能馈型电子负载的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能馈型电子负载是一种能够模拟实际电阻负载特性的新型电力电子装置,用于直流电源功率试验,并将测试的直流电能逆变为交流并入电网,实现电能的再生利用。该装置具有节能、体积小、重量轻、节省安装空间、试验性能优良等优点。
     本文从方案分析入手,详细讨论了整个系统的难点、重点,并给出相对较优的解决方案。系统由具有高频链的DC-DC变换器和DC-AC并网逆变器共同构成电子负载的主电路,两个部分均采用单相全桥变换电路。基于软开关的考虑,DC-DC变换选择移相全桥软开关隔离变换器,采用以UC3879为核心的移相控制策略。
     详细分析了DC-AC并网逆变器的控制目标和控制方式,对控制算法进行了深入的研究。整个系统中,并网电流的跟踪控制是非常关键的,DC-AC并网逆变器采用以C8051F020为核心的滞环电流控制策略,具有快速的瞬态响应和较高的稳定性,可以很好的跟踪并网电流。电子负载系统的控制部分将数字控制和模拟控制有机结合,不仅简化了控制系统的设计和调试,而且提高了系统的可靠性,为电子负载的功能进一步扩展提供了一个适应性强的软硬件平台。
     本文给出了主电路元器件参数的设计计算方法,主电路开关元件选择IGBT。设计了系统的驱动电路和保护电路,给出了滞环电流控制实现的程序框图。
     仿真结果表明,该方案较好地实现了电子负载的功能,并能实现对所模拟负载的无级调节。负载模块交流侧电流近似正弦,功率因数近似为1.0。
With the development of social economy, people pay more and more attention on energy source problem. The electronic power load is a new type power electronic instrument that can run with the same function as resistors in the test of all kinds of DC power source. The electronic load transforms the DC power into AC power and sends it into the utility power system. Electronic load can save power and space because it is lighter and smaller.
     This paper discusses the difficulty of the power load system, and proposes a preferable design project. The system has two parts: DC-DC converter and DC-AC grid-connected inverter. They select full-bridge converter. Taking into account soft switching, The DC-DC converter select Phase-Shifted control strategy realized by UC3879.
     This paper detailed analysis of its control objectives and control mode, the control algorithm is in-depth study. The entire system, the tracking control of grid-connected current it is very critical. The DC-AC converter select hysteresis current control strategy realized by C8051F020. It has fast transient response and high stability. The combination of analog control and digital control can make the design and the debugging of the control system easy, and also can improve the reliability of the whole system. It is easy for this kind of structure to expand its functions in the future, which has strong adaptability.
     This paper presents design and calculation methods of the main components in the circuit. The main circuit switching elements is IGBT. Design of the drive and protection circuit is given. The diagram of hysteresis current control is given.
     The simulation results verify that the electronic load is well designed. The electronic load can be regards as a resistor whose value change smoothly. Required performance is obtained: unit power factor and the grid-connected current that is close to sinusoidal.
引文
[1]王兆安,黄俊.电力电子技术.北京:机械工业出版社,2004.152-162
    [2]张立.现代电力电子技术基础.北京:高等教育出版社,1999.60-72
    [3]陈坚.电力电子学.电力电子变换和控制技术.北京:高等教育出版社,2002.208-215
    [4]黄俊.电力电子自关断器件及电路.北京:机械工业出版社,1991.20-27
    [5]李锡雄,陈婉儿.脉宽调制技术.武汉:华中理工大学出版社,1996.92-97
    [6]刘志刚,李宝昌,江至中.电能反馈型电子负载的设计与实现.铁道学报,2001,23(3):12-16
    [7]杨振吉,付永杰.电子负载的设计.计量技术,2003,7(5):24-25
    [8]Carter J,Goodman C J,Zelaya H.Analysis of the single-phase-four-quadrant PWM converter resulting in steady-state and small-signal dynamic models.Proceedings Electric Power Applications,1997,144(4):241-247
    [9]刘志刚,和敬涵.基于电流型PWM整流器的电子模拟负载系统研究.电工技术学报,2004,19(6):74-77
    [10]Mika Salo,Heikki Tuusa.A vector controlled current-source PWM rectifier with a novel current damping method.IEEE Trans.Power Electron,2000,15(3):464-470
    [11]赵清林,郑颖楠.次级采用辅助网络的ZCZVS PWM全桥变换器.电力电子技术,2002,36(4):43-46
    [12]徐晓峰,连级三,赵建明.移相控制ZVS全桥变换器滞后臂死区时间分析.电力电子技术,1999(1):15-17
    [13]Wang X,Ooi B.Real-time multi-DSP control of three phase current-source unity power factor PWM rectifier.IEEE Trans.Power Electron,1993,8(7):295-300
    [14]沈玉梁,徐伟新,赵为.单输入单相SPWM调制的光伏并网发电系统控制规律的研究.太阳能学报,2004,25(6):794-798
    [15]MekhilefS,Rahim N A.Implementation of grid-connected photovoltaic system with power factor control and islanding detection.Power Electronics Specialists Conference,2004,4(25):1409-1412
    [16]王斯成,余世杰,王德林等.3KW可调度型并网逆变器的研制.太阳能学报,2001,22(1):25-28
    [17]赵徐成.电流调制技术在电子负载和两阶段充电中的应用.电力电子技术,1997,10(3):58-60
    [18]陈道炼.DC-AC逆变技术及其应用.北京:机械工业出版社,2003.218-232
    [19]焦在强.单级式并网型光伏发电系统用逆变器的研究:[硕士学位论文].中国科学院,2004
    [20]姜桂宾.分布式发电系统用逆变电源及其并联组网控制技术研究:[博士学位论文].西安:西安交通大学,2003
    [21]江进进.光伏并网控制方法和系统的研究:[合肥工业大学硕士学位论文].合肥:合肥工业大学,2002
    [22]姜学东,江至中.有源逆变在大功率电子负载上的应用.机车电传动,2001,5(3):16-18
    [23]杨旭,王兆安.准固定频率滞环PWM电流模式控制方法的研究.电源世界,2001,3(1):5-8
    [24]杨德刚,刘润生,赵良炳.三相高功率因数整流器的电流控制.电工技术学报,2000,8(2):83-87
    [25]何新霞.电压型PWM可逆整流器建模与系统仿真.石油大学学报,1999.123(3):93-98
    [26]Jung-Goo Cho,Ju-Won Back,Chang-Yang Jeong,Long-Wook Yoo,Kee-Yeon Joe.Novel zero-voltage and zero-current-switching full bridge PWM converter using transformer auxiliary winding.Power Electron,1999,15(2):250-257
    [27]BLASKO V,KAURA V.A new mathematical model mode and control of a three-phase AC-DC voltage source converter.Power Electron,1997,12(1):116-122
    [28]Ohnuki T,Miyashita O.High power factor PWM rectifier with an analog pulse width prediction controllers.IEEE Trans.Power Electronics,1996,11(3):460-465
    [29]杨凡.一种基于80C196KC单片机的新型电子负载的设计:[硕士学位论文].武汉:华中科技大学,2004
    [30]Kwon B H,Min B.A fully software controlled PWM rectifier with current link.IEEE Trans.Industry Electron,1993,40(7):355-363
    [31]柳鹏.数字式能量回馈系统的研究:[硕士学位论文].浙江:浙江大学,2004
    [32]王照峰,王仕成,苏德伦.锁相环电路的基本概念及应用研究.电气应用,2005,24(8):46-48
    [33]马志朋.二阶锁相环设计中环路参数的选择.火控雷达技术,1997,12(26):16-20
    [34]何立民.从CygnalC8051F看8位单片机发展之路.单片机与嵌入式应用,2002,5(10):23-26
    [35]李刚,林凌.与8051兼容的高性能、高速单片机,C8051Fxxx.北京:北京航空航天大学出版社,2002.102-106
    [36]刘亚龙,李匡成,王福兴,高玉峰.应用升压电路的蓄电池放电设备.电源技术,2004(7):425-432
    [37]张占松,蔡宣三.开关电源的原理与设计.北京:电子工业出版社,2004.27-36
    [38]赵徐成.电流调制技术在电子负载和两阶段充电中的应用.电力电子技术,1997(3):58-60
    [39]胡君臣.高频变压器的设计与制作.电气开关,2005(1):8-13
    [40]首福俊,黄念慈,窦伟.一种新型的光伏逆变器控制方法.电力电子技术,2004(2):66-68
    [41]L Malesani.AC/DC/AC PWM rectifier with reduced energy storage in the DC link.Industry Applications,1995,31(2):287-292
    [42]胡寿松.自动控制原理.北京:国防工业出版社,1998.317-330
    [43]孙孝峰.高效率并网太阳能逆变器研究,电力电子技术,2003(2):49-52
    [44]沈玉梁,苏建徽,赵为等.不可调度式单相光伏并网装置的平波电容容量的选择,太阳能学报,2003(5):655-658
    [45]田松亚,孙烨,吴冬春,甘正华.全桥逆变电路IGBT模块的实用驱动设计.2007,37(4):25-28
    [46]邓宇航,韩明武,杨威.IGBT集成驱动电路及其功率扩展.电子器件,2005,28(3):539-541
    [47]曾繁玲.IGBT驱动与保护电路的研究.仪表技术,2007(7):61-63
    [48]章进法,姚凯卫.IGBT智能摸快的驱动控制电路.电力电子技术,1995(4):1-5
    [49]盛祖权.IGBT模块驱动及保护.电焊机,2000,30(11):6-13
    [50]Chokhawala R,Castino G.IGBT故障电流限制电路.电力电子技术,1995(1):1-6
    [51]WU Ruston,DEWAN S B,SL EMON G R.Analysis of a PWM AC to DC voltage source converter under the predicted current control with a fixed switching frequency.IEEE TIA,1991,27(4):756-764
    [52]赵振波.PWM整流器PI参数设计.华北电力大学学报,2003,30(4):34-37
    [53]王兆安.具有快速动态响应的单位功率因数PWM整流器.西安交通大学学报,1997(11):77-82
    [54]陈厚岩,王环,许洪华.具有零电流关断特性的并网型光伏逆变器研制.电力电子技术,2005(2):38-39
    [55]王超.模块化电子模拟功率负载系统的设计:[硕士学位论文].北京:北京交通大学,2006
    [56]薛定宇.基于MATLAB/Simulink的系统仿真技术和应用.北京:清华大学出版社,2002.21-36
    [57]刘文良.Matlab在电力电子技术仿真中的应用.电气自动化,2001,21(3):53-54
    [58]蔡昌文,张波.基于Simulink三相电压型整流器的系统仿真.电气应用,2007,26(8):48-51
    [59]余健明,同白前.瞬时谐波电流检测方法的动静态特性分析.电力电子技术,1999(2):15-17
    [60]赵剑锋,王浔,潘诗锋.基于双PWM变换器滞环控制的电能质量信号发生装置及其应用.电网技术,2005,29(4):41-44
    [61]詹长江.大功率PWM高频整流系统波形控制技术研究:[博士学位论文].西安交通大学,1997