表面等离子体增强AgX(X=Cl,Br,I)及其复合材料的制备、表征和光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,全球正面临着能源短缺、环境恶化和气候变暖等问题的严峻挑战,解决这些问题是我国实现可持续发展、提高人民生活质量和保障国家安全的迫切需要。光催化具有光分解水制氢、光降解有机污染物和光还原二氧化碳等功能,利用光催化材料可以将低密度的太阳能转化成高密度易储存的氢能,可以利用太阳能降解和矿化环境中的各种有机和无机污染物,还可以利用太阳能将二氧化碳还原成有机低碳烷烃,降低大气中二氧化碳等温室气体的含量,有机低碳烷烃还可以作为燃料,因此光催化在解决能源问题、环境问题和温室气体处理方面有重要的应用前景。然而,以二氧化钛为代表的传统光催化材料,带隙宽,只能利用太阳光中的紫外光,量子产率低,光生电子和空穴易复合,大大限制了其应用。为扩大和促进光催化材料在氢能源生产、环境净化和二氧化碳处理方面的应用,亟待发展新一代光催化材料。新型高效的可见光光催化材料已成为当前国际材料领域研究的热点。近三十多年来,人们对可见光光催化材料的探索主要集中在二氧化钛的掺杂和负载、复合光催化材料、异质结光催化材料、染料敏化光催化材料以及各种新型复合半导体光催化材料。
     不同于国内外的研究,我们提出了新型表面等离子体光催化材料的概念(AgX基)。新型表面等离子体光催化材料结合了贵金属的表面等离子体共振效应、金属半导体接触和半导体光催化材料的特性。通过调控贵金属纳米颗粒的大小、形貌以及所处环境等因素来控制其表面等离子体共振效应,使其能对可见光有较强的吸收,从而提高了光催化材料对可见光的利用率;由于金属颗粒的费米能级较低,在贵金属颗粒和半导体表面的接触区域,电荷重新分布,负载的金属颗粒能够使半导体光催化材料的能带发生弯曲,从而降低半导体光催化材料和水分子、二氧化碳分子以及其它有机污染物分子的接触能;体系中金属颗粒还能有效地捕获光生电子,使光生电子和空穴能够更有效地分离,从而使更多的光生电子或空穴参与到光催化反应中,提高了体系的光催化性能。表面等离子体光催化材料有效地解决了目前光催化研究中的缺点和不足,开辟了一条通过金属表面等离子体共振效应拓展光催化材料可见光光吸收,促进光催化体系中光生电子—空穴对的分离,进而提高光催化材料性能的新途径。
     在本论文中,我们主要介绍了新型表面等离子体光催化材料、复合光催化材料以及基于表面等离子体效应的复合光催化材料。其中表面等离子体光催化材料主要是Ag@AgCl、Ag@AgBr、Ag@Ag(Br,I)、Ag@Ag(Cl ,Br)和Ag@Ag(Cl,I)。卤化银是以钼酸银和盐酸或者钼酸银和氢溴酸为原料,通过离子交换法制备;再利用卤化银的光敏感性,在光照射和有机弱还原剂的作用下,使一小部分卤化银分解生成银纳米颗粒。所制备的表面等离子体光催化材料在可见光区有强的吸收,并具有优异的光催化性能。复合光催化材料主要是H2WO4·H20/AgCl体系。结合能带理论的计算结果我们发现水合钨酸的导带位置低于氯化银的导带位置,能够有效转移氯化银导带上的电子,进一步的实验结果也证明该体系能够在光照射下稳定存在,并且具有良好的光催化活性。基于表面等离子体共振效应的复合光催化材料是Ag/AgBr/WO3·H20,该光催化材料结合了表面等离子体光催化材料和复合光催化材料的优点。本论文共分为八章:
     第一章是背景介绍和相关工作的最新进展。首先从半导体能带理论入手,介绍了半导体光催化机理,简单介绍了卤化银的性质、晶体结构和应用,详细综述了半导体光催化材料在光解水制氢、环境治理及二氧化碳还原等方面的应用和最新进展。其次介绍了贵金属的表面等离子体共振现象、影响因素及其应用。接着介绍了表面等离子体光催化材料的概念及其最新进展。最后说明了本论文的选题意义、主要思路及主要研究内容。
     第二章是Ag@AgCl表面等离子体光催化材料的制备、表征及光催化性能研究。
     通过离子交换法和光致还原法合成Ag@AgCl表面等离子体光催化材料;利用X射线粉末衍射、扫描电子显微镜和分光光度计对光催化材料进行表征;通过降解甲基橙溶液评价了Ag@AgCl表面等离子体光催化材料的光催化性能;结合贵金属的表面等离子体共振效应和金属-半导体接触对其机理和稳定性进行了解释。
     第三章是不同形貌Ag@AgCl表面等离子体光催化材料的制备、表征及光催化性能研究。
     采用微波水热法,通过调节反应溶液的pH值合成不同形貌的前驱体钼酸银,通过离子交换法和光致还原法合成不同形貌的Ag@AgCl表面等离子体光催化材料;利用X射线粉末衍射、X射线能谱仪、扫描电子显微镜及分光光度计对材料进行表征;利用甲基橙评价了不同形貌的Ag@AgCl表面等离子体光催化材料的光催化性能,其中空心球状的Ag@AgCl表面等离子体光催化材料催化活性最好。研究表明通过形貌控制可以进一步改善材料的光催化性能。
     第四章是Ag@AgBr表面等离子体光催化材料的制备、表征及光催化性能研究。
     通过离子交换法和光致还原法合成Ag@AgBr表面等离子体光催化材料;利用X射线粉末衍射、扫描电子显微镜及分光光度计对光催化材料进行表征;通过降解异丙醇和甲基橙评价了Ag@AgBr表面等离子体光催化材料降解有机物的催化活性。发现Ag@AgBr表面等离子体光催化材料能有效地降解异丙醇和甲基橙,具有较高的催化活性,其催化活性要优于Ag@AgCl,并对其做出了解释。
     第五章是Ag@Ag(X1,X2)(X1,X2=Cl,Br,I)表面等离子体光催化材料的制备、表征及光催化性能研究。
     通过离子交换法和光致还原法制备出Ag@Ag(Br,I)表面等离子体光催化材料;利用X射线粉末衍射、X射线能谱仪、扫描电子显微镜及分光光度计对光催化材料进行表征;通过理论计算确定光催化材料中半导体碘溴化银的导带和价带位置,成功预测了表面等离子体光催化材料Ag@Ag(Br,I)比Ag@AgBr具有更好的光还原性;利用六价金属铬离子和甲基橙评价了Ag@Ag(Br,I)表面等离子体光催化材料的光催化活性。发现Ag@Ag(Br,I)表面等离子体光催化材料能有效地还原六价铬和降解甲基橙,具有较高的催化活性,碘离子的掺入有效地提高了体系的还原能力。利用相同的方法合成了Ag@Ag(Cl,Br)和Ag@Ag(Cl,I)表面等离子体光催化材料,并对其性能进行了表征。
     第六章是高效稳定复合可见光光催化材料H2WO4·H20/AgCl的制备、表征及光催化性能研究。
     通过理论计算结果得到水合钨酸的能带位置,结合能带理论和复合半导体的能带位置,设计出新型高效复合光催化材料H2WO4·H20/AgCl;通过离子交换法制备出H2WO4·H20/AgCl复合光催化材料;利用X射线粉末衍射、扫描电镜及分光光度计对样品进行表征;利用甲基橙和异丙醇评价了H2WO4·H20/AgCl复合光催化材料降解有机物的活性;H2WO4·H20/AgCl复合光催化材料能有效地降解甲基橙和异丙醇,其催化活性要优于水合钨酸和氮掺杂二氧化钛。结果表明通过引入合适的窄带隙半导体材料,有效转移走氯化银导带上的光生电子,就能保证复合体系中氯化银的稳定。此外复合光催化材料还能有效地分离光生电子—空穴对,延长了光生电子—空穴对的寿命,提高了复合体系的光催化量子产率。
     第七章是高效可见光光催化材料Ag/AgBr/WO3·H2O的制备、表征及光催化性能研究。
     通过理论计算结果得到水合三氧化钨的能带位置,结合金属银纳米颗粒的表面等离子体共振、能带理论和复合半导体的能带位置,设计出新型高效复合光催化材料Ag/AgBr/WO3·H2O;通过离子交换法和光致还原法制备出复合光催化材料Ag/AgBr/WO3·H2O;利用X射线粉末衍射、扫描电镜及分光光度计对样品进行表征;利用甲基橙评价复合光催化材料Ag/AgBr/WO3·H2O的光催化活性;利用大肠杆菌评价了复合光催化材料的可见光杀菌效果,其杀菌能力远强于氮掺杂二氧化钛和Ag@AgBr。水合三氧化钨的引入增强了体系的杀菌能力,该光催化材料结合了表面等离子体光催化材料和复合光催化材料的优点。
     第八章对本论文的工作进行了总结,并分析和讨论了现有研究工作存在的问题,对未来的研究工作进行了展望。
     总之,表面等离子体光催化材料有效地解决了光催化中可见光吸收和光生电子空穴分离的问题,开辟了一条探索新型高效可见光光催化材料的新途径。表面等离子体光催化材料的提出和复合光催化材料的设计思路对于解决当前的能源危机、环境污染和全球气候变暖等问题具有非常重要的理论指导意义。
Now the world faces the challenges of energy shortage, environment pollution and global warming. It's necessary to solve all these problems for our country to realize the sustainable development, raise people's living standard and guarantee national security. Photocatalyst can be used to split water, photodegrade organic pollution, photo-reduce CO2 and so on. Photocatalyst can convert the solar energy (low density) to hydrogen energy (high density), which is suitable for storage and transportation. Using hydrogen doesn't produce any pollution. Photocatalyst can use the sun light to degrade the organic pollution without producing the second pollution. Photocatalyst can also photo-reduce CO2 to organic alkane, minishing the content of CO2 in atmosphere, and the alkane can be used as fuel. Therefore, photocatalyst has prospect of application in solving the problem of energy shortage, environment pollution and global warming. However, the traditional photocatalyst TiO2 requires ultraviolet (UV) light (λ<400 nm), which provides sufficient energy for the electron excitation across its band gap (i.e.,3.2eV for anatase TiO2). Only about 4% of the solar spectrum can be utilized by pure TiO2. Thus, it is highly desirable to develop photocatalysts that can yield high reactivity under visible light. The visible light photocatalyst has become the research hotspot. In the latest 30 years, to extend the absorption band-edge of TiO2 from UV to visible light region, a number of different approaches have been developed, including doping and combining TiO2 with other semiconductors, heterojunction photocatalysts, dye-sensitized photocatalysts and other newly composite semiconductor photocatalysts.
     Different from other's research, we have put forward plasmonic photocatalyst based on the AgX materials. The plasmonic photocatalyst combines the property of noble metal nanoparticles' surface plasmon resonance (SPR), metal-semiconductor contact and semiconductor photocatalyst. The SPR can be modulated by tuning the size, shape and surrounding of the noble metal nanoparticles. The SPR can enhance photocatalyst's visible light absorption, leading to high photocatalytic efficiency. Due to the low Fermi level, noble metal can reduce the contact energy between the semiconductor and H2O, CO2 and other organic molecule. The noble metal also works as electron trap, making the separation between electrons and holes more efficient. Therefore more photo-generated electrons and holes take part in the photocatalytic reaction, leading to high photocatalytic efficency. The plasmonic photocatalyst extends the absorption band-edge of photocatalyst, makes the photo-generated electrons and holes separate more efficiently, explores a new way to design and fabricate highly efficient photocatalysts.
     In this thesis, we mainly introduced the new plasmonic photocatalysts, composite photocatalyst and composite photocatalyst based on the SPR. The plasmonic photocatalysts mainly include Ag@AgCl, Ag@AgBr, Ag@Ag(Br,I), Ag@Ag(Cl,Br) and Ag@Ag(Cl,I). The AgX is fabricated by the ion exchange process between Ag2MoO4 and HX. The Ag@AgX is fabricated by the light-induced chemical reduction process. The plasmonic photocatalysts have strong absorption in visible light region, and show high photocatalytic efficiency. The composite photocatalyst is H2WO4·H2O/AgCl. By theoretical calculation, we find that the valence band and conduction band of H2WO4·H2O are lower than that of AgCl. For such a system, photons may be absorbed in both AgCl and H2WO4·H2O semiconductors forming electrons and holes. However, an electron at the conduction band bottom of AgCl would migrate to that of the H2WO4·H2O, hence being prevented from combining with an Ag+ ion, whereas a hole at the valence band top of AgCl would remain there. In contrast, a hole at the valence band top of H2WO4·H2O would migrate to that of AgCl, but an electron at the conduction band bottom of the SBG semiconductor would remain there. The composite photocatalyst H2WO4·H2O/AgCl makes the separation between electrons and holes more efficient, showing high photocatalytic efficiency. The composite photocatalyst based on SPR is Ag/AgBr/WO3·H2O, which combines the advantages of plasmonic photocatalyst and composite photocatalyst.
     In Chapter one, we briefly introduced the background and the latest progress of related works. Firstly the mechanism of semiconductor photocatalyst was introduced based on semiconductor's energy band theory. The properties, crystal structures and applications of AgX were briefly introduced. The latest progress in visible light photocatalysts was reviewed in detail. Secondly, the noble metal's SPR, influencing factors and application were introduced. The conception and the latest progress of plasmonic photocatalyst were introduced. Finally, the significance of topic selection, train of though and outline of the thesis were summarized.
     In Chapter two, we studied the preparation, characterization and photocatalytic property of plasmonic photocatalyst Ag@AgCl.
     The plasmonic photocatalyst Ag@AgCl was fabricated by the ion-exchange process and light-induced chemical reduction reaction. The plasmonic photocatalyst Ag@AgCl was characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and UV/Vis spectroscopy (UV-DRS). The photocatalytic property was evaluated by measuring the decomposition of methylic orange (MO). The mechanism and photo-stability were discussed based on SPR and metal-semiconductor contact.
     In Chapter three, we studied the preparation, characterization and photocatalytic property of plasmonic photocatalyst Ag@AgCl with various structures.
     The precursor Ag2MoO4 was synthysized by microwave-hydrothermal method. By tuning the pH of starting solution, Ag2MoO4 with various structures were got. The plasmonic photocatalyst Ag@AgCl with various structures were fabricated by the ion-exchange process and light-induced chemical reduction reaction. The plasmonic photocatalysts were characterized by XRD, SEM, X-ray photoelectron spectroscopy (XPS) and UV-DRS. The photocatalytic property was evaluated by measuring the decomposition of MO. The Ag@AgCl with hollow sphere structure shows higher photocatalytic efficiency. By morphology control, high efficient photocatalysts can be got.
     In Chapter four, we studied the preparation, characterization and photocatalytic property of plasmonic photocatalyst Ag@AgBr.
     The plasmonic photocatalyst Ag@AgBr was fabricated by the ion-exchange process and light-induced chemical reduction reaction. The plasmonic photocatalyst was characterized by XRD, SEM and UV-DRS. The photocatalytic property was evaluated by measuring the decomposition of MO. Ag@AgBr shows higher efficiency in photo-degradation of MO than that of Ag@AgCl, the mechanism was discussed.
     In Chapter five, we studied the preparation, characterization and photocatalytic property of plasmonic photocatalyst Ag@Ag(X1,X2) (X1,X2=Cl,Br,I).
     The plasmonic photocatalyst Ag@Ag(Br,I) was fabricated by the ion-exchange process and light-induced chemical reduction reaction. The plasmonic photocatalyst was characterized by XRD, SEM, XPS and UV-DRS. From the results of the calculation, we can predict that the reducing ability of Ag(Br,I) is stronger than that of AgBr. The reducing ability of the plasmonic photocatalysts has been checked. The plasmonic photocatalyst Ag@Ag(Br,I) shows high efficiency in photo-reduction of Cr(VI) than that of Ag@AgBr. The introduction of iodine element enhanced the reducing ability of the plasmonic photocatalyst. The plasmonic photocatalysts Ag@Ag(Cl,Br) and Ag@Ag(Cl,I) were also fabricated by the same method, and the properties were characterized by XRD, SEM, UV-DRS and photo-reduction of Cr(VI).
     In Chapter six, we studied the preparation, characterization and photocatalytic property of composite photocatalyst H2WO4·H2O/AgCl.
     The band position of H2WO4 was determined by theoretical calculation. The newly high efficient photocatalyst H2WO4·H2O/AgCl was designed based on the band theory and band positions of semiconductors. The composite photocatalyst H2WO4-H2O/AgCl was fabricated by the ion-exchange process. The photocatalyst was characterized by XRD, SEM and UV-DRS. The photocatalytic property was evaluated by measuring the decomposition of MO. H2WO4·H2O/AgCl shows high efficiency. The composite photocatalyst enhanced the separation between electrons and holes, leading to high photocatalytic efficiency.
     In Chapter seven, we studied the preparation, characterization and photocatalytic property of composite photocatalyst Ag/AgBr/WO3·H2O.
     The band position of WO3·H2O was determined by theoretical calculation. The newly high efficient photocatalyst Ag/AgBr/WO3·H2O was designed based on SPR, band theory and band positions of semiconductors. The photocatalyst Ag/AgBr/WO3·H2O was fabricated by the ion-exchange process and light-induced chemical reduction reaction. The photocatalyst was characterized by XRD, SEM, XPS and UV-DRS. The photocatalytic property was evaluated by measuring the decomposition of MO and bacterial destruction. Ag/AgBr/WO3·H2O shows high efficiency in bacterial destruction. The introduction of WO3·H2O enhanced the bacterial destruction ability of the photocatalyst.
     In Chapter eight, the summary and prospect were given. The problems remained to be solved were discussed. At last, a plan for the future work was made and the futurity was expectation.
     In summary, the plamsonic photocatalyst solves the visible light absorption and separation of electons-holes, exploring a new way to fabricate high efficient photocatalyst. The plasmonic photocatalyst and composite photocatalyst are of great theoretical guidance for the practical application in solving the problem of energy shortage, environment pollution and global warming in the future.
引文
[1]A. Fujishima, K. Honda, Nature,1972,238,37-38.
    [2]S. Sato, Science,2002,295,626-627.
    [3]G A. Somorjai, H. Frei, J. Y. Park, J. Am. Chem. Soc.,2009,131,16589-16605.
    [4]A. F. Heyduk, D. G. Nocera, Science,2001,293,1639-1641.
    [5]M. Fujihira, Y. Satoh, T. Osa, Nature,1981,293,206-208.
    [6]G Steinberg-Yfrach, P. A. Liddell, S.C. Hung, A. L. Moore, D. Gust, T. A. Moore, Nature,1997,385,239-241.
    [7]A. Bauer, F. Westkamper, S. Grimme, T. Bach, Nature,2005,436,1139-1140.
    [8]H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater.,2006,5, 782-786.
    [9]N. Satoh, T. Nakashima, K. Kamikura, K. Yamamoto, Nat. Mater.,2008,3, 106-111.
    [10]A. Maldotti, A. Molinari, R. Amadelli, Chem. Rev.,2002,102,3811-3836.
    [11]X. B. Chen, S. S. Mao, Chem. Rev.,2007,107,2891-2959.
    [12]R. Baba, S. Nakabayashi, A. Fujishima, K. Honda, J. Am. Chem. Soc.,1987, 109,2273-2277.
    [13]Y. Kim, S. Salim, M. J. Huq, T. E. Mallouk, J. Am. Chem. Soc.,1991,113, 9561-9563.
    [14]M. Graetzel, Acc. Chem. Res.,1981,14,376-384.
    [15]S. K. Joung, T. Amemiya, M. Murabayashi, K. Itoh, Chem. Eur. J.,2006, 12,5526-5534.
    [16]S. Rodrigues, K. T. Ranjit, S. Uma, I. N. Martyanov, K. J. Klabunde, Adv. Mater.,2005,17,2467-2471.
    [17]M. R. Elahifard, S. Rahimnejad, S. Haghighi, M. R. Gholami, J. Am. Chem. Soc.,2007,129,9552-9553.
    [18]P. Usubharatana, D. McMartin, A. Veawab, P. Tontiwachwuthikul, Ind. Eng. Chem. Res.,2006,45,2558-2568.
    [19]R. J. Braham, A. T. Harris, Ind. Eng. Chem. Res.,2009,48,8890-8905.
    [20]刘守新,刘鸿,光催化及光电催化基础与应用,材料科学与工程出版中心,2005.
    [21]杨树人,王宗昌,王兢,半导体材料,科学出版社,2003.
    [22]K. Maeda, K. Domen, J. Phys. Chem. C,2007,111,7851-7861.
    [23]A. Kudo, Y. Miseki, Chem. Soc. Rev.,2009,38,253-278.
    [24]Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa, Nature,2001,414,625-627.
    [25]D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature,2006,440,295-295.
    [26]B. B. Kale, J. O. Baeg, S. M. Lee, H. Chang, S. J. Moon, C. W. Lee, Adv. Fun. Mater.,2006,16,1349-1354.
    [27]I. Tsuji, H. Kato, A. Kudo, Angew. Chem. Int. Ed.,2005,44,3565-3568.
    [28]P. Ritterskamp, A. Kuklya, M. A. Wustkamp, K. Kerpen, C. Weidenthaler, M. Demuth, Angew. Chem. Int. Ed.,2007,46,7770-7774.
    [29]S. M. Sun, W. Z. Wang, H. L. Xu, L. Zhou, M. Shang, L. Zhang, J. Phy. Chem. C,2008,112,17835-17843.
    [30]J. H. Huang, K. N. Ding, X. C. Wang, X. Z. Fu, Langmuir,2009,25, 8313-8319.
    [31]S. H. Yoon, J. H. Lee, Environ. Sci. Technol.,2005,39,9695-9701.
    [32]B. Neppolian, A. Doronila, F. Grieser, M. Ashokkumar, Environ. Sci. Technol., 2009,43,6793-6798.
    [33]Q. Li, N. J. Easter, J. K. Shang, Environ. Sci. Technol.,2009,43,1534-1539.
    [34]J. J. Testa, M. A. Grela, M. I. Litter, Langmuir,2001,17,3515-3517.
    [35]J. J. Testa, Environ. Sci. Technol.,2004,38,1589-1594.
    [36]X. L. Wang, S. O. Pehkonen, A. K. Ray, Ind. Eng. Chem. Res.,2004,43, 1665-1672.
    [37]S. J. Hug, H. U. Laubscher, Environ. Sci. Technol.,1997,31,160-170.
    [38]H. B. Yu, S. Chen, X. Quan, H. M. Zhao, Y. B. Zhang, Environ. Sci. Technol., 2008,42,3791-3796.
    [39]H. Takeda, K. Koike, H. Inoue, O. Ishitani, J. Am. Chem. Soc.,2008,130, 2023-2031.
    [40]H. Ishida, T. Terada, K. Tanaka, T. Tanaka, Organometallics,1990,6,181-186.
    [41]J. Hawecker, J. M. Lehn, R. Ziessel, J. Chem. Soc. Chem. Commun.,1983, 536-538.
    [42]J. Grodkowski, T. Dhanasekaran, P. Neta, P. Hambright, B. S. Brunschwig, K. Shinozaki, E. Fujita, J. Phys. Chem. A,2000,104,11332-11339.
    [43]T. Ogata, S. Yanagida, B. S. Brunschwig, E. Fujita, J. Am. Chem. Soc.,1995, 117,6708-6716.
    [44]S. Matsuoka, K. Yamamoto, T. Ogata, M. Kusaba, N. Nakashima, E. Fujita, S. Yanagida, J. Am. Chem. Soc.,1993,115,601-609.
    [45]O. K. Varghese, M. Paulose, T. J. LaTempa, C. A. Grimes, Nano Lett.,2009,9, 731-737.
    [46]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science,2001,293, 269-271.
    [47]S. Sakthivel, H. Kisch, Angew. Chem. Int. Ed.,2003,42,4908-4911.
    [48]T. Umebayashi, T. Yamaki, S. Tanaka, K. Asai, Chem. Lett.,2003,32,330-331.
    [49]W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai, J. Am. Chem. Soc.,2004,126, 4782-4783.
    [50]X. T. Hong, Z. P. Wang, W. M. Cai, F. Lu, J. Zhang, Y. Z. Yang, N. Ma, Y. J. Liu, Chem. Mater.,2005,17,1548-1552.
    [51]S. Kim, S. J. Hwang, W. Choi, J. Phys. Chem. B,2005,109,24260-24267.
    [52]S. U. M. Khan, M. Al-Shahry, W. B. I. Jr. Science,2002,297,2243-2245.
    [53]K. Maeda, Y. Shimodaira, B. Lee, K. Teramura, D.L. Lu, H. Kobayashi, K. Domen, J. Phys. Chem. C,2007,111,18264-18270.
    [54]J. Choi, H. Park, M. R. Hoffman, J. Phys. Chem. C,2010,114,783-792.
    [55]Z. F. Liu, Z. g. Zhao, M. Miyauchi, J. Phys. Chem. C,2009,113,17132-17137.
    [56]H. X. Li, Z. F. Bian, J. Zhu, Y. N. Huo, H. Liu, Y. F. Lu, J. Am. Chem. Soc., 2009,129,4538-4539.
    [57]R. Abe, H. Takami, N. Murakami, B. Ohtani, J. Am. Chem. Soc.,2008,130, 7780-7781.
    [58]W. Kim, T. Tachikawa, T. Majima, W. Choi, J. Phys. Chem. C,2009,113, 10603-10609.
    [59]K. Maeda, M. Eguchi, W. J. Youngblood, T. E. Mallouk, Chem. Mater.,2008, 20,6770-6778.
    [60]W. Zhao, Y. L. Sun, F. N. Castellano, J. Am. Chem. Soc.,2008,130, 12566-12567.
    [61]J. Yu, A. Kudo, Adv. Fun. Mater.,2006,16,2163-2169.
    [62]J. W. Tang, Z. G. Zou, J. H. Ye, Angew. Chem. Int. Ed.,2004,43,4463-4466.
    [63]H. G. Kim, D. W. Hwang, J. S. Lee, J. Am. Chem. Soc.,2004,126,8912-8913.
    [64]J. K. Zhou, Z. G. Zou, A. K. Ray, X. S. Zhao, Ind. Eng. Chem. Res.,2007,46, 745-749.
    [65]G S. Li, D. Q. Zhang, J. C. Yu, Chem. Mater.,2008,20,3983-3992.
    [66]S. Li, Y.-H. Lin, B.-P. Zhang, Y. Wang, C.-W. Nan, J. Phys. Chem. C,2010, 114,2903-2908.
    [67]W. F. Yao, C. P. Huang, J. H. Ye, Chem. Mater.,2010,22,1107-1113.
    [68]I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Chem. Mater.,2010, 22,1402-1409.
    [69]W. J. Li, D. Z. Li, W. J. Zhang, Y. Hu, Y. H. He, X. Z. Fu, J. Phys. Chem. C, 2010,114,2154-2159.
    [70]H. Zhang, X. J. Lv, Y. M. Li, Y. Wang, J. H. Li, ACS. Nano,2010,4,380-386.
    [71]Y. Noda, B. Lee, K. Domen, J. N. Kondo, Chem. Mater.,2008,20,5361-5367.
    [72]X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater.,2008,8,76-80.
    [73]S. K. Ghosh, T. Pal, Chem. Rev.,2007,107,4797-4862.
    [74]P. Jain, X. H. Huang, I. H. El-sayed, M. A. El-sayed, Acc. Chem. Res.,2008, 41,1578-1586.
    [75]W. A. Murray, W. L. Barnes, Adv. Mater.,2007,19,3771-3782.
    [76]H. Wang, D. W. Brandl, P. Nordlander, N. J. Halas, Acc. Chem. Res.,2007,40, 53-62.
    [77]U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters; Springer:Berlin, 1995.
    [78]G. Schmid, Clusters and Colloids-From Theory to Applications; VCH: Weinheim, Germany,1994.
    [79]R. Kubo, J. Phys. Soc. Jpn.,1962,17,975-986.
    [80]J. D. Jackson, Classical Electrodynamics; Wiley:New York,1975.
    [81]A. Henglein, J. Phys. Chem. B,2000,104,6683-6685.
    [82]S. W. Chen, R. J. Pei, J. Am. Chem. Soc.,2001,123,10607-10615.
    [83]J. I. Park, J. Cheon, J. Am. Chem. Soc.,2001,123,5743-5746.
    [84]A. Henglein, M. Giersig, J. Phys. Chem. B,2000,104,5056-5060.
    [85]Z. L. Wang, J. Phys. Chem. B,2000,104,1153-1175.
    [86]S. Park, P. X. Yang, P. Corredor, M. J. Weaver, J. Am. Chem. Soc.,2002,124, 2428-2429.
    [87]A. C. Templeton, M. J. Hostetler, E. K. Warmoth, S. W. Chen, C. M. Hartshorn, V. M. Krishnamurthy, M. D. E. Forbes, R. W. Murray, J. Am. Chem. Soc.,1998,120,4845-4849.
    [88]J. T. Krug, G. D. Wang, S. R. Emory, S. M. Nie, J. Am. Chem. Soc.,1999,121, 9208-9214.
    [89]M. P. Pileni, A. Taleb, C. Petit, J. Dispersion Sci. Technol.,1998,19,185-206.
    [90]K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B,2003, 107,668-677.
    [91]S. Link, M. A. El-Sayed, J. Phys. Chem. B,1999,103,4212-4217.
    [92]S. Link, M. B. Mohamed, M. A. El-Sayed, J. Phys. Chem. B,1999,103, 3073-3077.
    [93]S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas, Chem. Phys. Lett., 1998,28,243-247.
    [94]P. K. Jain, M. A. Nano Lett.,2007,7,2854-2858.
    [95]E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, Science,2003,302,419-422.
    [96]A. M. Schwartzberg, J. Z. Zhang, J. Phys. Chem. C,2008,112,10323-10337.
    [97]M. E. Stewart, C.R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, R. G. Nuzzo, Chem. Rev.,2008,108,494-521.
    [98]S. Lal, S. E. Clare, N. J. Halas, Acc. Chem. Res.,2008,41,1842-1851.
    [99]K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, Cancer Res.,2003,63,1999-2004.
    [100]Y. Khalavka, J. Becker, C. Sonnichsen, J. Am. Chem. Soc.,2009,131, 1871-1875.
    [101]A. P. Alivisatos, Nat. Biotechnol.,2004,22,47-52.
    [102]R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Science,1997,277,1078-1080.
    [103]A. J. Haes, R. P. Van Duyne, J. Am. Chem. Soc.,2002,124,10596-10604.
    [104]B. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, J. Liphardt, Proc. Natl. Acad. Sci. U.S.A.,2007,104,2667-2672.
    [105]C. Sonnichsen, B. M. Reinhard, J. Liphardt, A. P. Alivisatos, Nat. Biotechnol.,2005,23,741-745.
    [106]N. L. Rosi, C. A. Mirkin, Chem. Rev.,2005,105,1547-1562.
    [107]R. Muszynski, B. Seger, P. V. Kamat, J. Phys. Chem. C,2008,112, 5263-5266.
    [108]J. J. McMahon, M. Barry, K. J. Breen, A. K. Radziwon, L. D. Brooks, M. R. Blair, J. Phys. Chem. C,2008,112,1158-1166.
    [109]T. Ung, L. M. Liz-Marzan, P. Mulvaney, J. Phys. Chem. B,1999,103, 6770-6773.
    [110]N. Chandrasekharan, P. V. Kamat, J. Phys. Chem. B,2000,104, 10851-10857.
    [111]Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima, Y. Maeda, J. Phys. Chem. B,2000,104,6028-6032.
    [112]K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, Cancer Res.,2003,63,1999-2004.
    [113]I. H. El-Sayed, X. Huang, M. A. El-Sayed, Nano Lett.2005,5,829-834.
    [114]P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, J. Phys. Chem. B, 2006,110,7238-7248.
    [115]L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E.Price, J. D. Hazle, N. J. Halas, J. L. West, Proc. Natl. Acad. Sci. U.S.A.,2003, 100,13549-13554.
    [116]Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc., 2006,128,2115-2120.
    [117]I. H. El-Sayed, X. Huang, M. A. El-Sayed, Cancer Lett.,2006,239, 129-135.
    [118]D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, Cancer Lett., 2004,209,171-176.
    [119]C. A.Loo, A. Lowery, N. Halas, J. West, R. Drezek, Nano Lett.,2005,5, 709-711.
    [120]P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Nano Today,2007,2,18-29.
    [121]X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Photochem. Photobiol.,2006,82,412-417.
    [122]K.-S. Lee, M. A. El-Sayed, J. Phys. Chem. B,2006,110,19220-19225.
    [123]S. Underwood, P. Mulvaney, Langmuir,1994,10,3427-3430.
    [124]曹锡章,宋天佑,王杏乔,无机化学,1992.
    [125]X. Chen, H.-Y. Zhu, J.-C. Zhao, Z.-F. Zheng, X.-P. Gao, Angew. Chem. Int. Ed.,2008,47,5353-5356.
    [126]K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc.,2008,130,1676-1680.
    [127]P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, J. Y. Wei, and M.-H. Whangbo, Angew. Chem. Int.Ed.,2008,47,7931-7933.
    [128]P. Wang,B. B. Huang, X. Y. Zhang, X. Y. Qin, H. Jin, Y. Dai, Z. Y. Wang, J. Y. Wei, J. Zhan, S. Y. Wang, J. P. Wang, M.-H. Whangbo, Chem. Eur. J., 2009,15,1821-1824.
    [129]C. Hu, T. W. Peng, X. X. Hu, Y. L. Nie, X. F. Zhou, J. H. Qu, H. He, J. Am. Chem, Soc.,2010,132,857-862.
    [130]S. M. Sun, W. Z. Wang, L. Zhang, M. Shang, L. Wang, Catal. Commun., 2009,11,290-293.
    [131]Y. P. Bi, J. H. Ye, Chem. Commun.,2010,46,1532-1534.
    [132]J. G. Yu, G. P. Dai, B. B. Huang, J. Phys. Chem. C,2009,113, 16394-16401.
    [133]K. Ikeda, J. Sato, N. Fujimoto, N. Hayazawa, S. Kawata, K. Uosaki, J. Phys. Chem.C,2009,113,11816-11821.
    [134]R. H. Li, W. X. Chen, H. Kobayashi, C. X. Ma, Green Chem.,2010,12, 212-215.
    [135]P. Wang, B. B. Huang, X. Y. Zhang, X. Y. Qin, Y. Dai, H. Jin, J. Y. Wei, M.-H. Whangbo, Chem. Eur. J.,2008,14,10543-10546.
    [136]P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, M.-H. Whangbo, Inorg. Chem.,2009,48,10697-10702.
    [137]P. Wang, B. B. Huang, Z. Z. Lou, X. Y. Zhang, X. Y. Qin, Y. Dai, Z. K. Zheng, X. N. Wang, Chem. Eur. J.,2010,16,538-544.
    [1]G. C. Papavassiliou, Prog. Solid State Chem.,1979,12,185-271.
    [2]C. F. D. Bohren, R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York,1983.
    [3]Optical Properties of Metal Clusters (Eds.:U. Kreibig, M. Vollmer), Springer, Berlin,1995.
    [4]G. Mie, Ann. Phys.,1908,25,377-445.
    [5]P. Mulvaney, Langmuir,1996,12,788-800.
    [6]X. H. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc.,2006, 128,2115-2120.
    [7]D. L. Feldheim, C. A. J. Foss, Metal Nanoparticles:Synthesis, Characterization, and Applications, Marcel Dekker, New York,2002.
    [8]H. Yuan, Chem. Mater.,2007,19,1592-1600.
    [9]G. C. Schatz, Acc. Chem. Res.,1984,17,370-376.
    [10]K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B,2003,107, 668-677.
    [11]V. Germain, A. Brioude, D. Ingert, M. P. Pileni, J. Chem. Phys.,2005,122, 124707-124715.
    [12]R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Science,2001,294,1901-1903.
    [13]J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. Schultz, J. Chem. Phys., 2002,116,6755-6759.
    [14]S. Link, M. A. El-Sayed, Int. Rev. Phys. Chem.,2000,19,409-453.
    [15]P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, J. Phys. Chem. B,2006, 110,7238-7248.
    [16]K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B,2003,107, 668-677.
    [17]S. Link, M. A. El-Sayed, Int. Rev. Phys. Chem.,2000,19,409-453.
    [18]S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas, Chem. Phys. Lett., 1998,28,243-247.
    [19]J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, J. Am. Chem. Soc.,1998,120,1959-1964.
    [20]K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, R. P. Van Duyne, J. Am. Chem. Soc.,003,125,588-593.
    [21]R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Science, 1997,277,1078-1080.
    [22]A. J. Haes, R. P. Van Duyne, J. Am. Chem. Soc.,2002,124,10596-10604.
    [23]Y. Tian, T. Tatsuma, Chem. Commun.,2004,1810-1811.
    [24]Y. Tian, T. Tatsuma, J. Am. Chem. Soc.,2005,127,7632-7637.
    [25]K. Matsubara, T. Tatsuma, Adv. Mater.,2007,19,2802-2806.
    [26]K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc.,2008,130,1676-1680.
    [27]J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z. Y. Li, Y. Xia, Nano Lett.,2005,5, 2058-2062.
    [28]P. R. Selvakannan, M. Sastry, Chem. Commun.,2005,1684-1686.
    [29]C. L. Nehl, H. Liao, J. H. Hafner, Nano Lett.,2006,6,683-688.
    [30]D. Schurch, A. Currao, S. Sarkar, G. Hodes, G. Calzaferri, J. Phys. Chem. B, 2002,106,12764-12775.
    [31]N. Kakuta, N. Goto, H. Ohkita, T. Mizushima, J. Phys. Chem. B,1999,103, 5917-5919.
    [32]K. Maeda, Y. Shimodaira, B. Lee, K. Teramura, D. Lu, H. Kobayashi, K. Domen, J. Phys. Chem. C,2007,111,18264-18270.
    [33]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science,2001,293, 269-271.
    [34]D. Meissner, R. Memming, B. Kastening, J. Phys. Chem.,1988,92,3476-3483.
    [35]J. Tejeda, N. J. Shevchick,W. Braun, A. Goldmann, M. Cardona, Phys. Rev. B, 1975,12,1557-1566.
    [36]J. F. Hamilton, Photogr. Sci. Eng.,1974,18,493-500.
    [37]S. S. Soni, M. J. Henderson, J. F. Bardeau, A. Gibaud, Adv. Mater.,2008,20, 1493-1498.
    [38]M. R. Hoffmann, S. T. Martin,W. Choi,W. Bahnemann, Chem. Rev.,1995,95, 69-96.
    [1]Y. Cui, C. M. Lieber, Science,2001,291,851-853.
    [2]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater.,2003,15,353-389.
    [3]G. R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. Int. Ed.,2002,41, 2446-2461.
    [4]Y. Q. Zhang, P. L. Chen, L. Jiang, W. P. Hu, M. H. Liu, J. Am. Chem. Soc.,2009, 131,2756-2757.
    [5]S. J. Hurst, E. K. Payne, L. D. Qin, C. A. Mirkin, Angew. Chem. Int. Ed.,2006, 45,2672-2692.
    [6]M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Science,2001,292,1897-1899.
    [7]E. M. Larsson, J. Alegret, M. Kall, D. S. Sutherland, Nano Lett.,2007,7, 1256-1263.
    [8]M. A. El-Sayed, Acc. Chem. Res.,2001,32,257-264.
    [9]A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, V. M. Rotello, Nature,2000,404,746-748.
    [10]K. D. Hermanson, S. O. Lumsdon, J. P. Williams, E. W. Kaler, O. D. Velev, Science,2001,294,1082-1086.
    [11]J. H. Pan, X. W. Zhang, A. J. Du, D. D. Sun, J. O. Leckie, J. Am. Chem. Soc., 2008,130,11256-11257.
    [12]H. B. Zeng, W. P. Cai, P. S. Liu, X. X. Xu, H. J. Zhou, C. Klingshirn, H. Kalt, ACS Nano.,2008,2,1661-1670.
    [13]A. P. Alivisatos, Science,1996,271,933-937.
    [14]X. C. Wang, X. F. Chen, A. Thomas, X. Z. Fu, M. Antonietti, Adv. Mater.,2009, 21,1609-1612.
    [15]M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, P. Avouris, ACS Nano.,2008,2,2425-2452.
    [16]A. M. Yu, G Q. M. Lu, J. Drennan, I. R. Gentle, Adv. Fun. Mater.,2007,17, 2600-2605.
    [17]J. M. Macak, M. Zlamal, J. Krysa, P. Schmuki, Small,2007,3,300-304.
    [18]D. F. Wang, Z. G Zou, J. H. Ye, Chem. Mater.,2005,17,3255-3261.
    [19]K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature,2006,440,295-295.
    [20]J. G. Yu, F. R. F. Fan, S. Pan, V. M. Lynch, K. M. Omer, A. J. Bard, J. Am. Chem. Soc.,2008,130,7196-7197.
    [21]L. X. Mu, W. S. Shi, J. C. Chang, S. T. Lee, Nano Lett.,2008,8,104-109.
    [22]H. Uehara, M. Kakiage, M. Sekiya, D. Sakuma, T. Yamonobe, N. Takano, A. Barraud, E. Meurville, P. Ryser, ACS Nano.,2009,3,924-932.
    [23]J. G Yu, Y. R. Su, B. Cheng, Adv. Fun. Mater.,2007,17,1984-1990.
    [24]M. Elvington, J. Brown, S. M. Arachchige, K. J. Brewer, J. Am. Chem. Soc., 2007,129,10644-10645.
    [25]E. Martinez-Ferrero, Y. Sakatani, C. Boissiere, D. Grosso, A. Fuertes, J. Fraxedas, C. Sanchez, Adv. Fun. Mater.,2007,17,3348-3354.
    [26]Y. J. Song, R. M. Garcia, R. M. Dorin, H. R. Wang, Y. Qiu, J. A. Shelnutt, Angew. Chem. Int. Ed.,2006,45,8126-8130.
    [27]H. R. Wang, Y. J. Song, Z. C. Wang, C. J. Medforth, J. E. Miller, L. Evans, P. Li, J. A. Shelnutt, Chem. Mater.,2008,20,7434-7439.
    [28]S. M. Sun, W. Z. Wang, H. L. Xu, L. Zhou, M. Shang, L. Zhang, J. Phys. Chem. C,2008,112,17835-17843.
    [29]X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G Xin, J. M. Carlsson, K. Domen, M. Antoniettil, Nat. Mater.,2009,8,76-80.
    [30]G H. Lu, L. E. Ocola, J. H. Chen, Adv. Mater.,2009,21,1-10.
    [31]J. H. Kou, Z. S. Li, Y. P. Yuan, H. T. Zhang, Y Wang, Z. G Zou, Environ. Sci. Technol.,2009,43,2919-2924.
    [32]Y. J. Song, R. M. Dorin, R. M. Garcia, Y. B. Jiang, H. Wang, P. Li, Y. Qiu, F. V. Swol, J. E. Miller, J. A. Shelnutt, J. Am. Chem. Soc.,2008,130,12602-12603.
    [33]M. Higashi, R. Abe, T. Takata, K. Domen, Chem. Mater.,2009,21,1543-1549.
    [34]C. F. Wu, B. Bull, K. Christensen, Jason McNeill, Angew. Chem. Int. Ed.,2009, 48,2741-2745.
    [35]X. C. Wang, K. Maeda, X. F. Chen, K. Takanabe, K. Domen, Y. D. Hou, X. Z. Fu, M. Antonietti, J. Am. Chem. Soc.,2009,131,1680-1681.
    [36]J. Xu, W. X. Zhang, Z. H. Yang, S. X. Ding, Ch. Y. Zeng, L. L. Chen, Q. Wang, S. H. Yang, Adv. Fun. Mater.,2009,19,1759-1766.
    [37]Q. Li, R. C. X ie, Y. W. Li, E. Mintz, J. K. Shang, Environ. Sci. Technol.,2007, 41,5050-5056.
    [38]A. Datta, S. Gorai, S. K. Panda, S. Chaudhuri, Cryst. Growth Des.,2006,6, 1010-1013.
    [39]J. I. Yamada, H. Akutsu, Chem. Rev.,2004,104,5057-5084.
    [40]J. Reading, M. T. Weller, J. Mater. Chem.,2001,11,2373-2377.
    [41]M. H. Ge, J. D. Corbett, Inorg. Chem.,2007,46,4138-4144.
    [42]S. S. Mark, M. Bergkvist, X. Yang, L. M. Teixeira, P. Bhatnagar, E. R. Angert, C. A. Batt, Langmuir,2006,22,3763-3774.
    [43]Q. Wan, T. H. Wang, Chem. Commun.,2005,30,3841-3843.
    [44]J. G. Yu, H. G Yu, H. T. Guo, M. Li, S. Mann, Small,2008,4,87-91.
    [45]V. Polshettiwar, B. Baruwati, R. S. Varma, ACS Nano.,2009,3,728-736.
    [46]D. Chen, J. H. Ye, Adv. Fun. Mater.,2008,18,1922-1928.
    [47]L. P. Xu, S. Sithambaram, Y. S. Zhang, C. H. Chen, L. Jin, R. Joesten, S. L. Suib, Chem. Mater.,2009,21,1253-1359.
    [48]X. X. Hu, C. Hu, J. H. Qu, Applied Catalysis B:Environmental,2006,69, 17-23.
    [49]C. W. Beier, M. A. Cuevas, R. L. Brutchey, Small,2008,12,2102-2106.
    [50]L. W. Zhang, Y. J. Wang, H. Y. Cheng, W.Q. Yao, Y. F. Zhu, Adv. Mater.,2009, 21,1286-1290.
    [51]S. L. Xiong, B. J. Xi, C. M. Wang, D. C. Xu, X. M. Feng, Z. C. Zhu, Y. T. Qian, Adv. Funct. Mater.,2007,17,2728-2738.
    [52]X. Chen, H.Y. Zhu, J. C. Zhao, Z. F. Zheng, X. P. Gao, Angew. Chem. Int. Ed., 2008,47,5353-5356.
    [53]M. R. Hoffmann, S. T. Martin,W. Choi,W. Bahnemann, Chem. Rev.,1995,95, 69-96.
    [54]K. Maeda, Y. Shimodaira, B. Lee,.K. Teramura, D. Lu, H. Kobayashi, K. Domen, J.Phys. Chem. C,2007,111,18264-18270.
    [55]H. Zhang, G. Wang, D. Chen, X. J. Lv, J. H. Li, Chem. Mater.,2008,20, 6543-6549.
    [1]K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B,2003,107, 668-677.
    [2]Absorption and Scattering of Light by Small Particles (Eds.:C. F. Bohren, D. R. Huffman), Wiley, New York,1998.
    [3]Optical Properties of Metal Clusters (Eds.:U. Kreibig, M. Vollmer), Springer, Berlin,1995.
    [4]H. Wang, D. W. Brandl, P. Nordlander, N. J. Halas, Acc. Chem. Res.,2007,40, 53-62.
    [5]J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, M. Kall, Nano Lett.,2004,4, 1003-1007.
    [6]O. Schwartz, D. Oron, Nano Lett.,2009,9,4093-4097.
    [7]M. S. Yavuz, G. C. Jensen, D. P. Penaloza, T. A. P. Seery, S. A. Pendergraph, J. F. Rusling, G. A. Sotzing, Langmuir,2009,25,13120-13124.
    [8]Y. D. Jin, N. Friedman, J. Am. Chem. Soc.,2005,127,11902-11903.
    [9]K. F. Yu, K. L. Kelly, N. Sakai, T, Tatsuma, Langmuir,2008,24,5849-5854.
    [10]L. L. Yang, H. Y. Wang, B. Yan, Bjorn M. Reinhard, J. Phys. Chem. C,2010, 114,4901-4908.
    [11]J. Margueritat, J. Gonzalo, C. N. Afonso, A. Mlayah, D. B. Murray, L. Saviot, Nano Lett.,2006,6,2037-2042.
    [12]H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, Nano Lett.,2006,6, 827-832.
    [13]Y. Khalavka, J. Becker, C. Sonnichsen, J. Am. Chem. Soc.,2009,131, 1871-1875.
    [14]C. Noguez, J. Phys. Chem. C,2007,111,3806-3819.
    [15]H. Kim, D. K. Taggart, C. X. Xiang, R. M. Penner, E. O. Potma, Nano Lett., 2008,8,2373-2377.
    [16]C. Hu, Y. Q. Lan, J. H. Qu, X. X. Hu, A. M. Wang, J. Phys. Chem. B,2006,110, 4066-4072.
    [17]M. R. Elahifard, S. Rahimnejad, S. Haghighi, M.R. Gholami, J. Am. Chem. Soc.,2007,129,9552-9553.
    [18]K. Maeda, Y. Shimodaira, B. Lee, K. Teramura, D. Lu, H. Kobayashi, K. Domen, J. Phys. Chem. C,2007,111,18264-18270.
    [19]P. K. Jain, W. Huang, M. A. El-Sayed, Nano Lett.,2007,7,2080-2088.
    [20]G. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, H. Giessen, Opt. Express,2007,15,12095-12101.
    [21]J. L. Falconer, K. A. Magrini-Bair, J. Catal.,1998,179,171-178.
    [22]G. Q. Li, D. F. Wang, Z. G. Zou, J. H. Ye, J. Phys. Chem. C,2008,112, 20329-20333.
    [23]T. Murase, H. Irie, K. Hashimoto, J. Phys. Chem. B,2005,109,13420-13423.
    [24]H. G. Kim, D. W. Hwang, J. S. Lee, J. Am. Chem. Soc.,2004,126,8912-8913.
    [25]M. R. Hoffmann, S. T. Martin, W. Choi, W. Bahnemann, Chem. Rev.,1995,95, 69-96.
    [26]http://en.wikipedia.org/wiki/Electron affinity.
    [27]C. E. Moore, National Standard Reference Data Series 34, Washington:National Bureau of Standards, U. S. Government,1970.
    [28]C. Blondel, P. Cacciani, C. Delsart, R. Trainham, Phys. Rev. A,1989,40,3698-3701.
    [1]K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc.,2008,130,1676-1680.
    [2]P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, J. Y. Wei, M. H. Whangbo, Angew. Chem. Int. Ed.,2008,47,7931-7933.
    [3]P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, Plasmonics,2007,2, 107-118.
    [4]X. Chen, H. Y. Zhu, J. C. Zhao, Z. F. Zheng, X. P. Gao, Angew. Chem. Int. Ed., 2008,47,5353-5356.
    [5]P. Wang, B. B. Huang, X. Y Zhang, X. Y. Qin, H. Jin, Y Dai, Z. Y. Wang, J. Y. Wei, J. Zhan, S. Y. Wang, J. P. Wang, M.-H. Whangbo, Chem. Eur. J.,2009,15, 1821-1824.
    [6]C. L. Hsu, S. L. Wang, Y M. Zou, Environ. Sci. Technol.,2007,41,7907-7914.
    [7]B. Sun, E. Reddy, P. Smirniotis, Environ. Sci. Technol.,2005,39,6251-6259.
    [8]M. Ding, X. Shi, Mol. Cell. Biochem.,2002,234,293-300.
    [9]J. Kotas, Z. Stasicka, Environ. Pollut.,2000,107,263-283.
    [10]S. Srivastava, S. Prakash, M. M. Srivastava, Biometals,1999,12,201-207.
    [11]Natural attenuation of hexavalent chromium in groundwater and soils. (Eds.:C. D. Palmer, R. W. Puls),1994, pp.12.
    [12]Chromium in the natural and Human Environments, Vol.20 (Ed:Nriagu, J. O.), John Wiley & Sons:New York,1988.
    [13]S. Pamukcu, A. Weeks, J. K. Wittle, Environ. Sci. Technol.,2004,38, 1236-1241.
    [14]L. Legrand, A. E. Figuigui, F. Mercier, A. Chausse, Environ. Sci. Technol.,2004, 38,4587-4595.
    [15]S. J. Hug, H. Laubscher, B. R. James, Environ. Sci. Technol.,1997,31,160-170.
    [16]I. J. Buerge, S. J. Hug, Environ. Sci. Technol.,1998,32,2092-2099.
    [17]H. B. Yu, S. Chen, X. Quan, H. M. Zhao, Y B. Zhang, Environ. Sci. Technol., 2008,42,3791-3796.
    [18]M. Gaberell, Y. P. Chin, S. J. Hug, B. Sulzberger, Environ. Sci. Technol.,2003, 37,4403-4409.
    [19]J. J. Testa, M. A. Grela, M. I. Litter, Environ. Sci. Technol.,2004,38, 1589-1594.
    [20]J. A. Navio, G. Colon, M. Trillas, J. Peral, Appl. Catal. B,1998,16,187-196.
    [21]G. Liu, L. Z. Wang, C. H. Sun, Z. G. Chen, X. X. Yan, L. Cheng, H. M. Cheng, G Q. Lu, Chem. Commun.,2009,11,1383-1385.
    [22]Y. Z. Li, H. Zhang, X. L. Hu, X. J. Zhao, M. Han, J. Phys. Chem. C,2008,112, 14973-14979.
    [23]Q. Wang, C. C. Chen, W. H. Ma, H. Y. Zhu, J. C. Zhao, Chem. Eur. J.,2009,15, 4765-4769.
    [24]G Liu, L. Z. Wang, Ch. H. Sun, X. X. Yan, X. W. Wang, Z. G Chen, S. C. Smith, H. M. Cheng, G. Q. Lu, Chem. Mater.,2009,21,1266-1274.
    [25]R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys.,1978,68, 3801-3807.
    [26]R. S. Mulliken, J. Chem. Phys.,1934,2,782-793.
    [27]R. T. Sanderson, Chemical Periodicity, Reinhold, New York,1960.
    [28]S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York,1980.
    [29]M. A. Butler, D. S. Ginley, J. Electrochem. Soc.,1978,125,228-232.
    [30]Y. Xu, M. Schoonen, Am. Mineral,2000,85,543-556.
    [31]U.S. EPA, Chromium hexavalent (colorimetric), in:W. DC (Ed.), Vol Method 7196A. SW-846, Governmental Printing Office,1992.
    [32]Y. C. Dai, G R. Qian, Y. L. Cao, Y. Chi, Y. F. Xu, J. Z. Zhou, Q. Liu, Z. P. Xu, S. Z. Qiao, J. Hazard. Mater.,2009,170,1086-1092.
    [33]H. Zhang, G. Wang, D. Chen, X. J. Lv, J. H. Li, Chem. Mater.,2008,20, 6543-6549.
    [34]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett., 2006,6,215-218.
    [35]P. Mohapatra, S. K. Samantaray, K. Parida, J. Photochem. Photobiol. A,2005, 170,189-194.
    [36]J. M. Meichtry, M. Brusa, G. Mailhot, M. A. Grela, M. I. Litter, Appl. Catal. B, 2007,71,101-107.
    [37]M. R. Hoffmann, S. T. Martin, W. Choi, W. Bahnemann, Chem. Rev.,1995,95, 69-96.
    [1]M. Stylidi, D. I. Kondarides, X. E. Verykios, Appl. Catal. B,2003,40,271-286.
    [2]O. Carp, C. L. Huisman, A. Reller, Prog. Solid State Chem.,2004,32,33-177.
    [3]T. Kako, Z. Zou, M. Katagiri, J. Ye, Chem. Mater.,2007,19,198-202.
    [4]D. Chen, A. K. Ray, Chem. Eng. Sci.,2001,56,1561-1570.
    [5]J. Tang, Z. Zou, J. Ye, Angew. Chem.2004,116,4563-4566; Angew. Chem. Int. Ed.,2004,43,4463-4466.
    [6]A. Bansal, S. Madhavi, T. T. Y. Tan, T. M. Lim, Catal. Today,2008,131, 250-254.
    [7]C. Lettmann, H. Hinrichs, W. F. Maier, Angew. Chem.2001,113,3258-3262; Angew. Chem. Int. Ed.,2001,40,3160-3164.
    [8]F. Iskandar, A. B. D. Nandiyanto, K. M. Yun, C. J. Hogan Jr., K. Okuyama, P. Biswas, Adv. Mater.,2007,19,1408-1412.
    [9]G. Wang, W. Lu, J. H. Li, J. Choi, Y. Jeong, S. Y. Choi, J. B. Park, M. K. Ryu, K. Lee, Small,2006,2,1436-1439.
    [10]E. Allain, S. Besson, C. Durand, M. Moreau, T. Gacoin, J.-P. Boilot, Adv. Funct. Mater.,2007,17,549-554.
    [11]Z. Bian, J. Zhu, S. Wang, Y. Cao, X. Qian, H. Li, J. Phys. Chem. C,2008,112, 6258-6262.
    [12]J. Zhang, F. Shi, J. Lin, D. Chen, J. Gao, Z. Huang, X. Ding, C. Tang, Chem. Mater.,2008,20,2937-2941.
    [13]S. U. M. Khan, M. Al-Shahry, W. B. Ingler Jr., Science,2002,297,2243-2245.
    [14]D. Matthey, J. G. Wang, S. Wendt, J. Matthiesen, R. Schaub, E.Laegsgaard, B. Hammer, F. Besenbacher, Science,2007,315,1692-1696.
    [15]H. Choi, A. C. Sofranko, D. D. Dionysiou, Adv. Funct. Mater.,2006,16, 1067-1074.
    [16]Y. Chen, J. C. Crittenden, S. Hackney, L. Sutter, D. W. Hand, Environ. Sci. Technol.,2005,39,1201-1208.
    [17]H. Yu, X. Quan, S. Chen, H. Zhao, J. Phys. Chem. C 2007,111,12987-12991.
    [18]M. K. Lee, T. H. Shih, J. Electrochem. Soc.,2007,154,49-51.
    [19]J. Tejeda, N. J. Shevchick, W. Braun, A. Goldmann, M. Cardona, Phys. Rev. B, 1975,12,1557-1566.
    [20]J. F. Hamilton, Photog. Sci. Eng.,1974,18,493-500.
    [21]P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M.-H. Whangbo, Angew. Chem.,2008,120,8049-8051;Angew. Chem. Int. Ed.,2008,47,7931-7933.
    [22]S. S. Soni, M. J. Henderson, J. F. Bardeau, A. Gibaud, Adv. Mater.,2008,20, 1493-1498.
    [23]D. Chen, J. Ye, Adv. Funct. Mater.,2008,18,1922-1928.
    [24]M. Hepel, S. Hazelton, Electrochim. Acta,2005,50,5278-5291.
    [25]R. G. Parr, R. A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys.,1978,68, 3801-3807.
    [26]T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, J. Phys. Chem. C,2007,111,7574-7577.
    [27]T. Arai, M. Horiguchi, M. Yanagida, T. Gunji, H. Sugihara, K. Sayama, J. Phys. Chem. C,2009,113,6602-6609.
    [28]W. Morales, M. Cason, O. Aina, N. R. de Tacconi, K. Rajeshwar, J. Am. Chem. Soc.,2008,130,6318-6319.
    [29]R. G Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys.,1978,68, 3801-3807.
    [30]R. S. Mulliken, J. Chem. Phys.,1934,2,782-793.
    [31]R. T. Sanderson, Chemical Periodicity, Reinhold, New York,1960.
    [32]S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York,1980.
    [33]M. A. Butler, D. S. Ginley, J. Electrochem. Soc.,1978,125,228-232.
    [34]Y. Xu, M. Schoonen, Am. Mineral,2000,85,543-556.
    [35]T. Morimoto, K. Suzuki, M, Torikoshi, T. Kawahara, H. Tada, Chem. Commun., 2007,4291-4293.
    [36]K. Maeda, Y. Shimodaira, B. Lee, K. Teramura, D. Lu, H. Kobayashi, K. Domen, J. Phys. Chem. C,2007,111,18264-18270.
    [37]C. Balazsi, J. Pfeifer, Solid State Ionics,1999,124,73-81.
    [38]J. L. Falconer, K. A. Magrini-Bair, J. Catal.,1998,179,171-178.
    [I]T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, FEMS Microbiol. Lett.,1985,29, 211-214.
    [2]X. X. Hu, C. Hu J. H. Qu, Applied Catalysis B:Environmental,2006,69,17-23.
    [3]H. T. Yu, X. Quan, Y. B. Zhang, N. Ma, S. Chen, H. M. Zhao, Langmuir,2008,24, 7599-7604.
    [4]O. D. Schneider, S. Loher, T. J. Brunner, P. Schmidlin, W. J. Stark, J. Mater. Chem., 2008,18,2679-2684.
    [5]Q. Li, R. C. Xie, Y. W. Li, E. A. Mintz, J. K. Shang, Environ. Sci. Technol.,2007,41, 5050-5056.
    [6]H. Li, Y H. Ni, Y F. Cai, L. Zhang, J. Z. Zhou, J. M. Hong, X. W. Wei, J. Mater. Chem.,2009,19,594-597.
    [7]K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc.,2008,130,1676-1680.
    [8]X. Chen, H. Y. Zhu, J. C. Zhao, Z. F. Zheng, X. P. Gao, Angew. Chem. Int. Ed., 2008,47,5353-5356.
    [9]P. Wang, B. B. Huang, X. Y Qin, X. Y Zhang, Y Dai, J. Y. Wei, M. H. Whangbo, Angew. Chem. Int. Ed.,2008,47,7931-7933.
    [10]P. Wang, B. B. Huang, X. Y Zhang, X. Y Qin, H. Jin, Y. Dai, Z. Y Wang, J. Y Wei, J. Zhan, S. Y. Wang, J. P. Wang, M.-H. Whangbo, Chem. Eur. J.,2009,15, 1821-1824.
    [11]Joung, S. K.; Amemiya, T.; Murabayashi, M.; Itoh, K. Chem. Eur. J.2006,12, 5526-5534.
    [12]H. X. Li, Z. F. Bian, J. Zhu, Y N. Huo, H. Li, Y. F. Lu, J. Am. Chem. Soc.,2007, 129,4538-4539.
    [13]J. Premkumar, Chem. Mater.,2005,17,944-946.
    [14]L. W. Zhang, H. B. Fu, Y F. Zhu, Adv. Funct. Mater.,2008,18,2180-2189.
    [15]T. Sano, N. Negishi, K. Koike, K. Takeuchi, S. Matsuzawa, J. Mater. Chem.,2004, 14,380-384.
    [16]B. B. Kale, J. O. Baeg, S. M. Lee, H. Chang, S. J. Moon, C. W. Lee, Adv. Funct. Mater.,2006,16,1349-1354.
    [17]Z. Liu, D. D. Sun, P. Guo, J. O. Leckie, Nano Lett.,2007,7,1081-1085.
    [18]M. Kemell, V. Pore, M. Ritala, M. Leskela, M. Linden, J. Am. Chem. Soc.,2005, 127,14178-14179.
    [19]C. Hu, Y. Lan, J. Qu, X. Hu, A. Wang, J. Phys. Chem. B,2006,110,4066-4072.
    [20]M. R. Elahifard, S. Rahimnejad, S. Haghighi, M. R. Gholami, J. Am. Chem. Soc., 2007,129,9552-9553.
    [21]V. R. Reddy, A. Currao, G. Calzaferri, J. Mater. Chem.,2007,17,3603-3609.
    [22]L. D. Kong, H. H. Chen, W. M. Hua, S. C. Zhang, J. M. Chen, Chem. Commun., 2008,4977-4979.
    [23]D. Wang, T. Kako, J. Ye, J. Am. Chem. Soc.,2008,130,2724-2725.
    [24]C. W. Beier, M. A. Cuevas, R. L. Brutchey, Small,2008,12,2102-2106.
    [25]L. Gao, Y. Wang, J. Q. Wang, L. Huang, L.Y. Shi, X. X. Fan, Z. G. Zou, T. Yu, M. Zhu, Z. S. Li, Inorg. Chem.,2006,45,6844-6850.
    [26]S. S. Soni, M. J. Henderson, J. F. Bardeau, A. Gibaud, Adv. Mater.,2008,20, 1493-1498.
    [27]T. Brezesinski, D. F. Rohlfing, S. Sallard, M. Antonietti, B. M. Smarsly, Small, 2006,2,1203-1211.
    [28]L. X. Yang, S. L. Luo, R. H. Liu, Q. Y. Cai, Y. Xiao, S. H. Liu, F. Su, L. F. Wen, J. Phys. Chem. C,2010,114,4783-4789.
    [29]K. Seki, H. Yanagi, Y. Kobayashi, T. Ohta, T. Tani, Phy. Rev. B,1994,49, 2760-2767.
    [30]F. Shiba, M. Yokoyama, Y. Mita, T. Yamakawa, Y. Okawa, Mater. Lett.,2007,61, 1778-1780.
    [31]K. Maeda, Y. Shimodaira, B. Lee, K. Teramura, D. Lu, H. Kobayashi, K. Domen, J. Phys. Chem. C,2007,111,18264-18270.
    [32]Md. S. A. S. Shah, M. Nag, T. Kalagara, S. Singh, S. V. Manorama, Chem. Mater.,2008,20,2455-2460.
    [33]H. Zhang, G. Wang, D. Chen, X. J. Lv, J. H. Li, Chem. Mater.,2008,20, 6543-6549.