [44]孙鹤泉,沈永明,王永学,康海贵,李广伟(大连理工大学海岸和近海工程国家重点实验室).PIV技术的几种实现方法[J].水科学进展,2004, Vol.1,No.15
    [45]邱少辉,一种新型通风方式——条缝型送风口形成的竖壁贴附射流通风模式的2DPIV实验研究[D],西安建筑科技大学硕士论文,2008
    [1]Quintiere, J.G., et al., Mechanical smoke exhaust for small retail shop fires [J], International Journal of Thermal Sciences,2005,44(5):477-490.
    [2]史聪灵,霍然,李元洲,王浩波,周允基,大空间火灾实验中温度测量的误差分析[J],火灾科学,2002,11(3):157-163.
    [3]NFPA92B. Guide for smoke management system in malls, atria and large area. Quincy, Mass [M]:National Fire Protection Association,2000
    [4]尤飞,周建军,张昱春等,大空间建筑火灾中烟气层界面的一种判定[J],火灾科学,2003,33(10):579-584
    [5]Takeyoshi TANAKA, Toshio YAMANA, Smoke control in large scale spaces-part1:Analytic theories for simple smoke control problems [J], Fire Science and Technolgy,1985,5(1):31-40
    [6]刘方,中庭火灾烟气流动与烟气控制研究[D],重庆大学博士论文,2002
    [7]霍然,李元洲,金旭辉等,大空间内火灾烟气填充研究[J],火灾科学,2001,7(3):219-22
    [8]R. Huo, W.K. Chow, X.H. Jin, et al., Experimental studies on natural smoke filling in atrium due to a shop fire [J], Building and Environment,40(2005):1185-1193
    [9]胡冬冬,张学魁,王建英,李思成,魏东,大空间建筑火灾烟层界面高度的判定方法[J],暖通空调,2007,37(12):81-84
    [10]He Y, Fernando A., Luo M., Determination of interface height from measured parameter profile in enclosure fire experiment [J], Fire Safety Journal,1998,31:19-38.
    [11]Cooper L.Y, Harkleroad M., Quintiere J.G., Reinkinen W., An experimental study of upper hot layer stratification in full-scale multi-room fire scenarios [J], Journal of Heat Transfer,1982,104:741-749.
    [12]史聪灵,大空间内仓室火灾增长特性及烟气蔓延[D],中国科学技术大学博士学位论文,2005
    [13]霍然,胡源,李元洲,建筑火灾安全工程导论[M],合肥:中国科学技术大学出版社,2009
    [14]李炎锋,李俊梅,建筑火灾安全技术[M],北京:中国建筑工业出版社,2009
    [15]王志刚,倪照鹏,王宗存等,设计火灾时火灾热释放速率曲线的确定[C],公安部天津消防科研所,建筑物性能化防火设计方法与评估技术研讨会论文集,2003:21-27
    [16]颜丽,文一蔚。服装类商场中庭建筑的火灾相似模型试验研究[J],消防理论研究,1(23):23-26;2004
    [17]黄鑫,高宁宇,张晋等服装商店火灾的实体灭火试验研究[J],火灾科学,4(17):3-7:2008
    [18]Candido Gutierrez-Montes, Enrique Sanmiguel-Rojas, AntonioS.Kaiser,.et al, Numerical model and validation experiments of atrium enclosure fire in a new fire testfacility [J], Building and Environment,43(2008):1912-1928
    [19]易亮,霍然,李元洲等,单侧不对称补气对大空间火灾机械排烟的影响[J],中国科学技术大学学报,1999,29(5):590-594
    [20]C.L.Shi, M.H.Zhong, T.R.Fu, et al., An in vestigationon spill plume temperature of larges pace building fires[J], Journal of Loss Prevention in the Process Industries,22(2009):76-85
    [21]L.H. Hu, R. Huo, W.K. Chow et.al, On the maximum smoke temperature under the ceiling in tunnel fires[J]. Tunneling and Underground Space Technology,2006,21:650-655
    [22]L.H.Hu, W.Peng, R.Huo.Critical wind velocity for arresting up wind gas and smoke dispersion in duced by near-wall fire in a road tunnel [J].Journal of Hazardous Materials,2008,150:68-75
    [23]胡隆华,隧道火灾烟气蔓延的热物理特性研究[D],中国科学技术大学博士论文,2006
    [24]Bukowski R W. Fire Hazard analysis [A]. SFPE Handbook of Fire Protection Engineering [M]. Chapter7-11.2nd Edition. Society of Fire
    [25]钟委,霍然,史聪灵.热释放速率设定方式的几点讨论[J],自然灾害学报,2004,13(2):64-69
    [26]闫治国,长大公路隧道火灾研究[D],西南交通大学硕士学位论文,2002
    [1]Wei Zhang, Andrew Hamer, Michael Klassen, Douglas Carpenter, Richard Roby, Turbulence statistics in a fire room model by large eddy simulation [J], Fire Safety Journal, Vol.37,2002, pp.721-752.
    [2]Kevin McGrattan, Fire Dynamics Simulator (Version5)-Technical Reference Guide [M], National Institute of Standards and Technology,2008
    [3]Massinmo Germano, Ugo Piomelli, Parviz Mion, and William H. Cabot, A dynamic in subgrid-scale eddy viscosity model [J], Phys. Fluid A, Vol.3(7),1991, pp.1760-1765.
    [4]P.J. Mason and N.S. Callen, On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow [J], J. Fluid Mech., Vol.162,1986, pp.439-462.
    [5]G. Cox and S. Kumar, Modeling enclosure fires using CFD, Chapter8, The SFPE Handbook of Fire Protection Engineering,3rd edition [M], National Fire Protection Association, Inc. Auincy, Massachusetts,2002.
    [6]Kevin McGrattan, Fire Dynamics Simulator (Version5)-User's Guide [M]. National Institute of Standards and Technology,2008
    [7]Yi Jiang, Qingyan Chen, Buoyancy-driven single-sided natural ventilation in building with large openings [J], International Journal of Heat and Mass Transfer, Vol.46,2003, pp.973-988.
    [8]Ma, T.G., Quintiere, J.G., Numerical simulation of axi-symmetric fire plumes: accuracy and limitations [J], Fire Safety Journal,2003,25(38):467-492
    [9]Baum, H.R., Private communications [Z]. Building Fire Research Laboratory, National Institute of Standards and Technology, May,2000
    [10]NUREG1824, Verification and validation of selected fire models for nuclear power plant applications. United States Nuclear Regulatory Commission, Washington, DC,2007.
    [1]付祥钊,高志民.地下水电站主变压器室排烟计算[J].暖通空调1994.4
    [2]水力发电厂厂房采暖通风与空气调节设计规程[S].DL/T5165-2002
    [3]Gary D. Lougheed, George V. Hadjisophocleous, Investigation of atrium smoke exhaust effectiveness [J], ASHRAE Transactions,1997,(103):519-533.
    [4]Klote, J.K., Milke J.A. Design of smoke management systems [M]. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.1992.
    [5]NFPA92B, Guide for smoke management systems in malls, atria, and large areas [M]. Quincy, Mass:National Fire Protection Association.2000.
    [6]李元洲,霍然等,中庭火灾中烟气充填特点的研究[J],中国科学技术大学学报,1999,29(5):590-594.
    [7]Zukoski E.E., Kubota T. and Cetegon B.,1981. Entrainment in fire plumes [J]. Fire Safety Journal,3,107~121.
    [8]Klote, Method of predicting smoke movement in atria with application to smoke management [M].1994.
    [9]Cheng L.H., Ueng T.H., Liu C.W., Simulation of exhaust and fire in the underground facilities [J]. Fire Safety Journal,2001,36:597-619.
    [10]Li JSM, Chow W.K., Numerical studies on performance evaluation of tunnel ventilation safety systems [J]. Tunnelling and Underground Space Technology,2003,18:435-52.
    [11]Yi L., Huo R., Li Y.Z., Peng L., Study on the effect of unsymmetric air supply to mechanical exhaust in large space fire [J]. Journal of University of Science and Technology of China,2003,33(5):579-85.
    [12]Heskestad. G. Propagation of fire smoke in a corridor [C].Proceedings of the1987A SM E-JSM E thermal engineering joint conference,1987, Honolulu, Hawaii, pp.371-379.
    [13]McCaffrey B J.Purely buoyant diffusion flames:some experimental results [R] NBSIR79-1910,National Bureau of Standards1979
    [14]Vytenis Babrauskas, Richard G. Gann, et al., A methodology for obtaining and using toxic potency data for fire hazard analysis [J], Fire Safety Journal31(1998)345-358.
    [15]Vytenis Babrauskas, Richard G. Gann, et al., A methodology for obtaining and using toxic potency data for fire hazard analysis, Fire Safety Journal31(1998)345-358.
    [16]国家职业卫生标准[S], GBZ2.1-2007
    [1]Babrauskas V, Gann RQ Levin BC, Paabo M, Harris RH, Peacock RD, Yasa S. A methodology for obtaining and using toxic potency data for fire hazard analysis [J]. Fire Safety Journal,31(1998):345-358.
    [2]Chow WK. On safety systems for underground car parks [J]. Tunneling and Underground Space Technology.1998,13(3):281-7.
    [3]BSI. BS7974. Application of fire safety engineering principles to the design of buildings-code of practice [M]. UK:British Standards Institution;2001.
    [4]Cox G. Combustion fundamentals of fires [M]. London:Academic Press;1995.
    [5]Fu Z.M., Hadjisophocleous G, A two-zone fire growth and smoke movement model for multi-compartment buildings [J]. Fire Safety Journal.2000;34:257-285.
    [6]Jones W.W., Forney G.P., Peacock R.D., Reneke P.A.. A technical reference for CFAST:an engineering tool for estimating fire and smoke transport [M]. Building and Fire Research Laboratory. National Institute of Standards and Technology (NIST),2000.
    [7]Jones W.W.. State of the art in zone modeling of fires [C]. In:Proceeding, the Vereinigung zur Forderung des Deutschen Brandschutzes e. V.(VFDB),9th International Fire Protection Seminar, Engineering Methods for Fire Safety, Munich, Germany, pp.89-126,2001.
    [8]L.H. Hu, R. Huo, Y.Z. Li, H.B. Wang, W.K. Chow, Full-scale burning tests on studying smoke temperature and velocity along a corridor [J], Tunneling and Underground Space Technology,2005(20):223-229.
    [9]Bailey J.L., Forney G.P., Tatem P.A., Jones W.W.. Development and validation of corridor flow submodel for CFAST [J]. J. Fire Prot. Engg.2002,(22):139-161.
    [10]Chow W.K.. Simulation of tunnel fires using a zone model [J]. Tunn. Undergr. Sp. Tech.1996,(11):221-236.
    [11]Forney G.P.. A note on improving corridor flow predictions in a zone fire model [J]. NISTIR6046. Building and Fire Research Laboratory, National Institute of Standards and Technology (NIST),1997.
    [12]He Y.P.. Smoke temperature and velocity decays along corridors [J]. Fire Safety Journal,1999(33):71-74.
    [13]Kevin McGrattan, Fire Dynamics Simulator (Version5)-User's Guide [M]. National Institute of Standards and Technology,2008
    [14]Kevin McGrattan, Fire Dynamics Simulator (Version5)-Technical Reference Guide [M], National Institute of Standards and Technology,2008
    [15]Peacock RD, Jones WW. Bukowski RW. Verification of a model of fire and smoke transport [J]. Fire Safety Journal1993;21:89-129.
    [16]W.K. Chow, S.S. Li, Y. Gao, C.L. Chow. Numerical studies on atrium smoke movement and control with validation by field tests [J]. Building and Environment.2009(44):1150-1155.
    [17]Mok WK, Chow WK.(WCFD1) Verification and validation in modeling fire by computational fluid dynamics [J]. International Journal on Architectural Science2004;5(3):58-67.
    [18]Zou GW, Chow WK. Evaluation of the field model, fire dynamics simulator, for a specific experimental scenario [J]. Journal of Fire Protection Engineering2005;15:77-92.
    [19]Wen JX, Kang K, Donchev T, Karwatzki JM. Validation of FDS for the prediction of medium-scale pool fires [J]. Fire Safety Journal2007;42:127-38.
    [20]Thomas IR, Moinuddin KAM, Bennetts ID. The effect of fuel quantity and location on small enclosure fires [J]. Journal of Fire Protection Engineering.2007;17:85-102.
    [21]Pope ND, Bailey CG. Quantitative comparison of FDS and parametric fire curves with post-flashover compartment fire test data [J]. Fire Safety Journal2006;41:99-110.
    [22]Evers E., Waterhouse A., A complete model for analyzing smoke movement in buildings [M]. Building Research Establishment,1978, BRE CP69/78.
    [23]Kim M.P., Han Y.S., Yoon M.O., Laser-assisted visualization and measurement of corridor smoke spread [J]. Fire Safety Journal,1998,(31):239-251.
    [24]James G. Quintiere, Scaling applications in fire research [J], Fire Safety Journal15(1989):3-29.
    [25]NFPA92B, Guide for smoke management systems in malls, atria, and large areas [M]. Quincy, Mass:National Fire Protection Association.2000.
    [26]W.K. Chow, G.W. Zou, Numerical simulation of pressure changes in closed chamber fires [J]. Building and Environment,2009;44:1261-1275.
    [1]水力发电厂厂房采暖通风与空气调节设计规程[S],中华人民共和国电力行业标准,DL/T5165-2002
    [2]C.L. Shi, W.Z. Lu, W.K. Chow, R. Huo, An investigation on spill plume development and natural filling in large full-scale atrium under retail shop fire [J], Heat and Mass Transfer,50(2007):513-529
    [3]李元洲,霍然,袁理明等,中庭火灾中烟气充填特点的研究[J],中国科学技术大学学报,29(5):590-594
    [4]L.H. Hu, R. Huo, Y.Z. Li, H.B. Wang, W.K. Chow, Full-scale burning tests on studying smoke temperature and velocity along a corridor [J], Tunneling and Underground Space Technology,20(2005):223-229
    [5]霍然,李元洲,余明高,尤飞,周允基,大空间建筑火灾机械排烟的初步研究[J],消防科学与技术,2001,29(5):,3-5
    [6]史聪灵,大空间内仓室火灾增长特性及烟气蔓延规律研究[D],博士学位论文,合肥:中国科学技术大学,2005
    [7]NFPA. Guide for Smoke Management Systems in Malls, Atria and Large areas [M], NFPA92B. Quincy:National Fire Protection Association,2000
    [8]Li-Ming Yuan, G. Cox. An experimental study of some line fires [J], Fire Safety Journal,27(1996):123-139
    [9]Zukoski, E.E., Kubota, T.&Cetegen, B., Entrainment in fire plumes [J]. Fire Safety Journal,3(1980):107-121
    [10]L.H. Hu, Y.Z. Li, R. Huo, L.Yi, W.K. Chow. Full-scale experimental studies on mechanical smoke exhaust efficiency in an underground corridor [J], Building and Environment.41(2006):1622-1630.
    [11]Stroup DW, Madrzykowski D. Modeling smoke flow in corridors [C]. International Conference on Fire Research and Engineering, Proceedings, September10-15,1995, Orlando, FL.
    [12]Gary D. Lougheed, George V. Hadjisophocleous, Investigation of atrium smoke exhaust effectiveness [J], ASHRAE Transactions,1997,(103):519-533.
    [13]李云雁,胡传荣,试验设计与数据处理[M],北京:化学工业出版社,2008
    [14]李烈,孙建军,中庭火灾烟气流动的大涡模拟[J],暖通空调,2006,36(12):5-8
    [1]Jong-Yoon Kim, Sung-Wook Yoon, Ji-Oh Yoo,et,al.A Study on the Smoke Control Characteristic of the Longitudinally Ventilated Tunnel Fire Using PIV [J]. Tunnelling and Underground Space Technology200621:1-7
    [2]Building and Fire Research Laboratory. A comparison of gas velocity measurements in a full scale enclosure fire [J] Fire Safety Journal44(2009):793-800
    [3]彭小勇,邓进波,谢东等.大空间建筑火灾烟气扩散的盐水试验与PIV测试[J].全国暖通空调制冷2004年学术文集[C],105-111
    [4]Zukoski EE, Kubota T, Cetegen B.Entrainment in fire plumes [J].Fire Safety Journal,1981,3(3):107-121
    [5]McCaffrey B J.Purely buoyant diffusion flames:some experimental results [R] NBSIR79-1910, National Bureau of Standards1979
    [6]Heskestad G. Fire dynamics, SFPE handbook of fire protection engineering [Z].Third Edition Quincy, MA:National Fire Protection Association,2002
    [7]W罗迪,刘兰芳译,湍浮力射流和羽流[M].海洋出版社,北京,1986
    [8]张人杰,袁理明浮力羽流地风速的多点实时测量[J].火灾科学19932(1):51-55
    [9]张人杰,袁理明侧壁对受限空间烟羽流准稳态结构的影响[J].中国科学技术大学学报199525(4):506-517
    [10]张人杰,袁理明受限空间浮力羽流准稳态速度场的试验研究[J].试验力学199611(2):129-134
    [11]冯旺聪,郑士琴(北京理工大学机械与车辆工程学院).粒子图像测速(PIV)技术的发展.仪器仪表用户,2003,Vol.10,No.6
    [12]赵宇,PIV测试中示踪粒子性能的研究,大连理工大学硕士论文,2004
    [13]Angui Li, Erwei Qin, Bao Xin, et,al. Experimental Analysis on the air distribution of powerhouse of Hohhothydropower station with2D-PIV [J]. Energy Conversion and Management,(2009)
    [14]李安桂,包欣,秦二伟等.某水电站主变室通风的二维粒子图像测速技术热态模型试验研究[J].暖通空调.2009,39(12):27-31
    [15]李安桂,张新记,何思凤等.管道弯头和三通近距离耦合阻力系数试验研究[J].2009.39(10):23-28
    [16]杨敏官,王军锋等.流体机械内部流动测量技术.北京:机械工业出版社2006