狭长空间纵向通风条件下细水雾抑制火灾的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狭长空间建筑日益发展,在许多领域发挥着重要作用,但也带来了巨大的火灾风险。随着近年来隧道火灾事故频发,同时对抑制火灾方法要求的也在不断提高,单纯依靠强制通风排烟措施已不能满足防火需求。作为传统卤代烷灭火剂的主要替代技术,细水雾以其清洁、高效、成本低、对防护对象破坏小等优点而得到广泛应用,尤其是近几年在交通隧道、地下铁路和电缆隧道等狭长空间的应用中也逐步被认可和推广。为了拓宽细水雾的应用领域,提高细水雾在狭长空间中的抑制火灾有效性,在本文中,选取了纵向通风这一狭长空间的典型特征,结合数值模拟和实验模拟,深入研究细水雾抑制火灾过程的机理特性和影响规律。
     本文首先对纵向通风条件下火灾燃烧及烟气运动特性的影响进行分析和总结。通过对前人实验数据的整理归纳,与开放空间的实验结果比较,对纵向通风条件下热释放速率变化情况进行了探讨。在狭长空间模型内进行木垛燃烧实验,研究了木垛孔隙对燃烧过程阶段性的影响规律,分析了各阶段温度和CO气体浓度的变化情况,以论证燃料堆积密度是狭长空间通风情况下火灾燃烧过程的重要影响参数。
     作为细水雾灭火性能研究的基础,本文结合三维LDV/APV系统和低速风洞测量技术,研究了纵向通风条件下不同风速对雾场特性参数在空间内分布特性的影响。通过实验结果得到了实验空间内雾滴速度、雾滴粒径以及雾通量随着风速和运动距离的变化规律。
     在分别研究了纵向通风对火灾行为和雾滴运动影响的基础上,开展了细水雾抑制火灾的模拟研究。为了使缩小尺度模拟实验能够对实际应用起到有效的指导,将细水雾抑制火灾的尺度关系推广到了纵向通风条件下,并指导模拟实验设计参数的确定。建立模拟实验装置,开展多组细水雾抑制木垛火的实验,验证和完善了尺度关系,并将纵向风速和雾化锥角纳入经验尺度模型当中,对尺度模型中参量指数进行修正。
     采用数值计算和实验模拟相结合的方法,研究了细水雾对顺风方向木材火的抑制性能。模拟计算的预评价结果表明,在强制纵向通风条件下细水雾与火源之
With the increasing development of construct of long and narrow spaces, which are brought into play important roles in many fields, fire risk also improves rapidly. In recent years, tunnel fire disasters have happened with high frequency, and methods to suppress and extinguish fire bring up the higher request, so traditional measures of smoke control by forced ventilation have not already satisfied these requests. As the leading Halon alternatives, water mist technology shows broad applications with its advantages: clean, high efficiency, low cost and little damage to protected objects. Especially, the technology is increasing recognized and extended during the applications in long and narrow spaces such as traffic tunnels, subways, cable tunnels and so on in recent years. In the interest of enhancing fire suppression effectiveness in this kind of spaces, longitudinal ventilation was selected as the representative characteristic, and the mechanisms and rules of water mist fire suppression were studied with simulative calculations and experiments in more details.
    Firstly, the characteristics of combustion and smoke movement were analyzed under the condition of longitudinal ventilation. Compared with experiments results in open spaces by summing up former results in tunnels, variability of heat release rate under longitudinal ventilation was discussed. Simulative experiments were performed using wood cribs in order to study the effect of combustible configuration on combustion process, to analyze the influence on temperature and CO concentration and to demonstrate the importance of density of accumulation under forced ventilation.
    In this thesis, the LDV/APV system and wind tunnel with low speed were both utilized. Through the experiments of measuring the distribution of drop velocity and diameter with different wind speeds and the analysis of calculating water mist fluxes, the relationship between wind speeds and movement distances were received.
    Based on the effects of longitudinal ventilation on fire behavior and droplet movement respectively, simulative studies on water mist fire suppression were performed. Scaling relationship group for water mist fire suppression has been extended to include forced longitudinal ventilation, for the guidance to determine the
引文
[1] 洪丽娟,刘传聚.隧道火灾研究现状综述.地下空间与工程学报,2005,1(1):149-255.
    [2] 魏平安.巴库地铁火灾的教训.消防技术与产品信息,1996(8):33
    [3] 象华.历史上的隧道火灾.山东消防,1999(7):32-33.
    [4] W. K. Chow, S. M. Li. Safety requirement and regulations reviews on ventilation and fire for tunnels in the HKSAR. Tunnelling and Underground Space Technology, 1999, 14(1): 13-21.
    [5] G.L . Tan. Fire fighting in tunnels. Tunnelling and Underground Space Technology, 2002, 17(3): 179-180.
    [6] K. Opstad. Fire Hazards in Tunnels and Underground Installations. Fire Hazards In Tunnels And Underground Installations. International Symposium on the Fusion Technology of Geosystem Engineering, Rock Engineering and Geophysical Exploration, Seoul, Korea, Nov 18-19, 2003.
    [7] 张硕生,张庆明,毛朝君.隧道防火保护的现状及发展趋势.消防技术与产品信息,2003(7):6-9.
    [8] W. H. Hong. The progress and controlling situation of Daegu subway fire disaster. 6th Asia-Oceania Symposium on Fire Science and Technology, Daegu, Korea, Mar 17-20, 2004: 28-46.
    [9] A. P. Chen. Characteristics of subway fire and its prevention and control. Proceeding of 1st International Symposium of Safety Science and Technology, Beijing, China, 1998: 592-598.
    [10] Y. Oka, G. T. Atkinson. Control of smoke flow in tunnel fires. Fire Safety Journal, 1996, 25(4): 305-322.
    [11] R. Carrel. The effect of ventilation on fires in tunnels. International Tunnel Fire & Safety Conference, Rotterdam, Netherlands, Dec 2-3 1999.
    [12] L. H. Cheng, T. H. Ueng, C. W. Liu. Simulation of ventilation and fire in the underground facilities. Fire Safety Journal 2001, 36(6): 597-619.
    [13] 冯炼.地铁网络系统环境控制数值模拟研究.博士学位,西南交通大学,2001.
    [14] F.L. Chen, S. C. Guo, Y. He et al. Smoke control of fires in subway stations. Theoretical and Computational Fluid Dynamics, 2003, 16(4): 349~368.
    [15] 邓念兵.公路隧道防火救灾对策研究.硕士学位论文,长安大学,2003.
    [16] 毛遵训,徐玉贤.长隧道纵向式通风设计.公路,1994(9):12-14.
    [17] 舒宁.公路隧道纵向式全射流通风理论的研究与仿真.硕士学位论文,华南理工大学,2001.
    [18] H. Mashimo. State of the road tunnel safety technology in Japan. Tunnelling and Underground Space Technology, 2002, 17(2): 145-152.
    [19] M. T. Ke, T. C. Cheng, W. P. Wang. Numerical simulation for optimizing the design of subway environmental control system. Building and Environment, 2002,37(12): 1139-1152.
    [20] S. M. Li, W. K. Chow. Numerical studies on performance evaluation of tunnel ventilation safety systems. Tunnelling and Underground Space Technology, 2003, 18(5): 435-452.
    [21] 徐志胜,周庆,徐彧.运行旅客列车隧道火灾模型实验及数值模拟.铁道学报,2004,26(1):124-128.
    [22] 范维澄.火灾科学的新理论及洁净、智能防灭火技术.香山科学会议第83次学术讨论会主题评述报告,Oct 28-31,1997.
    [23] A. Leitner. The fire catastrophe in the Tauern Tunnel: experience and conclusions for the Austrian guidelines. Tunnelling and Underground Space Technology, 2001, 16(3): 217-223.
    [24] 闫治国,朱合华,何利英.欧洲隧道防火计划(UPTUN)介绍及启示.地下空间,2004,24(2):212-219.
    [25] A. G. Bendelius. Tunnel fire and life safety within the world road association (PIARC). Tunnelling and Underground Space Technology, 2002, 17(2): 159-161.
    [26] H. J. Park, An investigation into mysterious questions arising from the Daegu underground railway arson case through fire simulations and small-scale fire tests, 6th Asia-Oceania symposium on Fire Science and Technology, Daegu, Korea, Mar 17-20, 2004: 16-27.
    [27] S. K. Rob, J. H. Hur, J. H. Kim, et al. Early response system and improvement of fire safety performance in Daegu subway disaster. 6th Asia-Oceania symposium on Fire Science and Technology, Daegu, Korea, Mar 17-20, 2004: 453-458.
    [28] K. Opstad, R. Wighus. Fire suppression systems for road tunnels, http://www.uptun.net
    [29] R. Maegerle. Fire protection systems for traffic tunnels under test. 12th International Conference on Automatic Fire Detection, USA, Mar 25-28, 2001.
    [30] 王莉萍 译.公路隧道的自动喷水灭火系统和火灾探测系统.消防技术与产品信息,2002(12):56-58.
    [31] 方正,邓艳丽.自动喷水灭火系统在地铁隧道工程应用的可行性.消防科学与技术,2005,24(2):192-196.
    [32] R. E. Dundas. Experience with external fires in gas turbine installations and implications for fire protection. ASME Paper No: 90-GT-375, 1990.
    [33] J. R. Mawhinney, G. G. Back. Water mist fire suppression systems. Fire Protection Handbook, National Fire Protection Association, UK, 2000.
    [34] Z. G. Liu, A. K. Kim. A review of water mist suppression technology: fundamental studies. Journal of Fire Protection Engineering, 2000, 10(3): 32-50.
    [35] B. Yao, W. K. Chow, A review of water mist fire suppression systems. Journal of Applied Fire Science, 2001, 10(3): 277-294.
    [36] 刘江虹,廖光煊,厉培德等.细水雾灭火技术研究与进展.科学通报,2003,48(8):761-767.
    [37] Z. G. Liu, A. K. Kim, J. Z. Su. A review of water mist suppression technology: Part Ⅱ application studies. Journal of Fire Protection Engineering, 2001, 11(1): 164-193.
    [38] T. Log, P. C. Brookes. Water mist for fire protection of historic buildings and museums. Museum Management and Curatorship, 1995, 14(3): 283-298.
    [39] R. L. Darwin, F. W. Williams. Overview of the development of water mist systems for US navy ships. Halon Option Technology Working Conference, Apr 27-29, 1999: 373-380.
    [40] Z. G. Liu, A. K. Kim, D. Carpenter. Extinguishment of large cooking oil pool fires by the use of water mist systems. NRCC Report, No. NRCC-46970, 2004.
    [41] Y. Han, B. Choi, M. Kim. Application of a fixed water mist system in a power transformer room. 8th International Symposium on Fire Safety Science, Beijing, China, Sep 18-23, 2005.
    [42] R G W Cherry. A benefit analysis for cabin water spray systems and enhanced fuselage bum through protection. CAA Report, No. 2002/04, 2003.
    [43] R. L. Hansen, G. G. Back. Water spray protection of machinery spaces. Fire Technology, 2001, 37(4): 317-326.
    [44] 中国安全生产报,http://www.nj-dt.com/letter/info.asp?id=42, Jan, 25, 2006.
    [45] Cable tunnel application bulletin. Bulletin No. TTE2, http://www.securiplex.com, 2002.
    [46] 李修柏,林清南.某城市电缆隧道的消防设计分析.消防科学与技术,2001(3):29-30.
    [47] Fire protection of metro systems, 6th Asia-Oceania Symposium on Fire Science and Technology, Korea, 2004: 861-862.
    [48] Fire protection of train systems, 6th Asia-Oceania Symposium on Fire Science and Technology, Korea, 2004: 965-966.
    [49] Fogtec GmbH & Co. KG. Tunnel protection with water mist. http://www.fogtec.com.
    [50] M. Hainzl, G. Reichsthaler. Fire Fighting System for Tunnels-A report about the Practical Experience with our Water Mist Tunnel System, A International Conference of Tunnel Safety and Ventilation, Austria, April 2002.
    [51] M. Tuomisaari. Water mist fire suppression systems concepts for roadway tunnels, International Symposium on Catastrophic Tunnel Fires, Sweden, November, 2003.
    [52] G. G. Back. An overview of water mist fire suppression system technology. Proceedings of Halon Options Technical Working Conference, Albuquerque, NM, 1994: 327.
    [53] J. S. Pepi. Performance evaluation of a low pressure water mist system in a marine machinery space with open doorway, Proceedings of Halon Options Technical Working Conference, 1995: 423-447.
    [54] J. S. Pepi. Advances in the technology of intermediate pressure water mist systems for the protection of flammable liquid h0azards. Proceedings of Halon Options Technical Working Conference, Albuquerque, NM, 1998: 417-425.
    [55] E. A. Ural, R. G. Bill. Fire suppression performance testing of water mist systems for combustion turbine enclosures. Proceedings of Halon Options Technical Working Conference, Albuquerque, NM, 1995: 449.
    [56] Z. G. Liu, A. K. Kim, J. Z. Su. Examination of performance of water mist fire suppression systems under ventilation conditions, Journal of Fire Protection Engineering, 2001, 11 (3): 164-193.
    [57] Z. G. Liu, A. K. Kim, J. Z. Su. Examination of the extinguishment performance of a water mist system using continuous and cycling discharges. Fire Technology, 1999, 35(4): 336-361.
    [58] A. K. Kim, Z. G. Liu. Fire suppression performance of water mist under ventilation and cycling discharge conditions. 2nd International Water Mist Conference 2002, Amsterdam, Netherlands, Apr. 10-12, 2002: 61-76.
    [59] B. P. Hume. Water mist suppression in conjunction with displacement ventilation. Fire Engineering Research Report 03/4, University of Canterbury, New Zealand. Feb, 2003.
    [60] L. M. Yuan, C. P. Lazzara. The effects of ventilation and preburn time on water mist extinguishing of diesel fuel pool fires. Journal of Fire Science. 2004, 22(5): 379-404.
    [61] D. Scott. Will water mist improve fire safety? World Tunnelling, 2001, 14(8), 384-385.
    [62] Fogtec GmbH & Co. KG. Tunnel research, http://www.fogtec.com.
    [63] Marioff Corporation Oy. Fire protection of tunnels, http://www.marioff.com.
    [64] P. Stahl. Customized Fire Safety Concept for Underground Transportation Facilities. 5th Conference of Fire Safety Concept for Tunnels, Dublin, Ireland, May 6, 2004.
    [65] P. Stahl. A thermodynamic examination of the extinguishing properties of water spray and water mist. 6th Asia-Oceania Symposium on Fire Science and Technology, Daegu, Korea, Mar 17-20, 2004: 1038-1053.
    [66] S. K. Ray, R. P. Singh. Effects of water mist on open fire-a model study. Mining Technology, 2005, 114(A1): 1-14.
    [67] R. Amano, Y. Izushi, H. Kurioka, et al. Water screen fire disaster prevention system in under ground space. 6th Asia-Oceania Symposium on Fire Science and Technology, Daegu, Korea, Mar 17-20, 2004: 973-979.
    [68] R. Amano, Y. Izushi, H. Kurioka, et al. Fire experiments for a road tunnel-water screen as partitioning technology, 8th International Symposium on Fire Safety Science, Beijing, China, Sep 18-23, 2005.
    [69] 郑维金,雷明远,陈俊勋等.细水雾灭火系统应用于半导体厂房性能式设计实务探讨.科技厂房防灾知识管理研讨会论文集,2003.
    [70] V. Novozhilov. Computational fluid dynamics modeling of compartment fires. Progress in Energy and Combustion Science 2001, 27: 611-666.
    [71] Y. L. Cooper. The interaction of an isolated sprinkler spray and a two-layer compartment fire environment phenomena and model simulation. Fire Safety Journal 1995, 25(1): 89-107.
    [72] V. Novozhilov. Flashover control under fire suppression conditions. Fire Safety Journal 2001; 36: 641-660
    [73] N. Nyankina, V. Novozhilov. Prediction of fire environment under water mist suppression conditions by two-phase zone model. Journal of Applied Fire Science. 2001, 10(3): 193-214.
    [74] W. K. Chow, B. Yao. Numerical modeling for interaction of a water spray with smoke layer. Numerical Heat Transfer, Part A. 2001, 39: 267-283.
    [75] G. G. Back, C. L. Beyler, R. Hansen. A quasi-steady-state model for predicting fire suppres- sion in spaces protected by water mist systems. Fire Safety Journal, 2000, 35(3) 327-362.
    [76] J. Vaari. A transient one-zone computer model for total flooding water mist fire suppression in ventilated enclosures. Fire Safety Journal, 2002, 37(3): 229-257.
    [77] J. Vaari. A study of total flooding water mist fire suppression system performance using a transient one-zone computer model. Fire Technology, 2001, 37(4): 327-342.
    [78] Y. F. Li, W. K. Chow. Modelling of water mist fire suppression systems by a one-zone model. Combustion theory and modelling, 2004, 8(7): 567-592.
    [79] A. M. Lentati, H. K. Chelliah. Physical, thermal and chemical effects of fine-water droplets in extinguishing counterflow diffusion flames. 27th International Symposium on Combustion, 1998: 2839-2846.
    [80] K. Prasad, C. P. Li, K. Kailasanath. Optimizing water mist injection characteristics for suppression of co-flow diffusion flames. 27th International Symposium on Combustion, 1998: 2847-2855.
    [81] K. Prasad, C. P. Li, K. Kailasanath. Simulation of water mist suppression of small scale methanol liquid pool fires. Fire Safety Journal, 1999, 33(3): 185-212.
    [82] K. Prasad, G. Patnaik, K. Kailasanath. A numerical study of water-mist suppression of large scale compartment fires. Fire Safety Journal, 2002, 37(6): 569-589.
    [83] W. H. Yang, R. J. Kee. The effect of monodispersed water mists on the structure, burning velocity, and extinction behavior of freely propagating, stoichiometric, premixed, methane-air flames. Combustion and Flame, 2002, 130: 322-335.
    [84] J. Richard, J. P. Garo, J. M. Souil. On the flame structure at the base of a pool fire interacting with a water mist. Experimental Thermal and Fluid Science, 2003, 27: 439-448.
    [85] B. P. Husted, G. Holmstedt, T. Hertzberg. The physics behind water mist systems. Proceeding of IWMA Conference 2004, Rome, Italy, Oct. 6-8, 2004.
    [86] S. Hostikkaa, K. McGrattan. Numerical modeling of radiative heat transfer in water sprays. Fire Safety Journal, 2006, 41(1): 76-86.
    [87] S. C. Kim, H. S. Ryou. An experimental and numerical study on fire suppression using a water mist in an enclosure. Fire Safety Journal, 2003, 28(11): 1309-1316.
    [88] 徐一量,张文俊,林木荣等.细水雾电脑效能模拟平台介绍与洁净室湿式清洗台应用案例探讨.消防与防灾科技杂志,2003(5):111-117.
    [89] R. A. Hart, T. X. Ren, J. S. Edwards, Numerical simulation of water mist suppression of tunnel fire scenarios, 3rd international conference on CFD in the minerals and process industries, CSIRO, Australia, 35-40, 2003.
    [90] G. Heskestad, Scaling the interaction of water sprays and flames. Fire Safety Journal, 2002, 37(6): 535-548.
    [91] G. Heskestad, Extinction of gas and liquid pool fires with water sprays. Fire Safety Journal, 2003, 38(4): 301-317.
    [92] B. Yao, W. C. Fan, G.X. Liao. Interaction of water mists with a diffusion flame in a confined space. Fire Safety Journal, 1999, 33(2): 129-139.
    [93] X. S. Wang, G.X. Liao, J. Qin, et al. Experimental study on the effectiveness of the extinction of a pool fire with water mist. Journal of Fire Science, 2002, 20(4): 279-296.
    [94] J. H. Liu, G.X. Liao, P.D. Li, et al. Experimental study on the interaction of fine water mist with solid pool fires. Science in China, 2003, 46(2): 218-223.
    [95] 陆强.细水雾与油火的相互作用研究.博士学位论文,中国科学技术大学,合肥,2005.
    [96] G. X. Liao, W. Zhu, Q. Lu, et al. Study on evaluation method of water mist fire suppression system based on performance-based design. 2nd International Workshop on development of firefighting performance-based code, Hong Kong, November 27-29, 2005: 114-121.
    [1] W. K. Chow. On smoke control for tunnels by longitudinal ventilation. Tunnelling and Underground Space Technology, 1998, 13(3): 271-275.
    [2] Y. Wu, M. Z. A. Baker. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity. Fire Safety Journal, 2000, 35(4): 363-390.
    [3] 徐亚娟,余南阳.公路隧道纵向式通风控制系统研究.中国公路学报,2001,14(3):78-80.
    [4] 张兴凯.地下工程火灾原理及应用.北京:首都经济贸易大学出版社,1997.
    [5] R. O. Carvel, A. N. Beard, P. W. Jowitt. The effect of forced longitudinal ventilation on a HGV fire in a tunnel. Proc. 1st Int. Conf on Tunnel Fires, Lyon, France, 5-7 May 1999.
    [6] R. O. Carvel, A. N. Beard, P. W. Jowitt. The influence of longitudinal ventilation systems on fires in tunnels. Tunnelling and Underground Space Technology, 2001, 16(1): 3-21.
    [7] H. Kurioka, Y. Oka, H. Satoh, et al. Fire properties in near field of square fire source with longitudinal ventilation in tunnels. Fire Safety Journal, 2003, 38(4): 319-340.
    [8] R. O. Carvel, A. N. Beard, P. W. Jowitt, et al. Variation of heat release rate with forced longitudinal ventilation for vehicle fires in tunnels. Fire Safety Journal, 2001. 36(6): 569-596.
    [9] 卢平,丛北华,廖光煊等.纵向通风水平隧道火灾烟气流动特性研究.中国工程科学,2004,6(10):59-64.
    [10] M. Perard. Organization of fire trials in an operated road tunnel. 1st International Conference of Safety in Road and Rail Tunnels, Basel, Switzerland, November 23-25 1992: 161-170.
    [11] 杜宝玲,董希琳.公路铁路隧道火灾的试验研究.中国消防,1996(11):31-34.
    [12] J. Mangs, O. Keski-Rahkonen. Characterization of the fire behavior of a burning passenger car. Part 1: Car fire experiments. Fire Safety Journal, 1994, 23(1): 17-35.
    [13] I. Larsson, H. Ingason, M. Arvidson. Model scale fire tests on a vehicle deck on board a ship. SP Report 2002: 05.
    [14] 王晔 译.隧道突发火灾时的明智通风控制.消防技术与产品信息,2001(9):46-49.
    [15] 涂文轩.铁路隧道火灾的试验研究.消防技术与产品信息,1997(10):32-36.
    [16] 兰利敏 译.交通隧道的防火——大规模试验的初步研究结果.隧道译丛,1994(2):1-9.
    [17] V. Babrauskas. Burning Rates. The SFPE Handbook of Fire Protection Engineering, 2nd Edition, Section 3, 1-15. 1995
    [18] 王彬 译.隧道中车辆发生火灾时的温度变化和火灾持续时间.世界隧道,1995(4):76-78.
    [19] 傅维镳,张永廉,王清安.燃烧学.北京:高等教育出版社,1989.
    [20] D. Gross. Experiments on the burning of cross piles of wood. Journal of Research of the National Bureau of Standards-C. Engineering and Instrumentation, 1962, 66, C(2): 99-105.
    [21] M. A. Delichatsios. Fire growth rates in wood cribs. Combustion and Flame. 1976, 27(3): 267-278.
    [22] 胡隆华,霍然,王浩波等.用CO浓度判别木垛燃烧从通风控制转为燃料控制的临界状态.燃烧科学与技术,2004,10(4):371-374.
    [23] 陈玉明,霍然.自由空间木垛火蔓延速率及质量燃烧速率模型.上海交通大学学报,1998,32(1):66-70.
    [24] 刘军军,兰彬,张文良等.地下商业街火灾烟气成分试验研究.消防科学与技术,2001(1):10-12.
    [25] 朱伟,卢平,廖光煊等.地铁车站出入口火灾烟气特性的模拟研究.中国工程科学,2005,7(2):91-96.
    [26] G. Heskestad. Physical modeling of fire. Journal of Fire and Flammability, 1975, 6(3): 253-273.
    [27] 朱伟,廖光煊,卢平等.利用木垛火研究隧道纵向通风条件下的燃烧过程.燃烧科学与技术,2006,12(1):71-75.
    [28] 周心权,谢旭阳,刘国法.火灾烟流在建筑通道中流动的温度变化规律.中国矿业大学学报,2002,31(3):221-224
    [29] 沈哲强.地铁隧道火灾工况下气流临界速度的推导及应用.地下工程与隧道,2001(1):43-45.
    [30] Y. Oka, G. T. Atkinson. Control of smoke flow in tunnel fires. Fire Safety Journal, 1996, 25(4): 305-322.
    [31] C. C. Hwang, J. C. Edwards. The critical ventilation velocity in tunnel fires-a computer simulation. Fire Safety Journal, 2005, 40(3): 213-244.
    [1] 王喜世.基于数字粒子成像的细水雾全场诊断方法.博士学位论文 中国科学技术大学,合肥,2001.
    [2] 刘江虹.细水雾抑制熄灭固体火焰的模拟实验研究.博士学位论文 中国科学技术大学,合肥,2001.
    [3] G. Grant, J. Brenton, D. Drysdale. Fire Suppression by Water Sprays,. progress in Energy and Combustion Science, 2000, 26(2): 79-130.
    [4] B. Yao, W. K. Chow. A review of water mist fire suppression systems. Journal of Applied Fire Science, 2001, 10(3): 277-294.
    [5] X. S. Wang, G. X. Liao, J. Qin, et al. Experimental study on the effectiveness of the extinction of a pool fire with water mist. Journal of Fire Science, 2002, 20(4): 279-296.
    [6] 陆强,廖光煊,秦俊等.细水雾灭油池火时各种影响因素的相对重要度分析.火灾科学,2002,11(3):164-169.
    [7] E. Babinsky, P. E. Sojka. Modeling drop size distributions. Progress in Energy and Combustion Science, 2002, 28(3): 202-329.
    [8] 廖光煊,王喜世,秦俊.热灾害实验诊断方法.合肥 中国科学技术大学出版社.2003.
    [9] 秦俊,姚斌,廖光煊等.APV激光流场诊断系统及其应用.火灾科学,1999,8(2):37-42.
    [10] 刘江虹,廖光煊,秦俊等.细水雾与射流卷吸现象的LDV/APV测量研究.激光杂志,2000,21(6):58-60.
    [11] 秦俊,廖光煊,王喜世等.激光多普勒细水雾雾场特性实验研究.激光技术,2001,25(4):297-301.
    [12] 周华,朱畅,范明豪等.高压细水雾灭火系统的雾滴直径测量与灭火试验.自然科学进展,2004,14(8):950-954.
    [13] 秦俊,廖光煊,王喜世等.细水雾流场三维LDV测量.量子电子学报,2001,18(3):281-284.
    [14] 鲁健,褚家如,秦俊.溶胶—电雾化系统雾滴速度场LDV测量的研究.微细加工技术,2004(3):24-28.
    [15] 秦俊,姚斌,廖光煊等.细水雾流场雾通量的APV测量研究.中国科学技术大学学报: 1999,29(3):322-325.
    [16] 王勋年.低速风洞实验.国防工业出版社,北京.2002.
    [17] 张沂泉,赵博光,刘云飞等.森林保护用低速风洞的研制.南京林业大学学报,1999,23(6):47-50.
    [18] 傅泽田,祁力钧.风洞实验室喷雾飘移试验.农业工程学报,1999,15(1):109-112.
    [19] 商庆清,张沂泉,孙志武等.雾滴在树冠中的沉积和穿透研究.南京林业大学学报,2004,28f5):45-48.
    [20] Y. Z. Liu, C. S. Luo, H. P. Chen, et al. Flux measurement of water spray in wind tunnel: Comparative study using dual PDA and patternator. Proceedings of 9th annual conference on liquid atomization and spray systems, Shanghai, China, August 22-24, 2004: 381-384.
    [21] Z. G. Liu, A. K. Kim. A Review of water mist fire suppression systems -fundamental studies. Journal of Fire Protection Engineering, 2000, 10(3): 32-50.
    [22] 傅维镳,张永廉,王清安.燃烧学.北京:高等教育出版社,1989.
    [23] Y. F Li.., W.K. Chow. Modelling of water mist fire suppression systems by a one-zone model. Combustion Theory and Modelling, 2004(8): 567-592.
    [24] 任若恩,王惠文.多元统计数据分析——理论、方法、实例.国防工业出版社,北京.1997.
    [1] NFPA 750. Standard for the installation of water mist fire suppression systems, 1996 Edition National Fire Protection Association, Quincy, 2000,
    [2] G. Heskestad. Scaling the interaction of water sprays and flames. Fire Safety Journal, 2002, 37(6): 535-548.
    [3] 曹玉璋,邱绪光.实验传热学.北京 国防工业出版社,1998.
    [4] P. H. Thomas. Studies of fires in buildings using models. Combustion and Flame, 1960, 22(1): 87-99.
    [5] G. Heskestad. Physical modeling of fire. Journal of Fire and Flammability, 1975, 6(3): 253-273.
    [6] T. C. Waterman. Room flashover scaling of fire conditions. Fire Technology, 1969, 5(1): 32-65.
    [7] J. G. Quintiere. Scaling applications in fire research. Fire Safety Journal, 1989, 15(1): 1-12.
    [8] N. P. Bryner, E. L. Johnsson. Scaling compartment fires-reduced and full-scale enclosure burns. International Conference on Fire Research and Engineering, Orlando, USA, Sep 10-15, 1995: 9-14.
    [9] P. H Thomas. Dimensional analysis: a magic art in fire research? Fire Safety Journal, 2000, 34(2): 111-141.
    [10] G. Heskestad. Extinction of gas and liquid pool fires with water sprays. Fire Safety Journal, 2003, 38(4): 301-317.
    [11] Y. Oka, G. T. Atkinson. Control of smoke flow in tunnel fires. Fire Safety Journal, 1996, 25(4): 305-322.
    [12] G. T. Atkinson, Y. Wu. Smoke control in slopping tunnels. Fire Safety Journal, 1996, 27(4): 335-341.
    [13] H. Kurioka, Y. Oka, H. Satoh, et al. Fire properties in near field of square fire source with longitudinal ventilation in tunnels. Fire Safety Journal, 2003, 38(4): 319-340.
    [14] 贺五洲,陈嘉范,李春华 编.水力学实验.北京 清华大学出版社,2004.
    [15] J. De Ris. Duct fires. Combustion Science and Technology. 1970(2):239-258.
    [16] G. Heskestad. On Q~* and the dynamics of turbulent diffusion flames. Fire Safety Journal, 2003, 30(2): 215-227.
    [17] R. J. Bettis, S. F. Jagger, A. J. Macmillan, et al. Interim validation of tunnel fire consequence models tests. The Health and Safety Laboratory Report, No. IR/L/FR/94/2, UK, 1994.
    [18] 王晔 译.隧道突发火灾时的明智通风控制.消防技术与产品信息,2001(9):46-49.
    [19] 兰利敏 译.交通隧道的防火——大规模试验的初步研究结果.隧道译丛,1994(2):1-9.
    [20] P. Stahl. Customized Fire Safety Concept for Underground Transportation Facilities. 5th Conference of Fire Safety Concept for Tunnels, Dublin, Ireland, May 6, 2004.
    [21] K. Opstad. Fire Hazards in Tunnels and Underground Installations. Fire Hazards In Tunnels And Underground Installations. International Symposium on the Fusion Technology of Geosystem Engineering, Rock Engineering and Geophysical Exploration, Seoul, Korea, Nov 18-19, 2003.
    [22] M. A. Delichatsios. Fire growth rates in wood cribs. Combustion and Flame. 1976, 27(3): 267-278.
    [23] V. Babrauskas. Burning Rates. The SFPE Handbook of Fire Protection Engineering, 2nd Edition, Section 3, 1-15. 1995
    [24] 李云雁,胡传荣 编著.试验设计与数据处理.北京 化学工业出版社,2005.
    [25] 傅维镳,张永廉,王清安.燃烧学.北京:高等教育出版社,1989.
    [26] N. Dombrowski, D. L. Wolfsohn. The atomization of water by swirl spray pressure nozzles. Transaction of the Institute of Chemical Engineering, 1962, 50: 259-278.
    [27] 谢佩珍,刘耀荣.消火栓喷头及自喷系统喷头的水力计算.中国给水排水,2002,18(2):56-59.
    [28] P. Stahl. A thermodynamic examination of the extinguishing properties of water spray and water mist. 6th Asia-Oceania Symposium on Fire Science and Technology, Daegu, Korea, Mar 17-20, 2004: 1038-1053.
    [1] D. Scott. Will water mist improve fire safety? World Tunnelling, 2001, 14(8), 384-385.
    [2] M. Tuomisaari. Water mist fire suppression systems concepts for roadway tunnels, International Symposium on Catastrophic Tunnel·Fires, Sweden, November, 2003.
    [3] P. Stahl. Customized Fire Safety Concept for Underground Transportation Facilities. 5th Conference of Fire Safety Concept for Tunnels, Dublin, Ireland, May 6, 2004.
    [4] R. A. Hart, T. X. Ren, J. S. Edwards, Numerical simulation of water mist suppression of tunnel fire scenarios, 3rd international conference on CFD in the minerals and process industries, CSIRO, Australia, 35-40, 2003.
    [5] S. C. Kim, H. S. Ryou. An experimental and numerical study on fire suppression using a water mist in an enclosure, Fire Safety Journal, 2003, 28(11): 1309-1316.
    [6] B. P. Hume. Water mist suppression in conjunction with displacement ventilation. Fire Engineering Research Report 03/4, University of Canterbury, New Zealand. Feb. 2003.
    [7] 廖光煊,朱伟,陆强 等.基于性能化设计的细水雾灭火系统评价方法研究.第二届消防性能化规范发展研讨会.Hong Kong,November 27-29,2005:114-121.
    [8] K. B. McGrattanv. Fire Dynamics Simulator(Version 3)-Technical Reference Guide, NISTIR 6783, 2002.
    [9] J. Sutula. Applications of the Fire Dynamics Simulator in fire protection engineering consulting. Fire Protection Engineering, 2002(14): 33-41.
    [10] O. A. Ezekoye, C. H. Lan. O. Anderson. The role of strong vent flows in fire hazard predictions using FDS. 8th AIAA/ASME Joint Thermophysics & Heat Transfer Conference, St. Louis, Missouri, USA, June 24-26, 2002: 1-11.
    [11] C. C. Hwang, J. C. Edwards. The critical ventilation velocity in tunnel fires—a computer simulation. Fire Safety Journal, 2005, 40(3): 213-244.
    [12] A. Bounagui, A. Kashef, N. Benichou. Simulation of the Dynamics of the Fire for a Section of the L.H.-La Fontaine Tunnel. NRC Report, IRC-RR-140, Canada, Sep 22, 2003.
    [13] 李元洲,霍然,易亮.隧道火灾烟气发展的模拟计算研究.中国工程科学,2004,6(2):67-72.
    [14] 刘江虹.细水雾抑制熄灭固体火焰的模拟实验研究.博士学位论文,中国科学技术大学,合肥,2001.
    [15] 冯金莉,余永刚,陆春义.细水雾抑制熄灭木材火焰的小尺度实验研究及简化模型.中国安全科学学报,2004,14(3):56-59.
    [16] M. Arvidson. The IMO Resolution A. 800 (19) luxury cabin fire test procedure. SP Report 2003: 01, SP, Sweden, 2003.
    [17] 余永刚,冯金莉,陆春义等.细水雾与木垛火相互作用的实验研究.南京理工大学学报,2005,29(5):586-589.
    [18] 苏海林,蔡小舒,许德毓 等.细水雾灭火机理探讨.消防科学与技术,2000(4):13-16.
    [19] K. Moodie. The King's Cross fire: damage assessment and overview of the technical investigation. Fire Safety Journal, 1992, 18(1): 13-33.
    [20] 陆强.细水雾与油火的相互作用研究.博士学位论文,中国科学技术大学,合肥,2005.
    [1] 范维澄,王清安,姜冯辉等.火灾学简明教程.合肥 中国科学技术大学出版社,1995.
    [2] 霍云光 编.燃烧与传热工程计算图表.天津 天津科学技术出版社,1982.
    [3] R. Wighus. An empirical model for extinguishment of enclosed fires with water mist. SINTEF Report, No. STF22 A98848, 1998.
    [4] Z. G. Liu, A. K. Kim, J. Z. Su. Examination of performance of water mist fire suppression systems under ventilation conditions. Journal of Fire Protection Engineering, 2001, 11(3): 164-193.
    [5] M. Arvidson, I. Larsson. Residential sprinkler and high-pressure water mist systems. SP Report, No. 2001: 16, 2001.
    [6] G.G. Back, B. Lattimer, C. L. Beyler. Full-scale testing of water mist fire suppression systems for small machinery spaces and spaces with combustible boundaries. USCG Report, No. CG-D-21-99, 1999.
    [7] G. G. Back, C. L. Beyler, R. Hansen. A quasi-steady-state model for predicting fire suppression in spaces protected by water mist systems. Fire Safety Journal, 2000, 35(3) 327-362.
    [8] F. W. Mowrer. Enclosure smoke filling revisited. Fire Safety Journal, 1999, 33(2) 93-114.
    [9] V. Babrauskas. Burning Rates. The SFPE Handbook of Fire Protection Engineering, 2nd Edition, Section 3, 1-15. 1995
    [10] 傅维镳,张永廉,王清安.燃烧学.北京:高等教育出版社,1989.
    [11] 张兴凯.地下工程火灾原理及应用.北京:首都经济贸易大学出版社,1997.
    [12] 周延,王德明.水平巷道火灾中烟流逆流层长度的实验研究.中国矿业大学学报,2001,30(5):446-448.
    [13] 傅培舫,周怀春.快速密闭时火区热物理参数变化规律的研究.安全与环境学报,2005,5(2):96-99.
    [14] A. Nordmark. Fire and life safety for underground facilities. Tunnelling and Underground Space Technology, 1998, 13(3): 217-269.
    [15] 李云雁,胡传荣 编著.试验设计与数据处理.北京 化学工业出版社,2005.