受限空间火灾环境下玻璃破裂行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玻璃因其透光、轻便等独特优点广泛应用于各种现代建筑中,然而在建筑防火设计中往往成为薄弱环节。玻璃构件在火灾环境下容易破裂并脱落形成通风口,从而加剧火灾的燃烧过程并向建筑中的其它区域蔓延。
     本文针对前人建立的玻璃破裂温差判据仅适用于大的边缘遮蔽宽度和足够快的加热速度,不能满足玻璃构件防火设计的需求,以及某些特殊建筑玻璃构件防火设计出现的困难,开展受限空间火灾环境下玻璃破裂行为研究,发展适用范围广泛的玻璃破裂判据,研究玻璃构件防火设计的性能化方法。
     基于ISO9705全尺寸实验台,对受限空间火灾环境下玻璃破裂行为进行实验研究。对于厚度为4mm和6mm的浮法玻璃以及厚度为6mm和10mm的钢化玻璃,在不同火源功率条件下,测量了燃烧室内气体温度、玻璃近壁面气体温度、玻璃暴露表面温度、玻璃遮蔽表面温度、玻璃表面热通量以及玻璃的破裂时间和破裂模式等参数,分析了玻璃破裂与其表面温度分布等参数的关系,建立了浮法玻璃首次破裂时间分别与烟气温度、热释放速率和热通量这三个关键参数之间的关系。通过实验数据分析表明,浮法玻璃尺寸越大,厚度越小,形成开口的几率越大,钢化玻璃的耐火性能个体差别较大,并且厚度越大,耐火性能越好。
     针对玻璃的种类及其安装方式,建立了能够指导防火设计的玻璃破裂的热通量判据。该判据适用范围较广,并且在推导过程中进行了保守的假设,用于分析玻璃火灾环境下破裂行为时具有一定的安全余量。
     模拟计算与实验结果的对比分析表明,FDS模拟获得的玻璃暴露表面温度比实际值略高,BREAK1模拟的玻璃首次破裂时间要比实验结果早,且这两种工具获得的结果比较保守,可以为分析火灾环境下玻璃的破裂行为提供参考。
     通过将研究结果应用于玻璃构件的防火设计,确定了玻璃构件防火性能的判据和玻璃防火性能的计算工具和方法,提出了针对建筑玻璃构件防火设计的性能化方法。
Glass, for its unique advantages of transmission, is widely used in various modern architectures. However, glass often becomes a weak link in the fire protection design of buildings. Window glass breaking plays an important role in compartment fire dynamics as the window acts as a wall before breaking and as a vent after breaking.
    The criterion of temperature difference for glass breakage suggested in previous work can only used in those cases with large shading and fast heating. However, it can't fit some requirements for the glass components during the design of fire protection in most other cases. In this work, a new criterion for glass breakage is developed, namely, the heat flux criterion, which can be widely used in most cases. In addition, the method of performance-based fire design is also proposed for glass components.
    Based on the ISO9705 full scale experimental setup, the glass breakage behavior in an enclosure fire environment is analyzed. With the float glass of 4mm and 6mm thick as the experimental targets, the work measures the following parameters under the conditions of different fire sources: enclosure gas temperature, local gas temperature, exposed glass surface temperature, shaded glass surface temperature, glass surface heat flux, the glass breakage time and breaking patterns. The relations of glass breakage and parameters like the glass surface temperature distribution are analyzed. The relations between the first breakage time with respectively gas temperature, heat release rate and heat flux are also studied. The results show that vents can be more easily formed for larger and thicker glass. In the case of toughened glass, their fire resistance show distinguished difference among themselves. In addition, the thicker, the better fire resistance.
    In terms of the type and installation of glass, the heat flux is used as the criterion of glass breakage for edge-protected and edge-exposed glass to guide the design of fire protection. This new criterion can be used for various glass components. What's more,
引文
1.马眷荣.罗忆.and刘忠伟.建筑玻璃应用技术.2005.北京:化学工业出版社.
    2. Hassani, S. K. S., T. J. Shieds, and G. W. H. Silcock, Thermal fracture of w indow glazing: performance of glazing in fire. Journal of Applied Fire Science, 1994-95. 4: p. 249-263.
    3. Pagni, P. J. and A. A. Joshi. Glass Breaking in Fires. in Fire Safety Science-Proc. Third Intl. Symp. 1991. London: Elsevier Applied Science.
    4.李建华 and 黄郑华,普通窗玻璃热破裂行为研究.火灾科学,1999.8:p.21-28.
    5.王承遇,玻璃表面Griffith裂纹形成原因的探讨.辽宁玻搪,1979.4(1).
    6. Klem, T. J., 97 Die in Arson Fire at DuPont Plaza Hotel. Fire Journal, 1987. 81: p. 74-83, 104-105.
    7. Nelson, H. E., An Engineering Analysis of the Early Stages of Fire Development -the Fire at the DuPont Plaza Hotel and Casino, December 31, 1986. National Bureau of Standards, Report NBSIR 87-3560, Gaithersburg, MD, 1987.
    8. Pagni, P. J. and C. M. Fleischmann. An Analysis of San Juan DuPont Plaza Hotel Fire. in Proceedings of the First International Conference on Fire Researh and Engineering. 1995. Boston.
    9.GB 11614—1999 浮法玻璃.1999,北京:中国标准出版社.
    10.GB 9963—1999 钢化玻璃.1999,北京:中国标准出版社.
    11.GB 9962—1999 夹层玻璃.1999,北京:中国标准出版社.
    12.GB 11944—2002 中空玻璃.2002,北京:中国标准出版社.
    13.JGJ 113—2003 筑玻璃应用技术规程.2003,北京:中国建筑工业出版社.
    14.JGJ 102-2003 玻璃幕墒工程技术规范.2003,北京:中国建筑工业出版社.
    15.陈建东,玻璃幕墙工程技术规范应用于册.1996,北京:中国建筑工业出版社.
    16. Emmons, H. W. The Needed Fire Science. in Fire Safety Science-Proceeding of the First International Symposium. 1985, Washington, D. C.: Hemisphere.
    17. Keski-Rahkonen, O., Breaking of Window Glass Close to Fire. Ⅱ: Circular panes. Fire and Materials, 1991. 15: p. 11-16.
    18. Keski-Rahkonen, O., Breaking of Window Glass Close to Fire. Fire and Materials, 1988. 12: p. 61-69.
    19. Joshi, A. A. and P. J. Pagni, Fire-Induced Thermal Fields in Window Glass. I-Theory. Fire Safety Journal, 1994. 22(1): p. 25-43.
    20. Joshi, A. A. and P. J. Pagni, Fire-lnduced Thermal Fields in Window Glass.Ⅱ-Experiments. Fire Safety Journal, 1994. 22(1): p. 45-65.
    21. Cuzzillo, B. R. and P. J. Pagni, Thermal Breakage of Double-Pane Glazing by Fire. J. Fire Protection Engineering, 1998. 9: p. 1-11.
    22.田丽 and 卜程,火灾中双层窗玻璃破坏机理的研究.火灾科学,2001.10:p.67-71.
    23. Joshi, A. A. and P. J. Pagni, Users' Guide to BREAKI, The Berkeley Algorithm for Breaking Window Glass in a Compartment Fire. National Institute of Standards and Technology, Gaithersbury, MD., 1991.
    24. Sincaglia, P. E. and J. R. Barnett, Development of a Glass Window Fracture Model for Zone-Type Computer Fire Codes. J. Fire Protection Engineering, 1997. 8: p. 101-118.
    25. Gardon, R., Calculation of Temperature Distributions in Glass Plates Undergoing Heat Treatment. Journal of the American Ceramic Society, 1958. 41: p. 200-208.
    26. Wade, C. A., BRANZFIRE Technical Reference Guide 2004. 2004, Building Research Association of New Zealand. Judgeford, Porirua City, New Zealand.
    27. Wade, C. A., A User's Guide to BRANZFIRE 2004. 2004, Building Research Association of New Zealand. Judgeford, Porirua City, New Zealand.
    28. Skelly, M. J., R. J. Roby, and C. L. Beyler, An Experimental Investigation of Glass Breakage in Compartment Fires. J. Fire Protection Engineering, 1991. 3: p. 25-34.
    29. Hassani, S. K. S., T. j. Shieds, and G. W. H. Silcock, An Experimental Investigation into the Behaviour of Glazing in Enclosure Fires. Journal of Applied Fire Science, 1994-95.4: p. 303-324.
    30. Hassani, S. K. S., T. j. Shieds, and G.W. H. Silcock, In Situ Experimental Thermal Stress Measurements in Glass Subjected to Enclosure Fires. Journal of Applied Fire Science, 1995-96. 5(2): p. 123-134.
    31. Shields, T. J., G. W. H. Silcock, and S. K. S. Hassani, The Behavior of Double Glazing in an Enclosure Fire. Journal of Applied Fire Science, 1997. 7: p. 267-286.
    32. Shields, T. J., G. W. H. Silcock, and S. K. S. Hassani, The Behavior of Glazing in an Enclosure Fire. Journal of Applied Fire Science, 1997-98. 7(2): p. 145-163.
    33. Shields, T. J., G. W. H. Silcock, and S. K. S. Hassani, Behavior of Glazing in a large Simulated Office Block in a Multi-Story Building. Journal of Applied Fire Science, 1997-98. 7(4): p. 333-352.
    34. Shields, T. J., G. W. H. Silcock, and M. Flood, Performance of a single glazing assembly exposed to a fire in the centre of an enclosure. Fire and Materials, 2002.26(2): p. 51-75.
    35. Shields, T. J., G. W. H. Silcock, and M. F. Flood, Performance of a single glazing assembly exposed to enclosure comer fires of increasing severity. Fire and Materials, 2001. 25(4): p. 123-152.
    36. Mowrer, F. W. Window Breakage Induced by Exterior Fires. in 2nd Intl. Conf. on Fire Research and Engineering. 1998. Bethesda, MD.
    37. Mai, Y. W. and L. J. S. Jacob, Thermal Stress Fracture of Solar Control Window Panes Caused by Shading of Incident Radiation. Materiaux et Constructions, 1980. 13(76): p. 283-288.
    1. Emmons, H. W., Window Glass Breakage by Fire. Home Fire Project Technical Report No. 77, Harvard University, Cambridge, MA, 1988.
    2. Emmons, H. W. The Needed Fire Science. in Fire Safety Science-Proceeding of the First International Symposium. 1985. Washington, D. C.: Hemisphere.
    3. Pagni, P. J. Fire Physics-Promises, Problems and Progress. in Fire Safety Science-Proceedings of the Second International Symposium. 1989. Washington, D. C.: Hemisphere.
    4. Joshi, A. A. and P. J. Pagni, Fire-Induced Thermal Fields in Window Glass. Ⅰ-Theory. Fire Safety Journal, 1994. 22(1): p. 25-43.
    5. Joshi, A. A. and P. J. Pagni, Fire-Induced Thermal Fields in Window Glass. Ⅱ-Experiments. Fire Safety Journal, 1994. 22(1): p. 45-65.
    6. Keski-Rahkonen, O., Breaking of Window Glass Close to Fire. Fire and Materials, 1988. 12: p. 61-69.
    7. Keski-Rahkonen, O., Breaking of Window Glass Close to Fire. 11: Circular panes. Fire and Materials, 1991. 15: p. 11-16.
    8. Hassani, S. K. S., Y. J. Shieds, and G. W. H. Silcock, Thermal fracture of w indow glazing: performance of glazing infire. Journal of Applied Fire Science, 1994-95. 4: p. 249-263.
    9.李建华 and 黄郑华,普通窗玻璃热破裂行为研究.火灾科学,1999.8:p.21-28.
    10.王承遇,玻璃表面Griffith 裂纹形成原因的探讨 辽宁玻搪,1979.4(1).
    11. Pagni, P. J. Thermal Glass Breakage. in Fire Safety Science-Proceedings of the Seventh International Symposium. 2002.
    12. Gardon, R., A Review of Radiant Heat Transfer in Glass. Journal of the American Ceramic Society, 1961. 44: p. 305-313.
    13. Cuzzillo, B. R. and P. J. Pagni, Thermal Breakage of Double-Pane Glazing by Fire. J. Fire Protection Engineering, 1998. 9: p. 1-11.
    14. Pagni, P. J. and A. A. Joshi. Glass Breaking in Fires. in Fire Safety Science-Proc. Third Intl. Symp. 1991. London: Elsevier Applied Science.
    15. Joshi, A. A. and P. J. Pagni, Users' Guide to BREAK1, The Berkeley Algorithm for Breaking Window Glass in a Compartment Fire. National Institute of Standards and Technology, Gaithersbury, MD., 1991.
    16. Fissette, P., High-Performance Glazing. Fine Homebuilding, 1989. 55: p. 78-82.
    17. Pilette, C. F. and D. A. Taylor, Thermal Stress in Double-glazed Windows. Construction Engineering, 1988. 15: 5: p. 807-814.
    18. Shields, T. J., G. W. H. Silcock, and S. K. S. Hassani, The Behavior of Double Glazing in an Enclosure Fire. Journal of Applied Fire Science, 1997. 7: p. 267-286.
    19. McArthur, N. A., The Performance of Aluminum Building Products in Bushfires. Fire and Materials, 1991. 15: p. 117-125.
    20. Shields, T. J., G. W. H. Silcock, and M. F. Flood, Performance of a single glazing assembly exposed to enclosure corner fires of increasing severity. Fire and Materials, 2001.25(4): p. 123-152.
    1. ISO 9705, Fire Tests-Full Scale Room Test for Surface Product. 1993: International Standards Organization.
    2. Zhang, Q. W., H. P. Zhang, and J. L. Nan. Behavior of single window glazing in full-scale enclosure fire test. in Asia Pacific Symposium on Safety. 2005.
    3.张庆文 and 张和平等,6mm单层浮法玻璃全尺寸火灾实验.中国科学技术大学学报,2006.36(1):p.81—85.
    4. Xu, L., et al. Full-Scale Experimental and Numerical Study on Combustion Behavior of Upholstered Sofa in ISO 9705 Room. in Progress In Safety Science and Technology, International Symposium on Safety Science and Technology. 2004. Shanghai.
    5. Yang, Y., et al. Effects of Surface Flame Spread of Block board Lining on Enclosure Fire in ISO Room Comer Fire Test. in Progress In Safety Science and Technology, International Symposium on Safety Science and Technology. 2004. Shanghai.
    6.杨昀,装饰胶合板火灾特性及对室内火灾发展的影响研究.2005,中国科学技术大学博士学位论文.
    7.张和平,et al.,建筑装饰板材的ISO ROOM大型热释放速率测试与研究.火灾科学,2003.12(2):p.105-114.
    8.JGJ 113—2003 筑玻璃应用技术规程.2003,北京:中国建筑工业出版社.
    9. Kokkala, M. A., Sensitivity of the Room/Corner Test to Variations in the Test System and Product Properties. Fire and Materials, 1993. 17: p. 217-224.
    10. Steckler, K., H. Baum, and J. Quintiere. Fire induced flows through room openings-Flow coefficients, in 12th Symposium on Combustion. 1984. Pittsburg.
    11. Babrauskas, V. and R. D. Peacock, Heat Release Rate: The Single Most Important Variable in Fire Hazard. Fire Safety Journal, 1992. 18: p. 255-272.
    12. Huggett, C., Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurements. Fire and Materials, 1980. 4: p. 61-65.
    13. Janssens, M., Measuring Rate of Heat Release by Oxygen Consumption. Fire Technology, 1991. 27: p. 234-249.
    1.GB 11614—1999 浮法玻璃.1999,北京:中国标准出版社.
    2.JGJ 113—2003 筑玻璃应用技术规程.2003,北京:中国建筑工业出版社.
    3.马眷荣,罗忆,and 刘忠伟,建筑玻璃应用技术.2005,北京:化学工业出版社.
    4. Joshi, A. A. and P. J. Pagni, Fire-Induced Thermal Fields in Window Glass. Ⅱ-Experiments. Fire Safety Journal, 1994. 22(1): p. 45-65.
    5. Joshi, A. A. and P. J. Pagni, Fire-Induced Thermal Fields in Window Glass. Ⅰ-Theory. Fire Safety Journal, 1994. 22(1): p. 25-43.
    6. Keski-Rahkonen, O., Breaking of Window Glass Close to Fire. Fire and Materials, 1988. 12: p. 61-69.
    7. Pagni, P. J. Thermal Glass Breakage. in Fire Safety Science-Proceedings of the Seventh International Symposium. 2002.
    8. Pagni, P. J. and A. A. Joshi. Glass Breaking in Fires. in Fire Safety Science-Proc. Third Intl. Symp. 1991. London: Elsevier Applied Science.
    9. Shields, T. J., G. W. H. Silcock, and M. F. Flood, Performance of a single glazing assembly exposed to enclosure comer fires of increasing severity. Fire and Materials, 2001. 25(4): p. 123-152.
    1.GB 9963—1999 钢化玻璃.1999,北京:中国标准出版社.
    2.JGJ 113—2003 筑玻璃应用技术规程.2003,北京:中国建筑工业出版社.
    3.马眷荣,罗忆,and刘忠伟,建筑玻璃应用技术.2005,北京:化学工业出版社.
    4. Joshi, A. A. and P. J. Pagni, Fire-Induced Thermal Fields in Window Glass. Ⅱ-Experiments. Fire Safety Journal, 1994. 22(1): p. 45-65.
    5. Joshi, A. A. and P. J. Pagni, Fire-Induced Thermal Fields in Window Glass. Ⅰ-Theory. Fire Safety Journal, 1994. 22(1): p. 25-43.
    6. Keski-Rahkonen, O., Breaking of Window Glass Close to Fire. Fire and Materials, 1988. 12: p. 61-69.
    7. Pagni, P. J. Thermal Glass Breakage. in Fire Safety Science-Proceedings of the Seventh International Symposium. 2002.
    8. Pagni, P. J. and A. A. Joshi. Glass Breaking in Fires. in Fire Safety Science-Prec. Third Intl. Symp. 1991. London: Elsevier Applied Science.
    9. Shields, T. J., G. W. H. Silcock, and M. F. Flood, Performance of a single glazing assembly exposed to enclosure comer fires of increasing severity. Fire and Materials, 2001. 25(4): p. 123-152.
    10. Incropera, F. P. and D. P. DeWitt, Introduction to Heat and Mass Transfer, FFourth ed., John Wiley&Sons, New York. 1996.
    1. Baum, H. R., K. G. McGrattan, and R. G. Rehm, Mathematical Modelling and Computer Simulation of Fire Phenmena. Fire Safety Science-Proceeding of the Fourth International Symposium, 1994: p. 185-193.
    2. Baum, H. R., R. G. Rehm, and G. W. Mullholland, Prediction of heat and smoke movement in enclosure fires. Fire Safety Journal, 1983. 6: p. 193-201.
    3. Draoui, A., F. Allard, and C. Beghein, Numerical analysis of heat transfer by natural convection and radiation in participating fluids enclosed in square cavities. Numerical Heat Transfer, 1991. Part A 20: p. 253-261.
    4. Lee, G. H., Distribution of heat and smoke related to openings in Hise-Rise apartment building fires. T. Korean Institute of Fire Sci. & Eng, 2001. 15: p. 59-79.
    5. Li, G., P. A. Rubini, and J. B. Moss, Performance Assessment of Numerical Simulations for Glazing Temperatures in a Compartment Fire. Interflam '99, 1999: p. 1195-1200.
    6. Satoh, K. and K. Kuwahara. A Numerical Study of Window-to-Window Propagation in High-Rise Building Fires. in Fire Safety Science-Proc. Third Intl. Symp. 1991. London: Elsevier Applied Science.
    7. Virgone, J., P. Depecker, and G. Krauss, Coputer Simulation of GlassTemperature in Fire Conditions. Building and Environment, 1997. 32(1): p. 13-23.
    8. Forney, G. P. and K. B. McGrattan, User's Guide for Smokeview Version 4. NIST Special Publication 1017, National Institute of Standards and Technology, 2004.
    9. McGrattan, K. B., Fire Dynamics Simulator (Version 4). Technical Reference Guide. NIST Special Publication 1018, National Institute of Standards and Technology, 2004.
    10. Joshi, A. A. and P. J. Pagni, Users' Guide to BREAK1, The Berkeley Algorithm for Breaking Window Glass in a Compartment Fire. National Institute of Standards and Technology, Gaithersbury, MD., 1991.
    11. Incropera, F. P. and D. P. DeWitt, Introduction to Heat and Mass Transfer, Fourth ed., John Wiley&Sons, New York. 1996.
    12. Joshi, A. A. and P. J. Pagni, Fire-Induced Thermal Fields in Window Glass. Ⅰ-Theory. Fire Safety Journal, 1994. 22(1): p. 25-43.
    13. Pagni, P. J. and A. A. Joshi. Glass Breaking in Fires. in Fire Safety Science-Proc. Third Intl. Symp. 1991. London: Elsevier Applied Science.
    14. Pagni, P. J. Thermal Glass Breakage. in Fire Safety Science-Proceedings of the Seventh International Symposium. 2002.
    15. Joshi, A. A. and P. J. Pagni, Fire-lnduced Thermal Fields in Window Glass. Ⅱ-Experiments. Fire Safety Journal, 1994. 22(1): p. 45-65.
    16.马眷荣,罗忆,and 刘忠伟,建筑玻璃应用技术.2005,北京:化学工业出版社.
    1.GB12513-1990 镶玻璃构件耐火试验方法.1990,北京:中国标准出版社.
    2.GA97-1995 防火玻璃非承重隔墙通用技术条件.1995.
    3.GB50016-2001 建筑设计防火规范.2001,北京:中国标准出版社.
    4. Fire Engineering Guidelines. Fire Code Reform Centre, NSW, Australia. 1996.
    5. Incropera, F. P. and D. P. DeWitt, Introduction to Heat and Mass Transfer, Fourth ed., John Wiley&Sons, New York. 1996.
    6. Atreya, A., Convection Heat Transfer. SFPE Handbook of Fire Protection Engineering, 3rd ed., DiNenno, P. J., ed., NFPA, Quincy, MA, 2002: p. p. 1-44 to 1-72.
    7. Tien, C. L., K. Y. Lee, and A. J, Stretton, Radiation Heat Transfer. SFPE Handbook of Fire Protection Engineering. 1995.
    8.马眷荣,罗忆,and 刘忠伟,建筑玻璃应用技术.2005,北京:化学工业出版社.