比例边界有限元法及快速多极子边界元法的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
比例边界有限元法(SBFEM)是近年来提出和发展的一种半解析数值方法,它结合了有限元法和边界元法的优点,只需对计算域边界进行数值离散,减少了一个空间维数;在没有离散的径向方向利用解析的方法求解,具有较高的计算精度。运用SBFEM进行计算时,不需要基本解,不存在奇异积分问题;而对于无限域问题,不需要人为引入截断边界,能够自动满足无穷远处的边界条件。SBFEM已成功地应用于固体力学领域,最近又求解了一些流体力学问题,有着很大的应用空间。
     SBFEM求解Poisson方程边值问题时,不存在体积分,而且可以精确处理无限域问题,与有限元法和边界元法相比,具有很大的优势。但是,目前该方法对Poisson方程右端项有特殊的要求,限制了其在Poisson方程边值问题上的应用范围。此外,SBFEM目前只能求解线性问题,依然处于发展之中,需要进一步研究。本论文先后引进了切比雪夫多项式逼近和同伦分析方法,对SBFEM进行了改进和发展。
     首先,引进切比雪夫多项式逼近,对SBFEM进行了改进,同时还提出了一种更为高效的求解技术,并运用改进后的方法求解若干Poisson方程边值问题。计算结果表明改进后的方法同样保持了高精度的优点,而且大大拓宽了SBFEM所能求解的Poisson方程边值问题的范围,具有广泛的应用前景。
     其次,引进一种求解强非线性问题的解析方法――同伦分析方法,并与改进后的SBFEM相结合,提出了一种新的求解非线性边值问题的半解析数值方法――基于同伦的SBFEM。该方法既保持了半解析数值方法的优点,又可以将SBFEM应用于求解非线性问题。本论文运用该新方法求解了一个二维Poisson型非线性边值问题,验证了该方法求解非线性边值问题的可行性和有效性。
     快速多极子边界元法(FMBEM)是最近发展起来的一种能够快速计算的数值方法,它克服了传统边界元法计算效率低下、存储量大的缺点,适合于求解大规模问题。本论文还运用该方法求解了海洋工程中圆柱体波浪绕射问题和水下三维复杂结构物附加质量计算问题,充分展现了该方法高效、低存储以及高精度的特性,证明了FMBEM在求解海洋工程中超大规模数值问题中具有巨大的潜力。
     本论文的主要创新点为:
     (1)首次运用切比雪夫多项式逼近,对SBFEM进行了改进,使其能够求解具有复杂右端项的Poisson方程边值问题,扩大了SBFEM的解题范围。
     (2)首次将同伦分析方法与SBFEM结合起来,提出了一种新的求解非线性问题的半解析数值方法――基于同伦的比例边界有限元法。该新方法克服了传统比例边界有限元法仅能求解线性问题的局限性,大大地拓宽了比例边界有限元法的应用领域,为求解非线性工程问题提供了一条有效途径。
     (3)应用FMBEM成功求解了海洋工程中大规模势流问题,边界离散单元数目已高达十万,而所需的计算时间仅在一个小时以内,证明该方法在求解海洋工程大规模势流问题中具有广泛的应用前景。
The scaled boundary finite-element method (SBFEM) is a novel semi-analyticnumerical method, combining the advantages of the finite element and the boundaryelement methods. In SBFEM, only the boundary is spatially discretised, leading toa reduction of the spatial dimension by one. In the radial direction, the solutionis analytical, so the simulation precision of this method is high. The SBFEM doesnot need the fundamental solution, thus avoids the problem of singular integral. Foran unbounded domain problem, this method can meet the infinity of the boundarycondition automatically without introducing artificial boundary. In addition, whensolving the boundary-valued problems of Poisson equation, there is no volume integralinvolved. The analytical solution in the radial direction also permits the boundarycondition at infinity to be satisfied rigorously. The SBFEM has been successfullyapplied to solid mechanics, and recently extended to ?uid dynamics.
     Although this method has many advantages over the finite element and boundaryelement methods, the SBFEM has special requirements to the right-hand side terms ofthe Poisson equation, limiting its applications to some certain types of Poisson equa-tions. In addition, the SBFEM is only valid for solving linear problems. By introduc-ing the Chebyshev polynomial approximation and homotopy analysis method(HAM),the SBFEM has been improved and developed in this dissertation.
     Firstly, the Chebyshev polynomial approximation is introduced to improve theSBFEM. A more e?cient solution technique is proposed, and is applied to someboundary-valued problems of Poisson equation. The results show that the improvedmethod maintains high precision and high e?ciency. This work greatly expands thescope of the SBFEM in solving the Poisson equations.
     Secondly, an analytical method for solving strongly nonlinear problems, namedhomotopy analysis method, is introduced and combined with the improved SBFEMsuccessfully. This new method is then applied to solve some 2D Poisson-type nonlinearboundary-valued problems. The feasibility and e?ectiveness of this new method isverified by numerical results. The new method not only maintains the advantages ofthe semi-analytical method, but also extends the SBFEM to nonlinear problems.
     The fast multipole boundary element method (FMBEM) is a new fast algorithm,which overcomes the low-e?ciency, high-storage of the traditional boundary element method. It is suitable for solving large-scale problems. In this paper, the FMBEMhas been successfully applied to solve the ocean engineering problems, including linearwaves di?raction around a vertical circular cylinder and the calculation of addedmass coe?cients of 3D underwater bodies. High e?ciency, low storage and highaccuracy of this method are demonstrated by the numerical results, which indicatesthe great potential of the FMBEM in solving large-scale numerical problems in oceanengineering.
     The innovation of this dissertation are as follows:
     (1)Using the Chebyshev polynomial approximation, we proposed an improvedalgorithm of SBFEM for solving boundary-valued problems of Poisson equation.
     (2)Combining the homotopy analysis method with the SBFEM, we proposeda semi-analytic numerical method, namely homotopy-based scaled boundary finite-element method, for solving nonlinear boundary-valued problems.
     (3)A fast algorithm, namely Fast multipole boundary-element method was ap-plied to solve the large-scale potential problems in the ocean engineering, and thenumber of the discrete boundary element of the problems can be up to one hundredthousand, but the CPU time is less than one hour.
     In conclusion, this dissertation improved the SBFEM, and proposed a new semi-analytic numerical method for nonlinear boundary-valued problems. This dissertationalso indicates that the FMBEM is suitable to solve complicated large-scale potentialproblems in ocean engineering.
引文
[1] Wolf, J.P. and Song, Ch. Dynamic-sti?ness matrix of unbounded soil by finite-elementmulti-cell cloning. Earthquake Engineering and Structural Dynamics, 23:233–250,1994.
    [2] Wolf, J.P. and Song, Ch. Finite-element modeling of unbounded media. John Wileyand Sons, Chichester, 1996.
    [3] Song, Ch. and Wolf, J.P. The scaled boundary finite element method - alias consistentinfinitesimal finite element cell method - for elastodynamics. Computer Methods inApplied Mechanics and Engineering, 147:329–355, 1997.
    [4] Wolf, J.P. The scaled boundary finite element method. John Wiley and Sons, Chich-ester, 2003.
    [5] Song, Ch. and Wolf, J.P. The scaled boundary finite-element method: analytical solu-tion in frequency domain. Computer Methods in Applied Mechanics and Engineering,164:249–264, 1998.
    [6] Song, Ch. and Wolf, J.P. Body loads in scaled boundary finite-element method.Computer Methods in Applied Mechanics and Engineering, 180:117–135, 1999.
    [7] Wolf, J.P. and Song, Ch. The scaled boundary finite-element method - a primer:derivations. Computers and Structures, 78(1-3):191–210, 2000.
    [8] Song, Ch. and Wolf, J.P. The scaled boundary finite-element method - a primer:solution procedures. Computers and Structures, 78(1-3):211–225, 2000.
    [9] Wolf, J.P. and Song, Ch. The scaled boundary finite-element method - a fundamentalsolution-less boundary-element method. Computer Methods in Applied Mechanics andEngineering, 190(42):5551–5568, 2001.
    [10] Deeks, A.J. Prescribed side-face displacements in the scaled boundary finite-elementmethod. Computers and Structures, 82(15-16):1153–1165, 2004.
    [11] Song, Ch. and Wolf, J.P. The scaled boundary finite-element method - alias consistentinfinitesimal finite-element cell method - for unbounded media. Developments inGeotechnical Engineering, 83:71–94, 1998.
    [12] Wolf, J.P. and Song, Ch. Unit-impulse response of unbounded medium by scaledboundary finite-element method. Computer Methods in Applied Mechanics and En-gineering, 159:355–367, 1998.
    [13] Deeks, A.J. and Wolf, J.P. Semi-analytical solution of laplace equation in non equili-brating unbounded problems. Computers and Structures, 81(15):1525–1537, 2003.
    [14] Song, Ch. and Wolf, J.P. Semi-analytical representation of stress singularities asoccurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method. Computers and Structures, 80(2):183–197, 2002.
    [15] Chidgzey, S.R. and Deeks, A.J. Determination of coe?cients of crack tip asymp-totic fields using the scaled boundary finite element method. Engineering FractureMechanics, 72(13):2019–2036, 2005.
    [16] Yang, Zh. Fully automatic modelling of mixed-mode crack propagation using scaledboundary finite element method. Engineering Fracture Mechanics, 73(12):1711–1731,2006.
    [17] Yang, Zh., Deeks, A.J. and Hao, H. Transient dynamic fracture analysis using scaledboundary finite element method: a frequency-domain approach. Engineering FractureMechanics, 74(5):669–687, 2007.
    [18] Yang, Zh. and Deeks, A.J. Fully-automatic modelling of cohesive crack growth using afinite element - scaled boundary finite element coupled method. Engineering FractureMechanics, 74(16):2547–2573, 2007.
    [19] Song, Ch. and Vrcelj, Z. Evaluation of dynamic stress intensity factors and t-stressusing the scaled boundary finite-element coupled method. Engineering Fracture Me-chanics, 75(8):1960–1982, 2008.
    [20] Deeks, A.J. and Cheng, L. Potential ?ow around obstacles using the scaled bound-ary finite-element method. International Journal for Numerical Methods in Fluids,41(7):721–741, 2003.
    [21] Li, B., Cheng, L., Deeks, A.J. Wave di?raction by vertical cylinder using the scaledboundary finite-element. Proceeding CDROM of the sixth world congress on compu-tational mechanics in conjunction with the second Asian-Pacific congress on compu-tational mechanics, Beijing, China, 2004.
    [22] Li, B., Cheng, L., Deeks, A.J., et al. A modified scaled boundary finite-elementmethod for problems with parallel side-faces. Part I. Theoretical developments. Ap-plied Ocean Research, 27(4-5):216–223, 2005.
    [23] Li, B., Cheng, L., Deeks, A.J., et al. A modified scaled boundary finite-elementmethod for problems with parallel side-faces. Part II. Application and evaluation.Applied Ocean Research, 27(4-5):224–234, 2005.
    [24] Li, B., Cheng, L., Deeks, A.J., et al. A semi-analytical solution method for two-dimensional helmholtz equation. Applied Ocean Research, 28(3):193–207, 2006.
    [25] Tao, L., Song, H. and Chakrabarti, S. Scaled boundary fem solution of short-crestedwave di?raction by a vertical cylinder. Computer Methods in Applied Mechanics andEngineering, 197:232–242, 2007.
    [26] Song, H. and Tao, L. Modelling of water wave interaction with multiple cylinders ofarbitrary shape. Journal of Computational Physics, 229(5):1498–1513, 2010.
    [27] Tao, L., Song, H. and Chakrabarti, S. An e?cient scaled boundary fem model for waveinteraction with a nonuniform porous cylinder. International Journal for NumericalMethods in Fluids. Online.
    [28] Doherty, J.P. and Deeks, A.J. Adaptive coupling of the finite-element and scaledboundary finite-element methods for non-linear analysis of unbounded media. Com-puters and Geotechnics, 32(6):436–444, 2005.
    [29] Deeks, A.J. and Augarde, C.E. A hybird meshless local petrov-galerkin methodfor unbounded domains. Computer Methods in Applied Mechanics and Engineering,196:843–852, 2007.
    [30] Chidgzey, S.R., Trevelyan, J. and Deeks, A.J. Coupling of the boundary elementmethod and the scaled boundary finite element method for computations in fracturemechanics. Computers and Structures, 86(11-12):1198–1203, 2008.
    [31]阎俊义,金峰,张楚汉.基于线性系统理论的FE-SBFE时域耦合方法.清华大学学报(自然科学版), 43(11):1554–1566, 2003.
    [32]阎俊义,金峰,张楚汉. FE-SBFE时域耦合波输入模型.燕山大学学报, 28(2):107–110, 2004.
    [33]任红梅,林皋.基于SBFEM的地下结构抗震分析.安徽建筑工业学院学报(自然科学版), 13(3):28–31, 2005.
    [34]杜建国,林皋.地基刚度和不均匀性对混凝土大坝地震响应的影响.岩土工程学报, 27(7):819–823, 2005.
    [35]林皋,杜建国.基于SBFEM的坝-库水相互作用分析.大连理工大学学报,45(5):723–729, 2005.
    [36]杜建国,林皋,钟红.基于锥体理论的三维拱坝无限地基SBFEM模型.水电能源科学, 24(1):25–30, 2006.
    [37]杜建国,林皋,胡志强.非均质无限地基上高拱坝的动力响应分析.岩石力学与工程学报, 25(2):4104–4111, 2006.
    [38]杜建国,林皋.基于比例边界有限元法的结构-地基动力相互作用时域算法的改进.水利学报, 38(1):8–14, 2007.
    [39]杜建国,林皋.比例边界有限元法子结构法研究.世界地震工程, 23(1):67–72,2007.
    [40]林皋,任红梅.复杂不均匀地层中地下结构波动响应频域分析.大连理工大学学报, 48(1):105–111, 2008.
    [41]杨贞军,Deeks A.J.基于频域比例边界有限元法的双材料界面裂缝瞬态动应力强度因子的计算.中国科学(G辑:物理学力学天文学), 38(1):77–88, 2008.
    [42]刘钧玉,林皋,杜建国.基于SBFEM的多裂纹问题断裂分析.大连理工大学学报, 48(3):392–397, 2008.
    [43]滕斌,何广华,李博宁等.应用比例边界有限元法求解狭缝对双箱水动力的影响.海洋工程, 24(2):29–37, 2006.
    [44]何广华,滕斌,李博宁等.应用比例边界有限元法研究波浪与带狭缝三箱作用的共振现象.水动力学研究与进展, 21(3):418–424, 2006.
    [45]滕斌,赵明,何广华.三维势流场的比例边界有限元求解方法.计算力学学报,23(3):301–306, 2006.
    [46] Teng, B., Zhao, M. and He, G. Scaled boundary finite element analysis of the watersloshing in 2D containers. International Journal for Numerical Methods in Fluids,52(6):659–678, 2006.
    [47] Cao, F.S. and Teng, B. Scaled boundary finite element analysis of wave passing asubmerged breakwater. China Ocean Engineering, 22(2):241–251, 2008.
    [48]曹凤帅,滕斌.应用比例边界有限元法求解多种二维浮体水动力特性.海洋工程, 26(1):102–107, 2008.
    [49] Liao, S.J. The proposed homotopy analysis technique for the solution of nonlinearproblems. PhD thesis, Shanghai Jiao Tong University, 1992.
    [50] Liao, S.J. A kind of approximate solution technique which does not depend uponsmall parameters: a special example. International Journal of Non-Linear Mechanics,30:371–380, 1995.
    [51] Liao, S.J. Numerically solving nonlinear problems by the homotopy analysis method.Computational Mechanics, 20(6):530–540, 1997.
    [52] Liao, S.J. A kind of approximate solution technique which does not depend uponsmall parameters (II): an application in ?uid mechanics. International Journal ofNon-Linear Mechanics, 32:815–822, 1997.
    [53] Liao, S.J. Homotopy analysis method: an analytic technique not depending on smallparameters. Shanghai Journal of Mechanics, 18(3):196–200, 1997.
    [54] Liao, S.J. Homotopy analysis method: a new analytic method for nonlinear problems.Journal of Applied Mathematics and Mechanics, 19(10):885–890, 1998.
    [55] Liao, S.J. A simple approach to enlarge the convergence region of perturbation ap-proximations. Nonlinear Dynamics, 19(2):93–111, 1999.
    [56] Liao, S.J. Beyond Perturbation: Introduction to the Homotopy Analysis Method.Chapman & Hall/ CRC Press, Boca Raton, 2003.
    [57] Lyapunov, A.M. General problem on stability of motion (English translation). Taylor& Francis, London, 1992.
    [58] Adomian, G. A global method for solution of complex systems. Mathematical model,5:521–568, 1984.
    [59] Adomian, G. and Rach, R. On the solution of algebraic equations by the decompo-sition method. Journal of Mathematical Analysis and Applications, 105(1):141–166,1985.
    [60] Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method.Kluwer Academic Publishers, Boston and London, 1994.
    [61] Karmishin, A.V., Zhukov, A.T. and Kolosov, V.G. Methods of dynamics calculationand testing for thin-walled structures. Mashinostroyenie, Moscow, 1990.
    [62]钱伟长.奇异摄动理论及其在力学中的应用.科学出版社,北京, 1981.
    [63] Nayfeh, A.H. Perturbation Methods. John Wiley & Sons, New York, 2000.
    [64] Liao, S.J. and Chwang, A.T. Application of homotopy analysis method in nonlinearoscillations. Journal of Applied Mechanics, 65:914–922, 1998.
    [65] Liao, S.J. An explicit, totally analytic approximation of Blasius viscous ?ow problems.International Journal of Non Linear Mechanics, 34(4):759–778, 1999.
    [66] Liao, S.J. and Campo, A. Analytic solutions of the temperature distribution in Blasiusviscous ?ow problems. Journal of Fluid Mechanics, 453:411–425, 2002.
    [67] Liao,S.J. An analytic approximation of the drag coe?cient for the viscous ?ow pasta sphere. International Journal of Non-Linear Mechanics, 37:1–18, 2002.
    [68] Liao, S.J. An analytic approximate approach for free oscillations of self-excited sys-tems. International Journal of Non-Linear Mechanics, 39(2):271–280, 2004.
    [69] Liao, S.J. An analytic approximate technique for free oscillations of positively dampedsystems with algebraically decaying amplitude. International Journal of Non-LinearMechanics, 38(8):1173–1183, 2003.
    [70] Liao, S.J. A new analytic algorithm of Lane-Emden equation. Applied Mathematicsand Computation, 142(1):1–16, 2003.
    [71] Liao, S.J. and Cheung, K.F. Homotopy analysis of nonlinear progressive waves indeep water. Journal of Engineering Mathematics, 45(2):105–116, 2003.
    [72] Wang, C. et al. On the explicit analytic solution of cheng-chang equation. Interna-tional Journal of Heat and Mass Transfer, 46(10):1855–1860, 2003.
    [73] Liao, S.J. An explicit analytic solution to the Thomas-Fermi equation. Applied Math-ematics and Computation, 144:495–506, 2003.
    [74] Liao, S.J. On the analytic solution of magnetohydrodynamic ?ows of non-Newtonian?uids over a stretching sheet. Journal of Fluid Mechanics, 488:189–212, 2003.
    [75] Ayub, M., Rasheed, A. and Hayat, T. Exact ?ow of a third grade ?uid past a porousplate using homotopy analysis method. Int. J. Engng. Sci., 41:2091–2103, 2003.
    [76] Ayub, M., Abbas, Z. and Hayat, T. Exact ?ow of a third grade ?uid past a porousplate using homotopy analysis method. Int. J. Eng. Sci., 41:2091–2103, 2003.
    [77] Wang, C., Wu, Y.Y. and Wu, W. Solving the nonlinear periodic wave problems withthe homotopy analysis method. Wave Motion, 41:329–337, 2004.
    [78] Ifidon, E.O. Numerical studies of viscous incompressible ?ow between two roatingconcentric spheres. Journal of Applied Mathematics. (on line).
    [79] Hayat, T., Khan, M. and Ayub, M. On the explicit analytic solutions of an Oldroyd6-constant ?uid. Int. J. Engng. Sci., 42:123–135, 2004.
    [80] Hayat, T., Khan, M. and Asghar, S. Homotopy analysis of MHD ?ows of an Oldroyd8-constant ?uid. Acta Mechanica, 168:213–232, 2004.
    [81] Allan, F.M. and Syam, M.I. On the analytic solutions of the non-homogenous Blasiusproblem. J. Computational and Applied Mathematics, pages 362–371, 2005.
    [82] Sun Z.K, Xu W., Yang X.L and Xu Y. A homotopy technique with the parameterexpansion and its application. Chinese Journal of Theoretical and Applied Mechanics,37(5):667–672, 2005. (in Chinese).
    [83] Xu W., Sun Z.K. and Yang, X.L. PE-HAM method strongly nonlinear stochasticdynamic systems steady-state probability density stochastic solution stochastic exci-tation. ACTA Physica Sinca, 54(11):5069–5076, 2005. (in Chinese).
    [84] Song,Y., Zheng, L.C. and Zhang, X.X. On the homotopy analysis method for solvingthe boundary layer ?ow problem over a stretching surface with suction and injec-tion. Journal of University of Science and Technology Beijing, 28:782–784, 2006. (inChinese).
    [85] Shi Y.R., Xu J.X. and Wu Z.X. Application of the homotopy analysis method tosolving nonlinear evoluation equations. ACTA Physica Sinca, 55(4):1555–1560, 2006.(in Chinese).
    [86] Asghar, S., Gulzar, M.M. and Ayub,M. E?ect of partial slip on ?ow of a third grade?uid. Acta Mech. Sinica, 22:195–198, 2006.
    [87] Zhu, S.P. A closed-form analytical solution for the valuation of convertible bonds withconstant dividend yield. Anziam Journal, 47:477–494, 2006.
    [88] Zhu, S.P. An exact and explicit solution for the valuation of American put options.Quantitative Finance, 6:229–242, 2006.
    [89] Tao, L., Song, H. and Chakrabarti, S. Nonlinear progressive waves in water of finitedepth - an analytic approximation. Coastal Engineering, 54(11):825–834, 2007.
    [90] Song, H. and Tao, L. Homotopy analysis of 1D unsteady, nonlinear groundwater ?owthrough porous media. J. Coastal Research, 50:292–295, 2007.
    [91] Wang, Z., Zou, L. and Zhang, H. Applying homotopy analysis method for solvingdi?erential-di?erence equation. Physics Letters A, 369:77–84, 2007.
    [92] Song, L. and Zhang, H.Q. Application of homotopy analysis method to fractionalKdV-Burgers-Kuramoto equation . Physics Letters A, 367:88–94, 2007.
    [93] Abbasbandy, S. Approximate solution for the nonlinear model of di?usion and reactionin porous catalysts by means of the homotopy analysis method. Chemical EngineeringJournal, 136:144–150, 2008.
    [94] Liao, S.J. The quite general boundary element method for strongly nonlinear prob-lems. In C. A. Brebbia, S. Kim, T. A. Osswald and H. Power, editor, BoundaryElements XVII, pages 67–74, Southampton and Boston, 1995. Computational Me-chanics Publications.
    [95] Liao, S.J. High-order boundary element method formulations for strongly nonlinearproblems governed by quite general nonlinear di?erential operators. InternationalJournal for Numerical Methods in Fluids, 23:739–751, 1996.
    [96] Liao, S.J. and Chwang, A.T. General boundary element method for nonlinear prob-lems. International Journal for Numerical Methods in Fluids, 23:467–483, 1996.
    [97] Liao, S.J. Boundary element method for general nonlinear di?erential operators.Engineering Analysis with Boundary Element, 20(2):91–99, 1997.
    [98] Liao, S.J. General boundary element method for possion equation with spatiallyvarying conductivity. Engineering Analysis with Boundary Elements, 21(1):23–38,1998.
    [99] Liao, S.J. On the general boundary element method. Engineering Analysis withBoundary Elements, 21:39–51, 1998.
    [100] Liao, S.J. On the general boundary element method and its further generalization.International Journal for Numerical Methods in Fluids, 31:627–655, 1999.
    [101] Zhao, X.Y. and Liao, S.J. On parallel computing for the general boundary elementmethod. In Applications of High-Performance Computing in Engineering VII, pages85–92, 2002.
    [102] Liao, S.J. Higher-order streamfunction-vortivity formulation of 2D steady-stateNavier-Stokes equations. International Journal for Numerical Methods in Fluids,15:595–612, 1992.
    [103] Liao, S.J. and Zhu, J.M. A short note on the high-order streamfunction-vorticityBEM formulations of 2D steady-state Navier-Stokes equations. International Journalfor Numerical Methods in Fluids, 22:1–9, 1996.
    [104] Liao, S.J. General boundary element method for nonlinear heat transfer problems gov-erned by hyperbolic heat conduction equation. Computational Mechanics, 20(5):397–406, 1997.
    [105] Liao, S.J. and Chwang, A.T. General boundary element method for unsteady nonlin-ear heat transfer problems. Numerical Heat Transfer, Part B, 35(2):225–242, 1999.
    [106] Liao, S.J. A direct boundary element approach for unsteady non-linear heat transferproblems. Engineering Analysis with Boundary Elements, 26:55–59, 2002.
    [107] Wu, Y.Y. and Liao, S.J. Solving high Reynolds-number viscous ?ows by the gen-eral BEM and domain decomposition method. International Journal for NumericalMethods in Fluids, 47(3):185–199, 2005.
    [108] Wu, Y.Y., Liao, S.J. and Zhao, X.Y. Some notes on the general boundary elementmethod for highly nonlinear problems. Communications in Nonlinear Science andNumerical Simulation, 10(7):725–735, 2005.
    [109] Banerjee, P.K., and Butterfield, R. Boundary element methods in engineering science.New York: McGraw-Hill, 1981.
    [110] Brebbia, C.A. The boundary element method for engineers. Pentech Press, 1984.
    [111] Brebbia, C.A., and Walker, S. Boundary element techniques in engineering. Newness-Butterworths, 1980.
    [112] Brebbia, C.A., Telles, J.C. and Wrobel, L.C. Boundary element techniques. Springer-Verlag, New York, 1984.
    [113] Rokhlin, V. Rapid solution of integral equations of classical potential theory. Journalof Computational Physics, 60:187–207, 1985.
    [114] Greengard, L. The rapid evaluation of potential fields in particle systems. MA: MITPress, Cambridge, 1988.
    [115] Greengard, L. and Rokhlin, V. A fast algorithm for particle simulations. Journal ofComputational Physics, 73:325–348, 1987.
    [116] Nabors, K. and White, J. FastCap: A multipole accelerated 3-D capacitance extrac-tion program. IEEE Transactions on Computer-Aided Design of Integrated Circuitsand Systems, 10:1447–1459, 1991.
    [117] Nabors, K. and White, J. Multipole-accelerated capacitance extraction algorithms for3-D structures with multiple dielectrics. IEEE Transactions on Circuits and Systems,39:946–954, 1992.
    [118] Board, J.A., Causey, J.W., Leathrum, J.F., Windemuth, A., and Schulten, K. Acceler-ated molecular dynamics simulation with the parallel fast multipole method. ChemicalPhysics Letters, 198:89–94, 1992.
    [119] Engheta, N., Murphy, W.D., Rokhlin, V., and Vassiliou, M.S. The fast multipolemethod (FMM) for electromagnetic scattering problems. IEEE Transactions on An-tennas and Propagation, 40:634–641, 1992.
    [120] Coifman, R., Rokhlin, V., and Wandzura, S. The fast multipole method for the waveequation: a pedestrian prescription. IEEE Transactions on Magnetics, 35:7–12, 1993.
    [121] Wantanabe, O. and Hayami, K. A fast solver for the boundary element method usingmultipole expansion. Proc. BTEC, 4:39–44, 1994.
    [122] Nishida, T. and Hayami, K. Application of the fast multipole method to the 3-DBEM analysis of electron guns. Boundary Elements XIX, M Marchetti et al. (eds),Comp Mech Publ, Southampton, pages 613–622, 1997.
    [123] Hoyler, G. and Unbehauen, R. The fast multipole method for EMC problem. ElectricalEngineering, 80:403–411, 1997.
    [124] Board, J. and Schulten, K. The fast multipole algorithm. IEEE Computing in Scienceand Engineering, 2:76–79.
    [125] Pan, Y.C. and Chew, W.C. A hierarchical fast-multipole method for stratified media.Microwave and Optical Technology Letters, 27:13–17, 2000.
    [126] Seberino, C. and Bertram, H.N. Concise, e?cient three-dimensional fast multipolemethod for micromagnetics. IEEE Transactions on Magnetics, 37(3):1078–1086, 2001.
    [127] Nabors, K., Korsmeyer, F.T., Leighton, F.T., and White, J. Preconditioned, adap-tive, multipole-accelerated iterative methods for three-dimensional first-kind integralequations of potential theory. SIAM Journal on Scientific and Statistical Computing,15:713–735, 1994.
    [128] Song, J. and Chew, W.C. Multilevel fast-multipole algorithm for solving combinedfield integral equations of electromagnetic scattering. Microwave and Optical Tech-nology Letters, 157:289–297, 1995.
    [129] Gomez, J.E. and Power, H. A multipole direct and indirect BEM for 2D cavity ?owat low Reynolds number. Engineering Analysis with Boundary Elements, 19:17–31,1997.
    [130] Gaspar, C. A multipole expansion technique in solving boundary integral equations.Computer Methods in Applied Mechanics and Engineering, 10:14–19, 1998.
    [131] Nishimura, N., Yoshida, K., and Kobayashi, S. A fast multipole boundary integralequation method for crack problems in 3D. Engineering Analysis with BoundaryElements, 23:97–105, 1999.
    [132] Fujiwara, H. The fast multipole method for solving integral equations of three-dimensional topography and basin problems. Geophysical Journal International,140:198–210, 2000.
    [133] Mammoli, A.A. and Ingber, M.S. Parallel multipole BEM simulation of two-dimensional suspension ?ows. Engineering Analysis with Boundary Elements, 24:65–73, 2000.
    [134] Yoshida, K., Nishimura, N., and Kobayashi, S. Application of new fast multipoleboundary integral equation method to crack problems in 3D. Engineering Analysiswith Boundary Elements, 25:239–247, 2001.
    [135] Nishimura, N. Fast multipole accelerated boundary integral equation methods. Ap-plied Mechanics Reviews, 55(4):299–324, 2002.
    [136] Yabushita, K., Yamashita, M. and Tsuboi, K. An analytic solution of projectilemotion with quadratic resistance law using the homotopy analysis method. Journalof Physics A: Mathematical and Theoretical, 40:8403–8416, 2007.
    [137] Marinca, V. and Herisanu, N. Application of optimal homotopy asymptotic methodfor solving nonlinear equations arising in heat transfer. International Communicationsin Heat and Mass Transfer, 35:710–715, 2008.
    [138] Marinca, V., Herisanu, N. et al. An optimal homotopy asymptotic method appliedto the steady ?ow of a fourth-grade ?uid past a porous plate. Applied MathematicsLetters, 22(2):245–251, 2009.
    [139] Niu, Z. and Wang, C. A one-step optimal homotopy analysis method for nonlinear dif-ferential equations. Communications in Nonlinear Science and Numerical Simulation.(Online).
    [140] Liao, S.J. An optimal homotopy-analysis approach for strongly nonlinear di?erentialequations. Communications in Nonlinear Science and Numerical Simulation. (On-line).
    [141] Saad, Y. and Schultz, M. GMRES: A Generalized Minimal Residual Algorithm forSolving Nonsymmetric Linear Systems. SIAM Journal on Scientific and StatisticalComputing, 7:856–869, 1986.
    [142] MacCamy, R.C. and Fuchs, R.A. Wave forces on piles: a di?raction theory. U.S. ArmyCorps of Engineering, Beach Erosion Board, Technical Memorandum, 69, 1954.
    [143] Mei, C.C. Numerical methods in water-wave di?raction and radiation. Annual Reviewof Fluid Mechanics, 10:393–416, 1978.
    [144] Au, M.C. and Brebbia, C.A. Di?raction of water waves for vertical cylinders usingboundary elements. Applied Mathematical Modelling, 7(2):106–114, 1983.
    [145] Zhu, S.P. Di?raction of short-crested waves around a circular cylinder. Ocean Engi-neering, 20(4):389–407, 1993.
    [146] Mei, C.C. The applied dynamics of ocean surface waves. World Scientific, 1989.
    [147] Abramowitz, M. and Stegun, I.A. Handbook of Mathematical Functions. Dover, NewYork, 1965.
    [148] Kochin, N.E., Kibel, I.A. and Roze, N.V. Theoretical Hydromechanics. IntersciencePublishers, Wiley, 1964.
    [149] Newman, J.N. Marine Hydrodynamics. MIT Press, 1977.
    [150] Sahin, I., Crane, J.W. and Waston, K.P. Added mass coe?cients for submerged bodiesby a low-order panel method. Journal of Fluids Engineering, 115:452–457, 1993.
    [151] Sahin, I., Crane, J.W. and Waston, K.P. Application of a panel method to hydrody-namics of underwater vehicles. Ocean Engineering, 24(6):501–512, 1997.
    [152] Liu, Y.J. and Nishimura, N. The fast multipole boundary element method for poten-tial problems: A tutorial. Engineering analysis with boundary elements, 30:371–381,2006.
    [153] Laursen, M.E. and Gellert, M. Some criteria for numerically integrated matrices andquadrature for formulas for triangles. International Journal for Numerical Methodsin Engineering, 12:67–76, 1978.