车—桥(线)耦合空间振动分析与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代车辆—线路—桥梁耦合振动分析研究不但需要精细合理的车辆模型,更需要准确反应桥梁(线路)实际工作状态的动力分析模型。更加精细合理、运算效率高的车—线—桥耦合振动模型,应不仅仅停留在单一的竖向分析、横向分析上,车辆纵向振动应该被更合理地考虑,同时要求更加全面地综合考虑整个体系中的各种因素,更系统地分析车桥相互作用的影响,更合理地考虑轮轨接触力和轮轨关系。
     论文以武汉天兴州公铁两用大桥和现场试验为背景,系统地研究了精细的车辆—线路—桥梁耦合振动模型,分别建立了轮轨竖向密贴和轮轨法向密贴的车辆—线路—桥梁耦合振动分析的有限元和模态法方程,抛弃了传统车辆纵向以名义运动平动的基本假定,考虑了桥梁的初始构形和弹性变形的影响,分析了车辆的纵向振动,提出了基于实验验证的桥梁基准有限元模型的车辆—线路—桥梁耦合振动思路,并用武汉天兴州公铁两用大桥实测数据进行了验证。
     论文的主要研究工作和取得的成果包括:
     1.将车辆—桥梁(线路)作为一个整体系统,轮对的侧滚和浮沉两个自由度由钢轨位移确定,采用弹性系统动力学总势能不变值原理及其形成系统矩阵“对号入座”法则,分别基于模态坐标和物理坐标建立了不考虑和考虑轨道的系统运动方程。车辆模型已不再受左、右对称假设的限制,可考虑车辆偏心、轮对高速自旋角动量等因素的影响。
     2.由于钢轨和车轮踏面均为空间曲面形状,轮轨实际应该是在接触点公法线方向密贴约束。论文对轮轨竖向密贴约束的使用范围进行了讨论,将车辆—桥梁(线路)作为一个整体系统,建立了基于轮轨法向密贴的车辆—线路—桥梁耦合运动方程,并与轮轨竖向密贴模型进行了比较。
     3.车辆荷载的作用下,桥梁结构将发生下挠变形,特别是大跨度柔性桥梁,而且实际桥梁往往设置了一定的预拱度,车辆整体实际是倾斜地沿着桥面运行。本文将车辆的运动分解成整车倾斜地沿着线路运行和车辆相对自身局部系统微幅振动的叠加,从而基于桥梁初始线形及变形后的构形建立了车—桥(线)竖向及空间耦合模型,结合算例进行了分析研究和验证。
     4.车辆—线路—桥梁耦合振动的研究一般规定车辆纵向的名义运动,忽略车辆各构件的纵向振动,不涉及到列车驱动力和制动力。本文放弃了对车辆纵向名义运动的假定,建立了考虑纵向振动的车辆—线路—桥梁的空间耦合模型。它不但可以更精确地分析车辆的空间振动行为,还可以研究分析车辆的纵向振动,对桥上刹车、制动等问题进行更合理地分析。
     5.车辆—线路—桥梁耦合振动分析研究一般是依据桥梁设计图纸建立有限元模型,这样的桥梁有限元模型往往与实际结构存在一定的差异。若基于实测数据对模型进行修正,可得到反映桥梁真实动力行为的有限元模型,依据此模型可更合理地对桥梁结构进行分析研究。本文以武汉天兴州公铁两用大桥环境振动实验为基础,基于实测数据对桥梁的有限元模型进行修正,得到反映桥梁真实动力特性的基准有限元模型,进行车辆—线路—桥梁空间耦合振动分析,并于试验结果进行了比较和验证。
     6.轨道结构一般采用常规有限元建模,往往需要较多的自由度、计算量较大。本文将车辆—线路—桥梁作为一个整体系统,钢轨和桥梁采用区间B样条小波(BSWI)单元离散,建立了车辆—线路—桥梁耦合运动方程,并进行相应的响应计算。
In the present to analyze and study the train-track-bridge dynamic interaction, in addition to the accurate vehicle models, the dynamic FEM models which can describe the actual operational condition of the bridges/track is more significant and necessary. Vertical and transverse vibration, as well as the longitudinal vibration should all be analyzed, but not just the unilateral vertical or transverse vibration in an accurate and effective model of train-track-bridge coupling vibration. Based on it various components of the whole dynamic system should be analyzed comprehensively; the interaction of the vehicle-bridges should be considered systematically; the wheel-rail contact force and the wheel-rail relationship are taken into account reasonably.
     With Wuhan Tianxinzhou Bridge (a highway and railway bi-purposed bridge) and its field test as background, An accurate model of train-track-bridge dynamic interaction was study systematically in the present study. The finite element model and the modal method equations of the train-track-bridge coupling vibration with the wheel track closure in vertical direction and in normal direction were established respectively. The traditional basic assumption of nominal moving in traverse was abandoned. The effects of the original configuration and the elastic deformation of the bridge were considered. By analyzing the longitudinal vibration of the vehicle, the novel thought of vehicle-line-bridge coupling vibration based on the of finite element model was proposed. And then the field test data of the Wuhan Tianxinzhou highway and railway bi-purposed Bridge was used for verification. The main contents and achievements of the thesis include:
     1. The train, bridge and track are considered as an entire system, and two degrees of freedom of the wheel set, roll and bouncing, are determined by the displacement of the rail. Respectively, based on the modal coordinate and physical coordinates, motion equations for both of the train-bridge system and the train-track-bridge system are established according to the principle of total potential energy with a stationary value in elastic system dynamics and the rule of "set-in-right-position" Then disengaged assumption of right-and-left symmetry, the vehicle model can involve more actual factors, such as the eccentricity of vehicles, the high-speed spin angular momentum of wheel set and so on.
     2. As the profiles of rail and wheel tread are special curve, their interaction should be tight constraints on the direction of common normal at contact points. In this thesis, application of the vertical tight constraint is studied, and coupling motion equations of the train-track-bridge system based on normal tight constraints are established, compared with those based on vertical tight constraints.
     3. In fact, the train is moving on oblique deck of bridges, especially on that of long-span flexible ones, because of the deformation under vehicle load as well as pre-camber. The motion of vehicle is divided into two components, oblique movement along the track and micro-amplitude vibration relative to itself. Then vertical and special models of the train-track-bridge system are developed respectively based on the original and deformed decks, and verified by experimentations.
     4. In tradition analysis of train-track-bridge interaction, longitudinal nominal motion of vehicle was defined first, and the longitudinal vibration was not considered, involving no driving or braking force of train. In this thesis, a model of train-track-bridge spatial dynamic interaction considering longitudinal vibration is established without the presumption of vehicle longitudinal nominal motion. Not only the spatial vibration of train-track-bridge interaction, but also the longitudinal vibration of train and the special dynamic problem such as braking or driving on the bridge, can be analyzed more comprehensively.
     5. In previous study of train-track-bridge interaction, the vibration finite element model of bridge established mainly in term of design drawings is usually different from practical states of bridge. A baseline FEM model reflecting the actual dynamic characteristics of bridge structure can be obtained by updating the initial model based on the field measured data. According to this baseline model, the bridge dynamic characteristics can be researched more reasonably. Taking Wuhan Tianxinzhou Bridge and its field test as background, the baseline FEM model reflecting the actual bridge dynamic characteristics is obtained by model updating on the base of the field measured data. Then the numerical results obtained by the train-track-bridge model proposed in this thesis are validated by comparing with field experimental results.
     6. Adopting conventional elements to model track structures often leads to considerable degrees of freedom and large amount of calculation. In this study, the vehicle, rail and bridge are taken as a whole system. The rail and bridge are discredited by B-spline wavelet element, while the rails bed between the rail and bridge is simulated by uniform distribution springs and dampers, thus a model of train-track-bridge spatial dynamic interaction is established, and the corresponding dynamic response calculation is carried out.
引文
[1]翟婉明.车辆-轨道耦合动力学(第三版).北京:科学出版社,2007
    [2]曾庆元,郭向荣.列车桥梁时变系统振动分析理论与应用.北京:中国铁道出版社,1999
    [3]夏禾.车辆与结构动力相互作用.北京:科学出版社,2002
    [4]I. M. Biggs, Introduction to Structural Dynamics. McGraw-Hill Book Co. Inc., Newyork,1964
    [5]铁摩辛柯.工程中的振动问题,胡人礼译.北京:人民铁道出版社,1987
    [6]S. P. Timoshenko. Forced Vibration of Prismatic Bars. Izvestiya Kievskogo Politekhnicheskogo Institute.1908
    [7]S. P. Timoshenko. On the forced vibration of bridges. Philosophical Magazine, 1922,43:1018-1019
    [8]C. E. Inglis. A Mathematical Treastise on Vibrations in Railway Bridges. Cambridge,1934
    [10]松浦章夫.新綦铁路の桥梁竖向允许挠度.铁道技术研究资料(日),1974(10)
    [11]松浦章夫.高速铁路桥梁の动力问题の研究.1976
    [12]阿部英彦谷口纪久.钢铁道设计标准の改订.1984
    [13]K. H. Chu., et al. Dynamic Interaction of Railway Train and Bridges. Vehicle System Dynamics,1980,9(4),207-236
    [14]K. H. Chu., Railway-Bridge Impact:Simplified Train and Bridge Model. Journal of Structural Engineering, ASCE,1979,105(9),1823-1844
    [15]C. L. Dhar. A Method of Computing Bridge Impact, Ph.D. Thesis, Illinois Institute of Technology, Chicago, Illinois,1978
    [16]H. S. Wird. Traffic Generated Vibrations and Bridge Integrity, Journal of Structure Engineering, ASCE,1984,110(10),2487-2498
    [17]A. Wiriyachai. Impact and Fatigue in Open-deck Railway Truss Bridge, Ph.D. Thesis, Illinois Institute of Technology, Chicago, Illinois,1980
    [18]A. Wiriyachai., C. L. Dhar., V. K. Garg. Bridge Impact due to Wheel and Track Irregularities, Journal of Engineering Mechanics Division,1982,108(4), 648-665.
    [19]A. Wiriyachai., C. L. Dhar., V. K. Garg. Impact study by Various Bridge Models, Journal of Earthquake Engineering & Structural Dynamics,1982,10(1),31-45
    [20]M. H. Bhatti. Vertical and Lateral Dynamic response of Railway Bridges due to nonlinear Vehicle and Track Irregularities. Ph.D. Thesis, Illinois Institute of Technology, Chicago, Illinois,1980
    [21]T. L. Wang, et al. Dynamic Response of Highway Tracks due to Road Surface Roughness
    [22]T. L. Wang. Impact in a Railway Truss Bridge, Journal of Computers & Structures,1993,49(6),1045-1054
    [23]T. L. Wang, M. Shahswy. Impact in Highway Prestressed Concrete Bridges, Journal of Computers & Structures,1992,44(3),525-534
    [24]T. L. Wang. Ramp/Bridge Interface in Railway Prestressed Concrete Railway Bridges, Journal of Structural Engineering,1990,116(6),1648-1659
    [25]T. L. Wang. Impact and Fatigue in Open-deck Steel Truss and Ballasted Prestressed Concrete Railway Bridges. Ph.D. Thesis, Illinois Institute of Technology, Chicago, Illinois,1984
    [26]T. L. Wang, K. H. Chu. Railway Bridge/Vehicle Interaction Studies with New Vehicle Model, Journal of Structural Engineering,1991,117(7),2099-2116
    [27]Van Bogaert. Dynamic Response of Trains Crossing Large Span Double-track Bridges. Journal of Constructional Steel Research,1993,24(1),57-74
    [28]D. M. Yoshida, Weaver W. Finite element analysis of beams and plates with moving loads. Publication of International Association for Bridge and Structural Engineering,1971,31(1):179-195
    [29]E. V. Filho. Finite element analysis of structures under moving loads. Shock and Vibration Digest,1978,10(8):27-35
    [30]J. Hino, T. Yoshimura, N. Ananthanarayana. Vibration analysis of non-linear beams subjected to a moving load using the finite element method. Journal of Sound and Vibration,1985,100(4):477-491
    [31]J. Hino, T. Yoshimura, K. Konishi, N. Ananthanarayana. A finite element method prediction of the vibration of a bridge subjected to a moving vehicle load. Journal of Sound and Vibration,1984,96(1):45-53
    [32]M. Yener, K. Chompooming. Numerical method of lines for analysis of vehicle-bridge dynamic interaction. Computers and Struction,1 994,53(3):709-726
    [33]D. Y. Zheng, Y. K. Cheung, F. T. K. Au, Y. S. Cheng. Vibration of multi-span non-uniform beams under moving loads by using modified beam vibration functions. Journal of Sound and Vibration,1998,212(3):455-467
    [34]E. Esmailzadeh, N. Jalili. Vehicle-passenger-structure interaction of uniform bridges traversed by moving vehicles. Journal of Sound and Vibration,2003,260(4):611-635
    [35]Y. B. Yang, B. H. Lin. Vehicle-bridge interaction dynamics and potential applications. Journal of Sound and Vibration,2005,284(1-2):205-226
    [36]Guo W.H. Dynamic analysis of coupled road vehicle and long span cable-stayed bridge systems under cross winds. Hong Kong, Ph.D, The Hong Kong Polytechnic University,2003
    [37]Shillinglaw S.G. Fatigue damage of steel bridge girders due to dynamic vehicle loads. Ontario:Queen's University, Kingston,2003
    [38]HΓ鲍达儿胡人礼.铁路桥梁与机车车辆的相互作用.北京:铁道部专业设计院规范管理处,1987
    [39]曹雪琴,钢桁梁桥横向振动.北京:中国铁道出版社,1991
    [40]L. Vu-Quoc, M. Olsson. Formulation of a basic building-block model for interaction of high-speed vehicles on flexible structures. Journal of Applied Mechanics, ASME,1989 56(2):451-458
    [41]L. Vu-Quoc, M. Olsson. High-speed vehicle models based on a new concept of vehicle/structure interaction component. Part I:Formulation. Journal of Dynamic Systems, Measurement, and Control, ASME,1993,115(1):140-147
    [42]L. Vu-Quoc, M. Olsson. High-speed vehicle models based on a new concept of vehicle/structure interaction component. Part II:Algorithmic treatment and results for multispan guideways. Journal of Dynamic Systems, Measurement, and Control, ASME,1993,115(1)148-155
    [43]L. Vu-Quoc, M. Olsson. A computational procedure for interaction of high-speed vehicles on flexible structures without assuming known vehicle nominal motion. Computer Methods in Applied Mechanics and Engineering, 1989,76:207-244
    [44]L. Vu-Quoc, M. Olsson. New predictor/corrector algorithms with improved energy balance for a recent formulation of dynamic vehicle/structure interaction. International Journal for Numerical Methods in Engineering,1991,32:223-253
    [45]G. Diana, et al. Dynamic Interaction between Railway Vehicles and Track. Report Di. Meccanica Politecnico di Milano,1986
    [46]G. Diana, F. Cheli. Dynamic interaction of railway systems with large bridges. Vehicle System Dynamic,1989,18(1-3):71-106
    [47]G. T. Michaltsos, A. N. Kounadis. The Effects of Centripetal and Coriolis Forces on the Dynamic Response of Light Bridges Under Moving Loads. Journal of Vibration and Control,2001,7:315-326
    [48]G. T. MICHALTSOS The influence of centripetal and coriolis forces on the dynamic response of light bridges under moving vehicles. Journal of Sound and Vibration,2001,2:261-277
    [49]彭献,刘子建,洪家旺.匀变速移动质量与简支梁耦合系统的振动分析.工程力学,2006,6:25-29
    [50]曹雪琴.列车通过时桥梁结构竖向振动分析.上海铁道学院学报,1981,2(3):l-15
    [51]Lou P. A vehicle-track-bridge interaction element considering vehicle's pitching effect. Finite elements in analysis and design,2005,41:397-427
    [52]娄平.列车-轨道(桥梁)系统竖向振动分析:[博士论文].长沙,中南大学,2007
    [53]沈锐利.列车过桥时桁梁桥的空间振动分析:[博士论文].成都,西南交通大学,1987
    [54]李小珍.高速铁路列车-桥梁系统耦合振动理论及应用研究:[博士论文].成都,西南交通大学,2000
    [55]许慰平.大跨度铁路桥梁车桥空间耦合振动研究:[博士论文].北京,铁道科学研究院,1988
    [56]李奇,吴定俊,邵长宇.考虑车体柔性的车桥耦合系统建模与分析方法.振动工程学报,2011,1:41-47
    [57]C. Rathod, A. A. Shabana. Modeling Structural Flexibility in Railroad Vehicle Systems. JRC2010, Urbana, Illinois, USA,2010,179-189
    [58]J. Zhou, R. Goodall, L. Ren, H. Zhang. Influences of car body vertical flexibility on ride quality of passenger railway vehicles. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2009,223(5):461-471
    [59]J. R. Shin, Y. K. An, H. Sohn, C. B. Yun. Vibration reduction of high-speed railway bridges by adding size-adjusted vehicles. Engineering Structures,2010, 9:2839-2849
    [60]吴定俊.提速状态下车桥耦合振动理论与桥梁横向动力性能的研究:[博士论文].上海,同济大学,2005
    [61]李永乐.风—车—桥系统非线性空间耦合振动研究:[博士论文].成都,西南交通大学,2003
    [62]郭文华,郭向荣,曾庆元.京沪高速铁路南京长江大桥斜拉桥方案车桥系统分析.土木工程学报,1999,20(3):23-27
    [63]Y. B. Yang, B. H. Lin. Vehicle-bridge interaction analysis by dynamic condensation method, Journal of Structural Engineering, ASCE,1995,121(11): 1636-1643
    [64]Y. B. Yang, S. S. Liao, B. H. Lin. Impact Formulas for Vehicle Moving over Simple and Continuous Beams. Journal of Structural Engineering.1995,11
    [65]M. Olsson. Finite Element Model Co-ordinate Analysis of Structures Subjected to Moving Loads. Journal of Sound and Vibration,1985,1
    [66]李奇.车辆—桥梁/轨道系统耦合振动精细分析理论及应用:[博士论文].上海,同济大学,2008
    [67]Y. S. Cheng. Vibration of railway bridges under a moving train by using bridge-track-vehicle element. Engineering Structures,2001,23(12):1611-1626
    [68]Y. S. Wu, Y. B. Yang. Steady-state response and riding comfort of trains moving over a series of simply supported bridges. Engineering Structures, 2003,25(2):251-265
    [69]M. k. Song, H. C. Noh, C. K. Choi. A new three-dimensional finite element analysis model of high-speed train-bridge interactions. Engineering Structures, 2003,25(13):1611-1626
    [70]K. Hou, J. Kalousek, R. Dong. A dynamic model for an asymmetrical vehicle/track system. Journal of Sound and Vibration,2003,267:591-604
    [71]李德建.列车—轨道时变系统空间振动分析:[博士论文].长沙,中南大学,1996
    [72]赫丹.桥梁与隧道工程客运专线无碴轨道高速列车走行安全性分析理论与应用研究:[博士论文].长沙,中南大学,2009
    [73]K. Hou, J. Kalousek, R. Dong. A dynamic modal for an asymmetrical vehicle/track system. Journal of Sound and Vibration,2003,267(3):591-604
    [74]R. G. Dong. Vertical Dynamics of Railway Vehicle-Track System. Ph.D. Thesis, Concordia University,1994
    [75]X. Y. Lei, L. J. Mao. Dynamic response analyses of vehicle and track coupled system on track transition of conventional high speed railway. Journal of Sound and Vibration,2004,271:1133-1146
    [76]M. Majka, M. Hartnett. Effects of speed, load and damping on the dynamic response of railway bridges and vehicles. Computers & Structures, 2008,86(6):556-572
    [77]H. Hertz, uber die Beruhrung fester elastischer Korper (On the contact of elastic solids). J. Reine und angewandte Mathematik,1882,92:156-171
    [78]H. M. Lankarani, P. E. Nikravesh. A Contact Force Model with Hysteresis Damping for Impact Analysis of Multibody Systems. Journal of Mechanical Design, AMSE,1990,112:369-376
    [79]H. M. Lankarani, D. Ma, R. Menon. Impact Dynamics of Multibody Mechanical Systems and Application to Crash Responses of Aircraft Occupant/Structure. Computational Dynamics in Multibody Systems, Kluwer Academic Publishers, Dordrecht, The Netherlands,1994,27:239-265
    [80]H. M. Lankarani, P. E. Nikravesh. Continuous Contact Force Models for Impact Analysis in Multibody Systems. Nonlinear Dynamics,1994,5:193-207
    [81]H. M. Lankarani. Contact/Impact Dynamics Applied to Crash Analysis. Crashworthiness of Transportation Systems:Structural Impact and Occupant Protection, Kluwer Academic Publishers, Dordrecht, The Netherlands,1996
    [82]H. M. Lankarani. Canonical Equations of Motion and Estimation of Parameters in the Analysis of Impact Problems. Ph. D. Dissertation, University of Arizona, Arizona, USA,1988
    [83]T.W. Lee, A.C. Wang, On the dynamics of intermittent motion mechanisms, Part I. Dynamic model and response, Journal of Mechanisms, Transmissions and Automation in Design,1983,105:534-540
    [84]Joao Pombo, Jorge Ambrosio, Miguel Silva. A new wheel-rail contact model for railway dynamic. Vehicle System Dynamics.2007,45(2):165-189
    [85]Joao Pombo, Jorge Ambrosio. A new approach to study the wheel-rail contact problem in railway dynamics, www.dec.fct.unl.pt/projectos
    [86]Joao Pombo and Jorge Ambrosio. A computational efficient general wheel-rail contact detection method. Journal of Mechanical Science and Technology, 2005,19(1):411-421
    [87]Joao C. Pombo · Jorge A.C. Ambrosio. Application of wheel-rail contact model to railway dynamic in small radius curved tracks. Multibody System Dynamics. 2008,19:91-114
    [88]蔡成标.高速铁路列车-线路-桥梁耦合振动理论及应用研究:[博士论文].成都,西南交通大学,2004
    [89]L. Baeza, H. J. Ouyang. A railway track dynamics model based on modal substructuring and a cyclic boundary condition. Journal of Sound and Vibration. 2011,330:75-86
    [90]F. W. Carter. On the action of a locomotive driving wheel. Proc, of the Royal Society of London,1926,112:151-157
    [91]T, Ohyama. Fundamental adhesion phenomena between wheel and rail at high speeds-Some experiments with a high peed rolling test machine under water. QR of RTRJ,1958,26(4):135-140
    [92]K. Nagase. Adhesion between the rails and running wheels on main lines-Results of investigations by slipping adhesion test bogie. QR of RTRI, 1989,30(2):97-105
    [93]K. L. Johnson. The effect of a tangential contact force upon therolling motion of an elastic sphere on a plane. Journal of Applied Mechanics, Transactions, ASME,1958
    [94]K. L. Johnson. The effect of spin upon the rolling motion of anelastic sphere upon a plane. Journal of Applied Mechanics, Transactions, ASME,1964
    [95]J. K. Vermeulen, K. L. Johnson. Contact of non-spherical bodiestransmitting tangential forces. Journal of Applied Mechanics, Transactions, ASME,1964
    [96]J. J. Kalker. Survey of Wheel-Rail Rolling Contact Theory. Vehicle System Dynamics,1979,8(4):317-358
    [97]J. J. Kalker. Simplified Theory of Rolling Contact. Progress Report Series C:Mechanical and Aeronautical Engineering and Shipbuilding, Delft University of Technology, Delft, The Netherlands,1973,1:1-10
    [98]J. J. Kalker. The Computation of Three-Dimensional Rolling Contact with Dry Friction. Numerical Methods in Engineering,1979,14(9):1293-1307
    [99]Z. Y. Shen, J. K. Hedrick, J. A. Elkins. A Comparison of Alternative Creep Force Models for Rail Vehicle Dynamic Analysis.8th IAVSD Symposium on Dynamics of Vehicles on Road and Tracks, Swets and Zeitlinger, Cambridge, Massachussetts,1983,591-605
    [100]O. Polach. A fast wheel-rail forces calculation computer code. Veh. Syst. Dyn. Suppl.,1999,33:728-739
    [101]王福天.车辆系统动力学.北京:中国铁道出版社,1994
    [102]张定贤.机车车辆轨道系统动力学.北京:中国铁道出版社,1996
    [103]N. K Cooperrider, et al. Analytical and Experimental Determination of Nonlinear Wheel/Rail Geometric Constraints. U.S. DOT Report No. FRA-OR&D,1975
    [104]A. D. De Pater. The Geometrical Contact between Track and Wheelset. Vehicle System Dynamics.1988,17(3):127-140
    [105]S. Falomi, M. Malvezzi, E. Meli, A. Rindi. Determination of wheel-rail contact points:comparison between classical and neural network based procedures. Meccanica,1965,42:842-848
    [106]杨国桢.磨耗形踏面轮轨几何参数.铁道车辆.1980,10-12
    [107]严隽耄.具有任意轮廓形状的轮轨空间几何约束的研究.西南交通大学学报,1983,3
    [108]王开文.车轮接触点迹线及轮对接触几何参数的计算.西南交通大学学报,1984,1
    [109]严隽耄,王开文.任意形状轮轨接触关系的计算.铁道车辆.1984,2
    [110]W. M. Zhai, True H. Vehicle-track dynamics on a ramp and on the bridge: Simulation and measurements. Vehicle System Dynamics,1999,33:604-615
    [111]W. M. Zhai, X Sun. A detailed model for investigating vertical interaction between railway vehicle and track. Vehicle System Dynamics,1994,23:603-615
    [112]W. M. Zhai, C. B. Cai, S. Z. Guo. Coupling model of vertical and lateral vehicle/track interactions. Vehicle System Dynamics,1996,26(l):61-79
    [113]晋智斌.车-线-桥耦合系统及车-桥随机振动:[博士论文].成都,西南交通大学,2007
    [114]Y. H. Lin, M. W. Trethewey. Finite element analysis of elastic beams subjected to moving dynamic loads, Journal of Sound and Vibration,1990,136(2): 323-342
    [115]Y. K., Cheung F. T. K Au., D. Y Zheng, Y. S. Cheng. Vibration of multi-span non-uniform bridges under moving vehicles and trains by using modified beam vibration functions, Journal of Sound and Vibration,1999,228(3):611-628
    [116]Y. B. Yang, J. D. Yau. Vehicle-bridge interaction element for dynamic analysis, Journal of Structural Engineering, ASCE,1997,123(11):1512-1518
    [117]Y. B. Yang, C. H. Chang, J. D. Yau. An element for analyzing vehicle-bridge systems considering vehicle's pitching effect. International Journal for Numerical Methods in Engineering.1999,46(7):1031-1047
    [118]F. T. K. Au,J. J. Wang, Y. K. Cheung. Impact study of cable-stayed bridge under railway traffic using various models. Journal of Sound and Vibration.2001, 240(3):447-465
    [119]F. T. K. Au, J. J. Wang, Y. K. Cheung. Impact study of cable-stayed railway bridges with random rail irregularities. Engineering Structures.2002,24(5): 529-541
    [120]Y. Q. Sun, M. Dhanasekar. A dynamic model for the vertical interaction of the rail track and wagon system, International Journal of Solids and Structures, 2002,39(5):1337-1359
    [121]Q. Y. Zeng, P. Lou, J. Xiang. The principle of total potentical energy with stationary value in elastic system dynamics and its application to the analysis of vibration and dynamic stability. Journal of Huazhong University of Science and Technolosy(Urban Science),华中科技大学学报(城市科学版),2002,19(1):7-14(In English)
    [122]P. Lou. Vertical dynamic responses of a simply supported bridge subjected to a moving train with two-wheelset vehicles using modal analysis method. International Journal for Numerical Methods in Engineering, 2005,64(9):1207-1235
    [123]P. Lou. Finite element analysis for train-track-bridge interaction system. Archive of Applied Mechanics,2007,77(10):707-728
    [124]O. Coussy, M. Said, J. P. Vanhoove. The influence of random surface irregularities on the dynamic response of bridges under suspended moving loads. Journal of Sound and Vibration,1989,130(2):313-320
    [125]E. S. Hwang, A. S. Nowak. Simulation of dynamic load for bridges. Journal of Structural Engineering, ASCE,1991,117(5):1413-1434
    [126]T L Wang., D. Z. Huang. Cable-stayed bridge vibration due to road surface roughness. Journal of Structural Engineering, ASCE,1992,118(5):1354-1373
    [127]Y. S. Wu, Y. B. Yang, J. D. Yau. Three-Dimensional Analysis of Train-Rail-Bridge Interaction Problems
    [128]Y. B. Yang, Y. S. Wu. A versatile element for analyzing vehicle-bridge interaction response [J]. Engineering structures,2001,23:452-469
    [129]D. V. Nguyen, K. D. Kim, P. Warnitchai. Simulation procedure for vehicle-substructure dynamic interactions and wheel movements using linearized wheel-rail interfaces. Finite Elements in Analysis and Design, 2009.45(5):341-356
    [130]M. F. Green, D. Cebon. Dynamic Response of Highway bridges to Heavy Vehicles Loads:Theory and Experimental Validation. Journal of Sound and Vibration,1994,170(1):81-78
    [131]M. F. Green. Effects of Vehicle Suspension Design on Dynamics of Highway Bridges. Journal of Structural Engineering, ASCE,1995,121 (2):272-282
    [132]Zhai Wan-ming. Two simple fast integration methods for large-scale dynamic problems in engineering. International Journal for Numerical Methods in Engineering,1996,39(24):4199-4214
    [133]翟婉明.非线性结构动力分析的Newmark预测—校正积分模式.计算结构力学及其应用,1990,7(2):51-58
    [134]N. M. Newmark. A method of computation for structural dynamics. Journal of engineering Mechanics Division, Proceedings of the American Society of Civil Engineers,1959,85(3):67-94
    [135]K. J. Bathe, Wilson E. L. Numerical Methods in Finite Element Analysis. New Jersey:Prentice-Hall, Englewood Cliffs,1976
    [136]王贵春.大跨度铁路斜拉桥车激空间振动线性及非线性分析:[博士论文].北京:铁道科学研究院,1996
    [137]F. H. Yang, G. A. Fonder, An iterative solution method for dynamic response of bridge-vehicles systems. Earthquake Engineering & Structural Dynamics, 1996,25(2):195-215
    [138]V. K. Garg R. V. Dukkipati. Dynamics of Railway Vehicle Systems. Academic Press, Canada,1984
    [139]德国联邦铁路慕尼黑研究中心.城间特快车ICE技术任务书,1993
    [140]长沙铁道学院随机振动研究室.关于机车车辆/轨道系统随机激励函数的研究.长沙铁道学院学报,1985,2:1-36
    [141]铁道科学研究院铁道建筑研究所.我国干线轨道不平顺功率谱的研究.TY-1215.北京:铁道科学研究院,1999
    [142]I. MILEV, L. GRUENDIG. High Speed Rail Alignment and Maintenance-Data Modeling, Data Acquisition and Analysis. Engineering Surveys for Transportation and Utility Lines.2002
    [143]森本滕,三和雅史.指数平滑法用于轨道状态预测.土木学会第52回年次 学术讲演.1997
    [144]佐滕吉彦.新轨道力学.北京:中国铁道出版社,2001
    [145]许玉德,李海峰,周宇.铁路轨道高低不平顺的预测方法.同济大学学报.2003,31(3)
    [146]许玉德.利用线性预测模型分析轨道不平顺发展.石家庄铁道学院学报.2005
    [147]张卫华.机车车辆运行动态模拟研究:[博士论文].成都,西南交通大学,1996
    [148]R. V. Dukkipati, J. R. Amyot. Computer-Aided Simulation in Railway Dynamics. M. Dekker Inc., New York, New York,1988
    [149]E. Andersson, M. Berg, S. Stichel. Rail Vehicle Dynamics, Fundamentals and Guidelines. Royal Institute of Technology (KTH), Stockholm, Sweden,1998
    [150]金学松.轮轨蠕滑理论及其实验研究:[博士论文].成都,西南交通大学,1999
    [151]文责等.机车车辆性能的试验方法.国外机车车辆,1984,6
    [152]肖祥,任伟新,贺文宇.基于小波有限元的车辆-轨道-桥梁系统竖向振动分析.计算力学学报.2012
    [153]郝瀛.铁道工程.北京:中国铁道出版社,2000
    [154]李奇,吴定俊.列车—桥梁相互动力作用下轮对横向运动规律.中国铁道科学,2008,29(4):70-75
    [155]曾庆元.列车脱轨分析理论与应用.长沙:中南大学出版社,2005
    [156]王澜.轨道结构随机振动理论及其在轨道结构减振中的应用:[博士论文].北京:铁道科学研究院,1988
    [157]S. Y. Lee, Y. C. Cheng. A new dynamic model of high-speed railway vehicle moving on curved tracks Journal of Vibration and Acoustics. Journal of Vibration and Acoustics.2008,130(1):1-10
    [158]王小松.车—桥—风相互作用的理论分析:[博士论文].上海,同济大学,2007
    [159]Y. L. Xu, H. Xia. Dynamic response of suspension bridge to high wind and running train. Bridge Engineering, ASCE,2003(8):46-55
    [160]Y. L. Xu, N. Zhang, H. Xia. Vibration of coupled train and cable-stayed bridge system in cross wind. Engineering Structures,2004(26):1389-1406
    [161]A. A. Shabana, J. R. Sany. An Augmented Formulation for Mechanical Systems with Non-Generalized Coordinates:Application to Rigid Body Contact Problems. Nonlinear Dynamics,2001,24:183-204
    [162]A. A. Shabana, K. E. Zaazaa, J. L. Escalona, J. R. Sany. Development of elastic force model for wheel/rail contact problems. Journal of sound and vibration, 2004,269(1):295-325
    [163]高芒芒.高速铁路列车-线路-桥梁耦合振动及列车走行性研究:[博士论文].北京,铁道科学研究院,2001
    [164]W. Szyszkowski, E. Sharbati. On the FEM Modeling of Mechanical Systems Controlled by Relative Motion of a Member; A pendulum-Mass Interaction Test Case. Finite Element in Analysis and Design 2009,45:730-742.
    [165]C. J. Bowe. Wheel-rail contact elements incorporating irregularities. Advances in Engineering software,2005,36:827-837.
    [166]马卫华.轮对纵向振动及其相关动力学影响研究:[博士论文].成都,西南交通大学,2007
    [167]罗世辉,金鼎昌,陈清.轮对纵向动力学:一种尚待证实的动力学现象.2004铁路机车车辆动态仿真学术会议论文集,中国铁道学会车辆委员会,2004
    [168]J. J. Kalker. On the rolling contact of two elastic bodies in the presence of dry friction. Ph.D. Dissertation, Delft University of Technology, Deft, Netherlands,1967
    [169]范立础.桥梁抗震.上海:同济大学出版社,1997
    [170]方圣恩.基于有限元模型修正的结构损伤识别方法研究:[博士论文].长沙,中南大学,2010
    [171]J. H. Jang, et al. Experimental Investigation of System-Identification-Based Damage Assessment on Structures. Journal of Structural Engineering, ASCE, 2002,128(5):673-68
    [172]W. X. Ren, G. D. Roeck. Structural Damage Identification using Modal Data. Ⅰ: Simulation Verification. Journal of Structural Engineering, ASCE,2002, 128(1):87-95
    [173]W. X. Ren, G. D. Roeck. Structural Damage Identification using Modal Data. Ⅱ: Test Verification, Journal of Structural Engineering, ASCE,2002,128(1):96-104
    [174]B. Jaishi, W. X. Ren. Structural finite element model updating using ambient vibration test results. Journal of Structural Engineering, ASCE,2005,131(4): 617-628
    [175]任伟新.彭雪林.青洲斜拉桥的基准动力有限元模型.计算力学学报,2007,24(5):609-614
    [176]W. X. Ren, H. B. Chen. Finite element model updating in structural dynamics by using response surface method. Engineering Structures,2010,32(8): 2455-2465
    [177]肖祥,任伟新.基于桥梁基准有限元模型的列车-桥梁空间耦合振动分析.中国铁道科学,2011,32(2):41-47
    [178]肖祥,任伟新.实时工作模态参数数据驱动随机子空间识别.振动与冲击,2009,28(8):148-153
    [179]P. V. Overschee. Subspace identification for linear systems: Theory-Implementation-Applications. Kluwer Academic Publishers, Dordrecht, Netherlands,1996
    [180]B. Cauberghe. Applied frequency-domain system identification in the field of experimental and operational modal analysis. Vrije Universiteit Brussel,2004
    [181]任伟新等.小波分析在土木工程结构中的应用[M].北京:中国铁道出版社,2006
    [182]Chen W. H., Wu C. W., Spline wavelets element method for frame structures vibration [J]. Computational Mechanics,1995,16(1):11-21
    [183]何正嘉,陈雪峰,李兵等.小波有限元理论及其工程应用[M].北京:科学出版社,2006.
    [184]Han J. G, Ren W. X., and Huang Y. A spline wavelet finite-element method in structural mechanics [J]. International Journal for Numerical Methods in Engineering,2006,66:166-190