二氢生物蝶呤还原酶下调TGFβ1/Smad3信号传导通路参与糖尿病肾病发生发展的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     多项流行病学调查显示,糖尿病肾病(diabetic nephropathy, DN)已成为全球慢性肾脏病(chronic kidney disease, CKD)和终末期肾病(end-stage renal disease, ESRD)的主要构成原因。DN的发病机制复杂,仍未完全阐明,目前认为DN的发生与多元醇通路激活、氧化应激、血流动力学改变、多种细胞因子的异常表达及遗传等多种因素密切相关。其中转化生长因子(transforming growth factor betal, TGF-β1)的表达增多是DN发生发展的重要因素,它可以诱导系膜外基质增加以及氧化应激反应从而促进肾小球硬化和纤维化。而TGF-β1作用于效应细胞的信号转导主要是通过激活Smad3通路实现。
     课题组在前期差异蛋白质组学中发现,二氢生物喋呤还原酶(dihydropteridine reductase, QDPR)在自发性Ⅱ型糖尿病模型OLETF大鼠肾脏损害时,编码此蛋白的基因发生了点突变,QDPR的主要功能是促进四氢生物喋呤(tetrahydrobiopterin, BH4)再生,而BH4又是3种一氧化氮合酶(nitric oxide synthase, NOS)生成的辅助因子继而会影响一氧化氮的合成。一氧化氮(nitric oxide, NO)在体内有着广泛的生理作用,在糖尿病肾病发病过程中它参与了肾小球硬化和氧化应激状态的形成过程,机制与调节TGF β1的生成,舒张血管,降低氧化应激反应,抑制中性粒细胞NADPH氧化酶活性等有关。QDPR作为调节体内BH4水平的关键代谢酶,在DN发生发展中的作用尚未明确。目前还没有文献报道QDPR与DN发生发展之间的关系。本研究通过观察QDPR在糖尿病肾病大鼠中的表达水平,以及野生型和突变型QDPR对TGF β1/Smad3信号通路的影响,深入揭示了DN的发病机制,为探索药物的作用靶点提供线索,研究思路具有较强的新颖性。
     目的:
     探讨二氢生物喋呤还原酶(dihydropteridine reductase, QDPR)是否能通过TGF-β1/Smad3信号转导通路参与糖尿病肾病的发生发展过程,为进一步深入了解DN的发生发展过程并为其分子诊断和基因治疗提供新的科学依据。
     方法:
     1.QDPR在1型糖尿病肾病大鼠模型肾皮质中表达变化的研究
     本部分研究首先制备了链脲佐菌素腹腔注射合并单侧肾切除诱导的1型糖尿病肾病的动物模型,20周后将动物处死取肾皮质提取总RNA及蛋白,然后采用RT-PCR和Western blot方法检测正常Wistar大鼠以及模型组大鼠肾皮质QDPR的表达变化,此外我们还检测了正常组和模型组TGF-β1, Smad3和NOXs基因和蛋白水平的变化。
     2.野生型QDPR基因对TGF β1/Smad3信号通路的影响
     本部分研究通过构建野生型QDPR重组质粒并转染至细胞,观察了在QDPR高表达时TGF-β/Smad通路以及相关基因的变化,质粒构建的具体步骤如下:根据GeneBank中大鼠QDPR mRNA序列设计引物,上游引物引入EcoR V酶切位点,下游引物引入Xba I酶切位点,以正常LETO大鼠肾脏皮质cDNA为模板,采用高保真PCR试剂盒扩增野生型QDPR cDNA片段,对PCR产物用1.2%琼脂糖凝胶电泳进行分离,分离后克隆至pUM-T载体并测序,然后亚克隆至真核表达载体pcDNA3.1/V5-His,酶切鉴定后测序,如果测序结果正确则证明QDPR/pcDNA3.1/V5-His (rQDPR)重组质粒构建成功。随后用磷酸钙共沉淀法瞬时转染HEK293T细胞建立QDPR高表达的细胞模型,以空载体(control vector)作为对照,转染72h后收集细胞上清和细胞蛋白,先用Western blot方法来验证融合蛋白在细胞中是否成功表达,再采用Western blot和RT-PCR技术检测当QDPR过表达时三种NOS, TGF-β/Smad通路,NADPH氧化酶各亚基的表达量,此外,用ELISA技术检测BH4在空载体和rQDPR组中的含量。
     另一方面,我们通过敲降实验观察了QDPR在低表达时TGF-p等基因的变化。具体步骤如下:我们首先将QDPR mRNA的序列给公司,随后吉玛公司设计了3种大鼠QDPR基因siRNA Oligo干扰序列,分别为QDPR1: GCCAGCGUGAUUGUUAAGATT UCUUAACAAUCACGCUGGCTT; QDPR2: CCAAAUCCAAGUCACUCUUTT AAGAGUGACUUGGAUUUGGTT; QDPR3: AGCCUUGCAGGGAAGAACATT UGUUCUUCCCUGCAAGGCUTT。每段序列加入150u1水配置成20uM的溶液,分别取4ug和野生型rQDPR重组质粒DNA共转染至293T细胞,48h后收集细胞上清以及细胞,检测TGF-β1以及NADPH氧化酶各亚基的含量。
     3.突变型QDPR对TGF-β1/Smad通路及自噬作用的影响
     本部分研究通过构建突变型QDPR重组质粒并转染至细胞,观察了在QDPR基因突变时TGF-β/Smad通路以及相关基因的变化,质粒构建的具体步骤如下:根据GeneBank中大鼠QDPR mRNA序列设计引物,上游引物引入EcoR V酶切位点,下游引物引入Xba I酶切位点,以OLETF2型糖尿病自发性大鼠的肾脏皮质cDNA为模板,采用高保真PCR试剂盒扩增突变型QDPR cDNA片段,对PCR产物用1.2%琼脂糖凝胶电泳进行分离,-20℃保存。用T4DNA连接酶连接目的片段与载体,构建QDPR (mut)/pcDNA3.1/V5-His(rQDPR(mut))重组质粒。随后用磷酸钙共沉淀法瞬时转染HEK293T细胞,实验分为空载体组(control vector),野生型rQDPR组,和突变型rQDPR(mut)组,转染72h后收集细胞上清和细胞蛋白,先用Vestern blot方法来验证融合蛋白在细胞中是否能成功表达,再采用Western blot和RT-PCR技术研究野生型和突变型QDPR对三种NOS, TGF-β/Smad通路,NADPH氧化酶各亚基的影响,此外,用ELISA技术来检测三组中BH4的含量。
     此外,我们还将野生型和突变型重组质粒转染至细胞观察了QDPR对自噬相关基因的影响,具体实验步骤如下:将成功构建好的野生型和突变型QDPR重组质粒分别转染至正常培养的HEK293T细胞,研究分为空载体组(control vector),野生型rQDPR组,和突变型rQDPR(mut)三组,转染72h后,采用RT-PCR及Western blot方法检测空载体组,野生型QDPR组和突变型QDPR组自噬相关基因LC3和Beclin1的表达量变化。
     结果:
     1. QDPR在STZ+单侧肾切诱导糖尿病大鼠肾脏的表达研究:造模成功后,即实验第0周模型组大鼠血糖与空白组相比显著升高(P<0.01),在之后的第4,8,12,16,20周各时间点均与空白组有极显著差异,均为P<0.01;在尿蛋白方面我们发现与空白组比较,模型组尿蛋白在实验第20周时显著升高(P<0.01)。20周龄Wistar大鼠以及单侧肾切除合并链脲佐菌素腹腔注射诱导的1型DN大鼠肾皮质与正常Wistar大鼠相比QDPR的mRNA及蛋白的水平都有所降低,TGF-β1,Smad3和NADPH氧化酶亚基的基因和蛋白水平都有所升高,提示在糖尿病肾病状态下QDPR的功能受损并影响了下游的一些蛋白和基因的表达。
     2.野生型QDPR对TGF β1/Smad3信号通路的影响:酶切和测序结果都显示QDPR的cDNA序列正确,测序正确后将构建好的重组质粒转染至293T细胞后,发现融合蛋白在细胞中能成功表达,并旦与空载体对照组相比,QDPR高表达组TGF-β1和smad3的基因和蛋白水平以及NADPH氧化酶亚基NoX1, NOX4的表达都有所降低,而nNOS的基因水平与BH4的含量在QDPR高表达时有所升高,初步推测QDPR的高表达影响了这些蛋白和基因的变化。
     此外,将设计的三对siRNA序列与野生型QDPR重组质粒DNA共转染至293T细胞中,Western blot结果显示有一条siRNA序列的基因敲除率达80%,可用于下一步研究,在随后的结果中我们发现,QDPR基因被敲除后,TGF-β1的表达相应升高,以及NOX1, NOX4的表达都有所升高。RNAi结果更证实了QDPR基因有下调TGF-β1表达的功能。
     3.突变型QDPR对TGF-β1/Smad通路及自噬作用的影响:在质粒构建中,测序结果显示突变型QDPR的cDNA序列与基因组的序列对比在93位氨基酸的位置突变,测序后将构建好的重组质粒转染至293T细胞后,发现融合蛋白在细胞中能成功表达,表明我们成功构建了突变型QDPR重组质粒,在进一步的检测中我们发现,与野生型QDPR重组质粒组相比,QDPR基因点突变后TGF-β1和Smad3的基因和蛋白水平以及NADPH氧化酶亚基的表达都明显增加,而nNOS的基因水平与BH4的含量却没有明显变化。
     此外,突变型研究中我们还描述了QDPR基因突变后对HEK293T细胞自噬相关基因的影响。RT-PCR结果显示,与空载体组相比,野生型QDPR组LC3基因水平明显上调(P<0.05),突变型QDPR组LC3基因水平与空载体组相比无统计学差异;与空载体组相比,野生型和突变型Beclinl基因水平无统计学差异;Vestern blot结果显示,与空载体组相比,野生型QDPR组LC3-II和Beclinl的蛋白表达量明显上调(P<0.05),而LC3-I的蛋白表达量无统计学差异。
     结论:
     1. QDPR的表达量在I型糖尿病肾病大鼠的肾皮质明显降低,提示糖尿病肾病的发生影响了QDPR的功能,由此我们推测QDPR可能参与了糖尿病肾病的发病过程并在其中有重要作用。
     2.野生型QDPR重组质粒细胞实验结果显示QDPR蛋白可以通过影响BH4来调节TGF-β1/Smad通路的变化。对于QDPR基因功能的深入研究将有助于揭示DN肾小球硬化的分子生物学机制,为研究糖尿病肾病的发病机制研究提供新的思路。
     3.突变型QDPR重组质粒细胞实验结果显示QDPR基因的点突变没有影响QDPR在BH4再生循环中的作用,但基因点突变后QDPR的结构有可能发生了变化,并通过调节其他途径影响了TGF-β1/Smad3通路,由此可见QDPR基因点突变对于QDPR调节TGF-β1/Smad3通路的功能有重要作用,这值得我们围绕QDPR的结构和功能做进一步研究。我们还发现突变型QDPR重组质粒能激活HEK293T细胞的自噬作用,激活过程可能和自噬相关基因的表达增强有关。
Backgroud:
     Diabetic nephropathy (DN) has surpassed other major diseases to become the most common cause of the end-stage renal disease. The major cause of DN is the disorder of microcirculation in the glomerular, which eventually develops into glomerulosclerosis. Although the mechanisms of glomerulosclerosis are still under investigation, cytokines such as transforming growth factor beta1(TGF-β1) appear to play animportant role in pathogenesis of DN. TGF-β1is considered as a key mediator in diabetic nephropathy by inducing glomerulosclerosis and fibrosis. In our previous study, we have reported that there was the modification of QDPR gene in renal cortex of spontaneous OLETF diabetic rats, which suggests a role of QDPR in diabetic nephropathy. Dihydropteridine reductase (QDPR) plays an important role in the metabolism of biopterin, especially in the recycling of tetrahydrobiopterin (BH4), which is an essential cofactor of nitric oxide synthase (NOS). NOS can catalyze the conversion of arginine to citrulline releasing nitric oxide (NO). Increased NO production in the kidney generated from eNOS/nNOS has been documented to be involved in development of diabetic hyperfiltration. Moreover, decreased NO production will lead to an increase in TGF-β1expression, in the current study, we investigated the role of QDPR on TGF-β1/Smad pathway in diabetic rats and293T kidney cells.
     Objective:
     To observe the expression of QDPR in diabetic nephropathy rats and the regulation of QDPR in TGF-β1/Smad pathway.
     Methods:
     1. The expression of QDPR in type1diabetic nephropathy rats
     Diabetic nephropathy model was induced by a single intraperitoneal injection of STZ at a dose of40mg·kg-1diluted in citrate buffer. Seventy-two hours after STZ injection, rats for blood glucose over16.7mmol·L-1were confirmed to be in diabetic state. After20weeks, renal cortex was isolated immediately and stored for the following study. RT-PCR and Western blot were adopted to observe the expression of QDPR, TGF-β1, Smad3and NOXs.
     2. The effect of wide type QDPR on regulating TGF-β1/Smad pathway
     Firstly, we constructed a recombinant plasmid to observe the effect of wide type QDPR on regulating TGF-β1/Smad pathway. We amplified PCR fragments with QDPR specific primers (forward primer with EcoRV enzyme site AGATATCATGGCGGCTTCGGGCGAGGC; reverse primer with XbaI enzyme site ATCTAGAGAAATAGGCTGGAGTAAGCT) using the cDNA of rat renal cortex as a template and rat QDPR cDNA fragment was confirmed by sequence analysis. Then, rat QDPR cDNA was subcloned into pcDNA3.1/V5-His-A vector to form recombinant plasmid DNA rQDPR/pcDNA3.1/V5-His-A (rQDPR). Vector pcDNA3.1/V5-His-A (no cDNA) was used as the control vector group and the recombinant cDNA rQDPR (rQDPR group) was transfected into the293T cells. All sets of transfections were performed at least in triplicate. Cells were collected at72h for RT-PCR and Western blots analysis. RT-PCR and Western blot were adopted to observe the expression of QDPR, TGF-β1, Smad3, nNOS and NOXs. BH4levels were determined using an ELISA assay.
     The knockout experiment was adopted to identify the regulation of QDPR on TGF-β1/Smad pathway. Co-Transfection of rQDPR/pcDNA3.1/V5-His-A DNA and Rat QDPR Small Interfering RNA. The target sequences of rat QDPR siRNA (GCCAGCGUGAUUGUUAAGATT, UCUUAACAAUCACGCUGGCTT) was designed. The cells were divided into three groups:rQDPR group, rQDPR+siRNA group, and rQDPR+control siRNA group. Two days following transfection, cells in the6-well plates were harvested for immunoblotting to determine the degree of rat QDPR protein knockdown. Then, TGF-β1was determined by ELISA kit from culture media.
     3. The study of QDPR with mutation on regulating TGF-β1/Smad pathway
     Firstly, we constructed a a recombinant plasmid to observe the effect of QDPR with mutation on regulating TGF-β1/Smad pathway. QDPR cDNA was amplified with specific primers using the cDNA from renal cortex of OLETF diabetic rat as a template. Rat QDPR cDNA fragments was then subcloned into pcDNA3.1/V5-His-A vector to form recombinant plasmids DNA of rQDPRmut/pcDNA3.1/V5-His-A (rQDPRmut). Control vector, recombinant rQDPR plasmid and rQDPRmut plasmid were transfected into the293T cells. Cells were collected at72h for mRNA and protein analyses. TGF-β1was determined by ELISA kit from culture media. Smad3and BH4levels was analysed by Western blot and ELISA assay, respectively.
     In addition, the effect of QDPR on autophagy was observed as well. HEK293T cells were transiently transfected with recombinant plasmid DNA rQDPR and recombinant plasmid DNA rQDPR (mut) by calcium phosphate. After72h, the expression of rat QDPR in293T cells was detected by Western Blot. Then, the effects of QDPR on autophagy related gene (including LC3and Beclinl) were analyzed by RT-PCR, and Western blot was used to monitor the changes in autophagy associated protein level.
     Results:
     1. Significantly decreased expression of QDPR was observed in STZ-induced diabetic rat kidneys at20weeks after STZ injection (p<0.05). At the same time, there were significantly increased expression of TGF-β1, Smad3, NOX1and NOX4in the renal cortex of diabetic group (p<0.01), however, there was no difference in NOX2and NOX3mRNA abundance between control and diabetic groups.
     2. After transfection of rQDPR in293T cells, there was a significant elevation of QDPR protein in293T cells. Moreover, with increase in QDPR expression, there were decreased expression of TGF-β1and Smad3at both mRNA and protein levels. BH4level in the rQDPR group was significantly higher than that of the control vector group, indicating that BH4production was upregulated in response to the QDPR overexpression. Since BH4is an important cofactor of NOS and there was an elevation of BH4level after QDPR overexpression, we further examined the mRNA level of NOS in293T cells. After transfection, QDPR appeared to induce expression of nNOS (p<0.05) in293T cells. Both the mRNA levels and the protein expression of NOX1and NOX4were significantly decreased in the rQDPR transfected cells as compared to that of control vector transfected cells (p<0.05)
     Co-transfection with rQDPR/pcDNA3.1/V5-His-A DNA and rat QDPR siRNA reduced rat QDPR protein levels by more than80%. The result showed that the expression of TGF-β1and NOX4in rQDPR+siRNA group increased compared to rQDPR group.
     3. After transfection of rQDPR(wt) and rQDPR(mut), there was a significant elevation of QDPR protein in293T cells. Moreover, with increase in QDPR expression, there were decreased expression of TGF-β1and Smad3at both mRNA and protein levels. the expression of NOX4was significantly decreased in the rQDPR(wt) transfected cells as compared to that of control vector group (p<0.05) while NOX4was increased in rQDPR(mut) group compared to control vector group (p<0.05).
     Besides, we discovered that QDPR had effect on autophagy, and the results show that the recombinant plasmid DNA rQDPR and recombinant plasmid DNA rQDPR (mut) were successfully constructed. The fusion protein can also express in HEK293T cell. In addition, compared with control vector group, the mRNA expression of LC3was significantly up-regulated in rQDPR group (P<0.05), and the mRNA expression of Beclinl showed no significant difference among the3groups (P>0.05). The Western blot analysis revealed that LC3II and Beclinl increased in rQDPR group when compared with control group, and there were no difference of LC3I protein levels among the3groups.
     Conclusions:
     1. The expression of QDPR was injured in diabetic nephropathy rats. The decrease in QDPR and the increase in TGF-β1and Smad3expression in diabetic rats suggest a link between QDPR and TGF-β1signaling pathway.
     2. The current study reveals a correlation between QDPR and NOXs/TGF-β1signaling pathway in the kidney of diabetic nephropathy. Moreover, that transfection of QDPR directly reduced the gene expression of TGF-β1/Smad3and NOX1/NOX4in293T cells indicates a function of QDPR in the kidney, which may be useful for development of a new therapeutic strategy for patients with diabetic nephropathy.
     3. Together with the previous observation that transfection of QDPR directly reduced the expression of TGF-β1/Smad3, we observed the levels of TGF-β1and Smad3increased when there was a point mutation, indicating that this mutation played a crucial role in regulating TGF-β1/Smad3signaling pathway. Whether this mutation is linked with the structure of QDPR may be undertaken as a next step using protein structural modeling. Additionally, QDPR may activate the autophagy of HEK293T cells by increasing the expression of autophagy associated genes of HEK293T cells.
引文
[1]Reutens AT. Epidemiology of diabetic kidney disease[J]. Med Clin North Am.2013, 97(1):1-18.
    [2]Atkins R.C, Zimmet, P. Diabetic kidney disease:act now or pay latter. J Am Soc Hypertes.2010,4(1):3-6.
    [3]Cao, Z.; Cooper, M. E. Pathogenesis of diabetic nephropathy [J]. Journal of Diabetes Investigation,2011,2(4):243-247.
    [4]Sooparb, S.; Price, S. R.; Shaoguang, J., et al. Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus[J]. Kidney Int,2004, 65(6):2135-2144.
    [5]Kitada, M.; Takeda, A.; Nagai, T., et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirtl in diabetic Wistar fatty (fa/fa) rats:a model of type 2 diabetes[J]. Exp Diabetes Res,2011,90:81-85.
    [6]Wang W, Koka V, Lan HY. Transforming growth factor beta and Smad signalling in kidney diseases[J]. Nephrology (Carlton),2005,10 (1):48-56.
    [7]Verrecchia F, Mauviel A. Transforming growth factor-β and fibrosis[J]. World J Gastroenterol,2007,13 (22):3056-3062.
    [8]Phan TT, Lin IJ, Aalami O, et al. Smad3 signalling plays an important role in keloid pathogenesis via epithelial-mesenchymal interactions [J]. J Pathol,2005,207 (2): 232-242.
    [9]Wang A, Ziyadeh FN, Lee EY, et al. Interference with TGF-beta signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria[J]. Am J Physiol Renal Physiol,2007,293 (5):F1657-F1665.
    [10]Phanish MK, Wahab NA, Colville-Nash P, et al. The differential role of Smad2 and Smad3 in the regulation of profibrotic TGFβ1 responses in human proximal-tubule epithelial cells[J]. Biochem.2006,393 (Pt2):601-607.
    [11]Shimizu H, Yisireyili M, Nishijima F, Niwa T. Indoxyl Sulfate Enhances p53-TGF-β1-Smad3 Pathway in Proximal Tubular Cells[J]. Am J Nephrol.2013, 37(2):97-103.
    [12]Lan HY. Transforming growth factor-β/Smad signalling in diabetic nephropathy [J]. Clin Exp Pharmacol Physiol.2012,39(8):731-8.
    [13]Lai PB, Zhang L, Yang LY. Quercetin ameliorates diabetic nephropathy by reducing the expressions of transforming growth factor-β1 and connective tissue growth factor in streptozotocin-induced diabetic rats[J]. Ren Fail.2012,34(1):83-7.
    [14]O'Donovan HC, Hickey F, Brazil DP, et al. Connective tissue growth factor antagonizes transforming growth factor-β1/Smad signalling in renal mesangial cells[J]. Biochem.2012,441(1):499-510.
    [15]Jang YS, Kim JH, Seo GY, Kim PH. TGF-β1 stimulates mouse macrophages to express APRIL through Smad and p38MAPK/CREB pathways. Mol Cells.2011, 32(3):251-5.
    [16]Song CJ, Fu XM, Li J, et al. Effects of sericine on TGF-betal/Smad3 signal pathway of diabetic mephropathy rats kidney. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2011,27(1):102-5.
    [17]Thony B., Auerbach G. and Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions[J]. Biochem J,2000:1-16.
    [18]Davis M. D., Kaufman S. and Milstien S. The auto-oxidation of tetrahydrobiopterin[J]. Eur J Biochem,1988 (2):345-351.
    [19]Katusic Z. S., d'Uscio L. V. and Nath K. A. Vascular protection by tetrahydrobiopterin:progress and therapeutic prospects[J]. Trends Pharmacol Sci,2009 (1):48-54.
    [20]Choi Y. K. and Tarazi F. I. Alterations in dopamine and glutamate neurotransmission in tetrahydrobiopterin deficient spr-/-mice:relevance to schizophrenia[J]. BMB Rep, 2010, (9):593-598.
    [21]Marco G. S., Colucci J. A., Fernandes F. B., Vio C. P., Schor N. and Casarini D. E. Diabetes induces changes of catecholamines in primary mesangial cells[J]. Int J Biochem Cell Biol,2008, (4):747-754.
    [22]Watschinger K., Keller M. A., Golderer G., Hermann M., Maglione M., Sarg B., Lindner H. H., Hermetter A., Werner-Felmayer G., Konrat R., Hulo N. and Werner E. R. Identification of the gene encoding alkylglycerol monooxygenase defines a third class of tetrahydrobiopterin-dependent enzymes[J]. Proc Natl Acad Sci U S A,2010, (31): 13672-13677.
    [23]Spector A. A. and Yorek M. A. Membrane lipid composition and cellular function[J]. J Lipid Res,1985, (9):1015-1035.
    [24]Demopoulos C. A., Pinckard R. N. and Hanahan D. J. Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators)[J]. J Biol Chem,1979, (19): 9355-9358.
    [25]Okumura M., Imanishi M., Yamashita T., Yamamura Y, Kim S., Iwao H., Tanaka S. and Fujii S. Renal production of thromboxane and prostaglandins in a rat model of type 2 diabetes[J]. Life Sci,2000, (5):371-377.
    [26]Kamata K., Hosokawa M., Matsumoto T. and Kobayashi T. Altered arachidonic acid-mediated responses in the perfused kidney of the streptozotocin-induced diabetic rat[J]. J Smooth Muscle Res,2006, (5):171-187.
    [27]Cavallo-Perin P., Lupia E., Gruden G, Olivetti C., De Martino A., Cassader M., Furlani D., Servillo L., Quagliuolo L., Iorio E., Boccellino M. R., Montrucchio G. and Camussi G. Increased blood levels of platelet-activating factor in insulin-dependent diabetic patients with microalbuminuria[J]. Nephrol Dial Transplant,2000, (7):994-999.
    [28]Satoh M., Fujimoto S., Arakawa S., Yada T., Namikoshi T., Haruna Y., Horike H., Sasaki T. and Kashihara N. Angiotensin Ⅱ type 1 receptor blocker ameliorates uncoupled endothelial nitric oxide synthase in rats with experimental diabetic nephropathy[J]. Nephrol Dial Transplant,2008, (12):3806-3813.
    [29]Li Z., Zhang H., Dong X., Burczynski F. J., Choy P., Yang F., Liu H., Li P. and Gong Y. Proteomic profile of primary isolated rat mesangial cells in high-glucose culture condition and decreased expression of PSMA6 in renal cortex of diabetic rats[J]. Biochem Cell Biol,2010, (4):635-648.
    [30]Rebrin I., Bailey S. W., Boerth S. R., Ardell M. D. and Ayling J. E. Catalytic characterization of 4a-hydroxytetrahydropterin dehydratase[J]. Biochemistry,1995, (17): 5801-5810.
    [31]Bayle J. H., Randazzo F., Johnen G, Kaufman S., Nagy A., Rossant J. and Crabtree G. R. Hyperphenylalaninemia and impaired glucose tolerance in mice lacking the bifunctional DCoH gene[J]. J Biol Chem,2002, (32):28884-28891.
    [32]Kaufman S. Some metabolic relationships between biopterin and folate: implications for the "methyl trap hypothesis "[J]. Neurochem Res,1991, (9):1031-1036.
    [33]Tejero J, Stuehr D. Tetrahydrobiopterin in nitric oxide synthase. IUBMB Life.2013 Feb 26.doi:10.1002/iub.1136.
    [34]Channon KM. Tetrahydrobiopterin:a vascular redox target to improve endothelial function. Curr Vasc Pharmacol[J].2012,10(6):705-8.
    [35]Katusic, Z.S., L.V. d'Uscio, and K.A. Nath, Vascular protection by tetrahydrobiopterin:progress and therapeutic prospects. Trends Pharmacol Sci[J].2009. 30(1):p.48-54.
    [36]Okumura, M., et al., Decrease in tetrahydrobiopterin as a possible cause of nephropathy in type II diabetic rats. Kidney Int[J].2006.70(3):p.471-6.
    [37]Prabhakar, S.S. Tetrahydrobiopterin reverses the inhibition of nitric oxide by high glucose in cultured murine mesangial cells. Am J Physiol Renal Physiol[J].2001.281(1): p. F179-88.
    [38]Hoang HH, Padgham SV, Meininger CJ. L-arginine, tetrahydrobiopterin, nitric oxide and diabetes. Curr Opin Clin Nutr Metab Care[J].2013,16(1):76-82.
    [39]Alkaitis MS, Crabtree MJ. Recoupling the cardiac nitric oxide synthases: tetrahydrobiopterin synthesis and recycling. Curr Heart Fail Rep.2012,9(3):200-10.
    [40]Schmidt K, Neubauer A, Kolesnik B, et al. Tetrahydrobiopterin protects soluble guanylate cyclase against oxidative inactivation. Mol Pharmacol.2012,82(3):420-7.
    [41]Faria AM, Papadimitriou A, Silva KC,Diabetes, et al. Uncoupling endothelial nitric oxide synthase is ameliorated by green tea in experimental diabetes by re-establishing tetrahydrobiopterin levels.2012,61(7):1838-47.
    [42]Alp N. J., Mussa S., Khoo J., Cai S., Guzik T., Jefferson A., Goh N., Rockett K. A. and Channon K. M. Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression[J]. J Clin Invest,2003 (5):725-735.
    [43]Okumura M., Masada M., Yoshida Y., Shintaku H., Hosoi M., Okada N., Konishi Y., Morikawa T., Miura K. and Imanishi M. Decrease in tetrahydrobiopterin as a possible cause of nephropathy in type Ⅱ diabetic rats[J]. Kidney Int,2006 (3):471-476.
    [44]Elrod J. W., Duranski M. R., Langston W., Greer J. J., Tao L., Dugas T. R., Kevil C. G., Champion H. C. and Lefer D. J. eNOS gene therapy exacerbates hepatic ischemia-reperfusion injury in diabetes:a role for eNOS uncoupling[J]. Circ Res,2006 (1):78-85.
    [45]Meininger C. J., Cai S., Parker J. L., Channon K. M, Kelly K. A., Becker E. J., Wood M. K., Wade L. A. and Wu G. GTP cyclohydrolase I gene transfer reverses tetrahydrobiopterin deficiency and increases nitric oxide synthesis in endothelial cells and isolated vessels from diabetic rats[J]. FASEB J,2004 (15):1900-1902.
    [46]Guzik T. J., Mussa S., Gastaldi D., Sadowski J., Ratnatunga C., Pillai R. and Channon K. M. Mechanisms of increased vascular superoxide production in human diabetes mellitus:role of NAD(P)H oxidase and endothelial nitric oxide synthase[J]. Circulation,2002 (14):1656-1662.
    [47]Periyasamy-Thandavan, S.; Jiang, M.; Schoenlein, P., et al. Autophagy:molecular machinery, regulation, and implications for renal pathophysiology[J]. American journal of physiology. Renal physiology,2009,297(2):F244-256.
    [48]Wu, W. H.; Zhang, M. P.; Zhang, F., et al. The role of programmed cell death in streptozotocin-induced early diabetic nephropathy[J]. J Endocrinol Invest.2011, 34(9):e296-301.
    [49]Kitada, M.; Takeda, A.; Nagai, T., et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirtl in diabetic Wistar fatty (fa/fa) rats:a model of type 2 diabetes[J]. Exp Diabetes Res.2011,2011:908185.
    [50]Thony B., Auerbach G. and Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions[J]. Biochem J.2000:1-16.
    [51]Hartleben, B.; Godel, M.; Meyer-Schwesinger, C., et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice[J]. J Clin Invest.2010,120(4):1084-1096.
    [52]Kume, S.; Thomas, M. C.; Koya, D. Nutrient sensing, autophagy, and diabetic nephropathy [J]. Diabetes.2012,61(1):23-29.
    [53]Tanaka, Y.; Kume, S.; Kitada, M., et al. Autophagy as a therapeutic target in diabetic nephropathy [J]. Exp Diabetes Res.2012,2012:628978.
    [54]Jose Luis Vinas, Anna Sola, Meritxell Genesca, et al. NO and NOS isoforms in the development of apoptosis in renal ischemia/reperfusion. Radical Biology & Medicine. 2006, (40):992-1003.
    [55]Jia Z H, Liu Z H, Zheng J M, et al. Combined therapy of rhein and benazepril on the treatment of diabetic nephropathy in db/db mice[J]. Exp Clin Endocrinol Diabetes,2007;115(9):571-576.
    [56]Nakamura S, Li H, Adijiang A, et al. Pyridoxal phosphate prevents progression of diabetic nephropathy [J]. Nephrol Dial Transplant,2007;22(8):2165-2174.
    [57]Kang Y S, Ko G J, Lee M H, et al. Effect of eplerenone, enalapril and their combination treatment on diabetic nephropathy in type Ⅱ diabetic rats[J]. Nephrol Dial Transplant,2009;24(1):73-84.
    [58]Panchapakesan U, Sumual S, Pollock C A, et al. PPARgamma agonists exert antifibrotic effects in renal tubular cells exposed to high glucose[J]. Am J Physiol Renal Physiol,2005;289(5):1153-1158.
    [59]Wu D, Peng F, Zhang B, et al. PKC-betal mediates glucose-induced Akt activation and TGF-betal upregulation in mesangial cells [J]. J Am Soc Nephrol,2009;20(3):554-566.
    [60]Kelly D J, Skinner S L, Gilbert R E, et al. Effects of endothelin or angiotensin Ⅱ receptor blockade on diabetes in the transgenic (mRen-2)27 rat[J]. Kidney Int,2000;57(5):1882-1894.
    [61]Ruiz-ortega M, Lorenzo O, Egido J. Angiotensin Ⅲ up-regulates genes involved in kidney damage in mesangial cells and renal interstitial fibroblasts[J]. Kidney Int Suppl,1998;68:41-45.
    [62]Mauer SM, Brown DM, Matas AJ, Steffes MW. Effects of pancreatic islet transplantation on the increased urinary albumin excretion rates in intact and uninephrectomized rats with diabetes mellitus. Diabetes.1978,27(9):959-64.
    [63]Katusic Z. S., d'Uscio L. V. and Nath K. A. Vascular protection by tetrahydrobiopterin:progress and therapeutic prospects[J]. Trends Pharmacol Sci,2009 (1):48-54.
    [64]Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: frommarvel to menace [J]. Circulation,2006,113 (13):1708-14.
    [65]Munzel T, Daiber A, Ullrich V, et al. Vascular consequences of endothelial nitric oxide synthase uncoup ling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase[J]. A rterioscler Thromb Vasc Biol, 2005,25(8):1551-7.
    [66]Y. Xia, A.L. Tsai, V. Berka, J.L. Zweier, Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process, J Biol Chem,1998,273:25804-258
    [67]J. Vasquez-Vivar, B. Kalyanaraman, P. Martasek, N. Hogg, B.S. Masters, H. Karoui,P. Tordo, K.A. Pritchard, Jr., Superoxide generation by endothelial nitric oxide synthase:the influence of cofactors, Proc Natl Acad Sci U S A,1998,95:9220-9225.
    [68]N.J. Alp, S. Mussa, J. Khoo, S. Cai, T. Guzik, A. Jefferson, N. Goh, K.A. Rockett, K.M. Channon, Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression, J Clin Invest 2003,(112):725-735.
    [69]F. Mittermayer, J. Pleiner, G. Schaller, S. Zorn, K. Namiranian, S. Kapiotis, GBartel, M. Wolfrum, M. Brugel, J. Thiery, R.J. Macallister, M. Wolzt, Tetrahydrobiopterin corrects Escherichia coli endotoxin-induced endothelial dysfunction, Am J Physiol Heart Circ Physiol,2005,289:H1752-1757.
    [70]C.A. Wyss, P. Koepfli, M. Namdar, P.T. Siegrist, T.F. Luscher, P.G. Camici, P.A.Kaufmann, Tetrahydrobiopterin restores impaired coronary microvascular dysfunction in hypercholesterolaemia, Eur J Nucl Med Mol Imaging,2005,32:84-91.
    [71]Okumura M., Masada M., Yoshida., et al. Decrease in tetrahydrobiopterin as a possible cause of nephropathy in type Ⅱ diabetic rats[J]. Kidney Int,2006,70(3):471-476.
    [72]Katusic, Z.S., L.V. d'Uscio, and K.A. Nath, Vascular protection by tetrahydrobiopterin:progress and therapeutic prospects. Trends Pharmacol Sci,2009, 30(1):p.48-54.
    [73]Werner, E.R., N. Blau, and B. Thony, Tetrahydrobiopterin:biochemistry and pathophysiology. Biochem J,2011,438(3):p.397-414.
    [74]Satoh M., Fujimoto S., Arakawa S., et al. Angiotensin Ⅱ type 1 receptor blocker ameliorates uncoupled endothelial nitric oxide synthase in rats with experimental diabetic nephropathy [J]. Nephrol Dial Transplant,2008,23(12):3806-3813.
    [75]Kaufman S. Some metabolic relationships between biopterin and folate: implications for the "methyl trap hypothesis"[J]. Neurochem Res,1991, (9):1031-1036.
    [76]van den Oever, I.A., et al., Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators Inflamm,2010,2010:p.792393.
    [77]Nakagawa, T., et al., Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nat Rev Nephrol,2011,7(1):p.36-44.
    [78]Zintzaras, E., A.A. Papathanasiou, and I. Stefanidis, Endothelial nitric oxide synthase gene polymorphisms and diabetic nephropathy:a HuGE review and meta-analysis. Genet Med,2009,11(10):p.695-706.
    [79]Cheng, H., et al., Improvement of endothelial nitric oxide synthase activity retards the progression of diabetic nephropathy in db/db mice. Kidney Int,2012,82(11):p. 1176-83.
    [80]Jau-Shyang Huang, Lea-Yea Chuang, Jinn-Yuh Guh, et al. Effect of Nitric Oxide-cGMP-Dependent Protein Kinase Activation on Advanced Glycation End-Product-Induced Proliferation in Renal Fibroblasts[J]. J Am Soc Nephrol.2005, (16):2318-2329.
    [81]Mark L A, Robinson A V, Sehulak J A. Robinson and James A. Schulak. Inhibition of nitric oxide synthase reduces renal ischemia/reperfusion injury[J]. J Surg Res,2005, 129(2):236-241.
    [82]Oriana Trubiani, Eleonora Salvolini, Arianna Vignini, et al. NF-kB and NOS may play a role in human RPMI-8402 cell apoptosis. Cell Biology International 29,2005, 529-536.
    [83]Pandu R. R. Gangula, Sutapa Mukhopadhyay, Kalpana Ravella, et al. Tetrahydrobiopterin (BH4), a cofactor for nNOS, restores gastric emptying and nNOS expression in female diabetic rats. Am J Physiol Gastrointest Liver Physiol.2010,298: G692-G699.
    [84]SHOSHANA KEYNAN, BOAZ HIRSHBERG, NOMY LEVIN-IAINA, et al. Renal nitric oxide production during the early phase of experimental diabetes mellitus. Kidney International,2000,58:pp.740-747
    [85]Jenny Edlund, Angelica Fasching, Per Liss, et al. The roles of NADPH-oxidase and nNOS for the increased oxidative stress and the oxygen consumption in the diabetic kidney. Diabetes Metab Res Rev.2010,26(5):349-356.
    [86]Deng A, Miracle CM, Suarez JM, et al. Oxygen consumption in the kidney:Effects of nitric oxide synthase isoforms and angiotensin II. Kidney Int.2005; 68:723-730.
    [87]Brownlee M. The pathobiology of diabetic complications:a unifying mechanism[J]. Diabetes,2005,54(6):1615-1625.
    [88]Shiose A, Kumda J, Tsuruya K, et al. A novel superoxide—producing NAD(P)H oxidase in kidney[J]。 J Biol Chem,2001,276(2):1417-23.
    [89]Ha H, Yu MR, Choi YJ, et al. Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells[J]. J Am Soc Nephrol,2002,13(4):894-902.
    [90]Wang X, Shaw S, Amiri F, et al. Inhibition of the JAk/STAT signaling pathway prevents the high glucose—induced increase in tgf-beta and fibronectin synthesis in mesangial cells[J]. Diabetes,2002,51(12):3505-9.
    [91]Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: frommarvel to menace [J]. Circulation,2006,113(13):1708-14.
    [92]Munzel T, Daiber A, Ullrich V, et al. Vascular consequences of endothelial nitric oxide synthase uncoup ling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase[J]. A rterioscler Thromb Vasc Biol, 2005,25 (8):1551-7.
    [93]Y. Xia, A.L. Tsai, V. Berka, J.L. Zweier, Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process, J Biol Chem,1998,273:25804-258
    [94]J. Vasquez-Vivar, B. Kalyanaraman, P. Martasek, N. Hogg, B.S. Masters, H. Karoui,P. Tordo, K.A. Pritchard, Jr., Superoxide generation by endothelial nitric oxide synthase:the influence of cofactors, Proc Natl Acad Sci U S A,1998,95:9220-9225.
    [95]N.J. Alp, K.M. Channon, Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease, Arterioscler Thromb Vase Biol,2004, 24(3):413-20.
    [96]Bayle J. H., Randazzo F., Johnen G., Kaufman S., Nagy A., Rossant J. and Crabtree G. R. Hyperphenylalaninemia and impaired glucose tolerance in mice lacking the bifunctional DCoH gene[J]. J Biol Chem,2002,32:28884-28891.
    [97]Kaufman S. Some metabolic relationships between biopterin and folate: implications for the "methyl trap hypothesis"[J]. Neurochem Res,1991,9:1031-1036.
    [98]Shuey DJ, McCallus DE, Giordano T. RNAi:gene-silencing intherapeutic Iniervention. Drug Discov Today,2002,7(20):1040-1046
    [99]Svoboda P, Stein P, Hayashi H, et al. Selective reduetion of dormant matemal mRNAs in mouse ooeytes by RNA interference.Development,2000,127(19):4147-4156.
    [100]Baulcombe D.RNA silencing. Diced defence.Nature,2001,409(6818):295-296
    [101]Hammond SM, Bemstein E, Beach D et al.An RNA-directed nuclease mediates post-transcriptional gene sileneing in Drosophils cells.Nature,2000,404(6775):293-296
    [102]Wiannty F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development.Nat Cell Biol,2000,2(2):70-75.
    [103]Fraser AG,Kamath RS, zipperlen P, et al.Functional genomic analysis of C.elegans chromosome 1 by systematic RNA interferenec.Nature,2000,408(6810):325-330.
    [104]Gonczy P, Echeverri C, Oegema K, et al.Functional genomic analysis of cell division in C.elegans using RNA iof genes on chomosomelll.Nature,2000, 408(6810):331-336
    [105]Carmichael GG. Medicine:sileneing viruses with RNA.Nature,2002, 418(6896):379-380.
    [106]Cao, Z.; Cooper, M. E. Pathogenesis of diabetic nephropathy[J]. Journal of Diabetes Investigation,2011,2(4):243-247.
    [107]Sooparb, S.; Price, S. R.; Shaoguang, J., et al. Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus[J]. Kidney Int,2004, 65(6):2135-2144.
    [108]Kitada, M.; Takeda, A.; Nagai, T., et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirtl in diabetic Wistar fatty (fa/fa) rats:a model of type 2 diabetes[J]. Exp Diabetes Res,2011,90:81-85.
    [109]Jisun LEE, Samantha GIORDANO, Jianhua ZHANG. Autophagy, mitochondria and oxidative stress:cross-talk and redox signaling. Biochem. J.2012,441:523-540.
    [110]Sarkar, S., Korolchuk, V. I., Renna, M. et al. Complex inhibitory effects of nitric oxide on autophagy. Mol. Cell,2011,43:19-32.
    [111]Ashford, T. P., and K. R. Porter.. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol,1962,12:198-202.
    [112]Pfeifer, U. Morphological and functional aspects of cellular autophagy. Acta Morphol Acad Sci Hung,1972,20:247-267.
    [113]Terman, A., B. Gustafsson, and U. T. Brunk. Autophagy, organelles and ageing. J Pathol 2007,211:134-143.
    [114]Levine, B., and D. J. Klionsky. Development by self-digestion:molecular mechanisms and biological functions of autophagy. Dev Cell,2004,6:463-477.
    [115]Gozuacik, D., and A. Kimchi. Autophagy and cell death. Curr Top Dev Biol,2007, 78:217-245.
    [116]Ravikumar, B.; Sarkar, S.; Davies, J. E., et al. Regulation of mammalian autophagy in physiology and pathophysiology[J]. Physiol Rev,2010,90(4):1383-1435.
    [117]Glick, D.; Barth, S.; Macleod, K. F. Autophagy:cellular and molecular mechanisms[J]. J Pathol,2010,221(1):3-12.
    [118]Tanida, I., Ueno, T. and Kominami, E. LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol.2004,36:2503-2518.
    [119]Cooper, C. E., Patel, R. P., Brookes, P. S. and Darley-Usmar, V. M. Nanotransducers in cellular redox signaling:modification of thiols by reactive oxygen and nitrogen species. Trends Biochem. Sci.2002,27,489-492.
    [120]Kabeya Y, Mizushima N, Yamamoto A, et al. LC3, GABARAP and GATE 16 Localize to Autophagosomal Membrane Depending on Form-Ⅱ Formation. J Cell Sci, 2004,117:2805-2812.
    [121]Hartleben, B.; Godel, M.; Meyer-Schwesinger, C., et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice[J]. J Clin Invest,2010,120(4):1084-1096.
    [122]Zan-hong Wang, Li Xu, Zhen-ling Duan, et al. Beclin 1-mediated macroautophagy involves regulation of caspase-9 expression in cervical cancer HeLa cells. Gynecologic Oncology,2007,107:107-113.
    [123]Periyasamy-Thandavan, S.; Jiang, M.; Schoenlein, P., et al. Autophagy:molecular machinery, regulation, and implications for renal pathophysiology[J]. American journal of physiology. Renal physiology,2009,297(2):F244-256.
    [124]Wu, W. H.; Zhang, M. P.; Zhang, F., et al. The role of programmed cell death in streptozotocin-induced early diabetic nephropathy[J]. J Endocrinol Invest,2011, 34(9):e296-301.
    [125]Barbosa Junior Ade, A.; Zhou, H.; Hultenschmidt, D., et al. Inhibition of cellular autophagy in proximal tubular cells of the kidney in streptozotocin-diabetic and uninephrectomized rats[J]. Virchows Arch B Cell Pathol Incl Mol Pathol,1992, 61(6):359-366.
    [126]Hartleben, B.; Godel, M.; Meyer-Schwesinger, C., et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice[J]. J Clin Invest,2010,120(4):1084-1096.
    [127]Martinet W, De Meyer GR, Andries L, et al. In situ detection ofstarvation-induced autophagy. J Histochem Cytochem,2006,54(1):85-96.
    [1]. Yang WY, Lu JM, Weng JP, et al. Prevalence of Diabetes among Men and Women in China[J]. N Eng J Med,2010;362:1090-101.
    [2]. Goligorsky MS, Chen J, Brodsky S. Endothelial cell dysfunction leading to diabetic nephropathy:focus on nitric oxide. Hypertension,2001,37 (2):744-8.
    [3].Slyvka Y, Wang Z, Yee J, et al. Antioxidant diet, gender and age affect renal expression of nitric oxide synthases in obese diabetic rats. Nitric Oxide.2011,24(1): 50-60.
    [4]. Fujii H, Kono K, Nakai K, et al. Oxidative and nitrosative stress and progression of diabetic nephropathy in type 2 diabetes. Am J Nephrol.2010;31(4):342-52.
    [5]. KING AJ, BRENNER BM. Endothelium-derived vasoactive factots and the renal vasculature[J]. Am J Physiol.1991,260(4 Pt2):R653-62.
    [6]. KONE BC. Nitric oxide in renal health and disease[J]. Am J Kidney Dis.1997. 30(3):311-333.
    [7]. Tessari P, Cecchet D, Cosma A, et al. Nitric oxide synthesis is reduced in subjects with type 2 diabetes and nephropathy. Diabetes.2010,59(9):2152-9.
    [8]. M. Felaco, F. Di Nardo Di Maio, P. De Fazio, et al. Localization of the e-NOS enzyme in endothelial cells and odontoblasts of healthy human dental pulp. Life Sciences. 2000, (68):297-306.
    [9]. Constantina Heltianul, Cristian Guja. Role of Nitric Oxide Synthase Family in Diabetic Neuropathy. J Diabetes Metab. S5:002. doi:10.4172/2155-6156.
    [10].廖琳,陈青,李国安,等.一氧化氮和一氧化氮合酶基因多态性与糖尿病肾病[J].国外医学·内科学分册,2005,32(10):436.
    [11]. Jose Luis Vinas, Anna Sola, Meritxell Genesca, et al. NO and NOS isoforms in the development of apoptosis in renal ischemia/reperfusion. Radical Biology & Medicine 2006, (40):992-1003.
    [12]. THURAISINGHAM RC, NOTT CA, DODD SM, et al. Increased nitrotyrosine staining in kidneys frorn patients with diabetic nephropathy[J]. Kidney Int,2000,57(5): 1968-72.
    [13]. Keynan S, Hirshberg B, Levin-Iaina N, Wexler ID, et al. Renal nitric oxide production during the early phase of experimental diabetes mellitus. Kidney Int. 2000;58(2):740-7.
    [14]. Slyvka Y, Wang Z, Yee J, et al. Antioxidant diet, gender and age affect renal expression of nitric oxide synthases in obese diabetic rats. Nitric Oxide.2011, 1;24(1):50-60.
    [15]. Alnaeb ME, Thompson CS, Seifalian AM, Hamilton G, Mikhailidis DP. Regional differences in the expression of nitric oxide synthase and specific receptors in the vascular tissues of control and diabetic rabbits:a pilot study, In Vivo 2007; 21:1069-74.
    [16]. Levin-Iaina N, Iaina A, Raz I. The emerging role of NO and IGF-1 in early renal hypertrophy in STZ-induced diabetic rats. Diabetes Metab Res Rev.2011 Mar;27(3):235-43.
    [17]. Slyvka Y, Wang Z, Yee J, et al. Antioxidant diet, gender and age affect renal expression of nitric oxide synthases in obese diabetic rats. Nitric Oxide.2011, 24(1):50-60.
    [18]. Verena K. Capellini, Andrea C. Celotto, et a. Diabetes and Vascular Disease:Basic Concepts of Nitric Oxide Physiology Endothelial Dysfunction, Oxidative Stress and Therapeutic Possibilities. Current Vascular Pharmacology,2010,8,526-544.
    [19]. Nakagawa T, Tanabe K, Croker BP, et al. Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nat Rev Nephrol.2011 Jan;7(1):36-44.
    [20]. Anna Molllsten, Maria Lajer, Anders Jorsal,et al. The endothelial nitric oxide synthase gene and risk of diabetic nephropathy and development of cardiovascular disease in type 1 diabetes. Molecular Genetics and Metabolism.2009,97:80-84.
    [21]. Andrew Advani, Qingling Huang, Kerri Thai, et al. Long-Term Administration of the Histone Deacetylase Inhibitor Vorinostat Attenuates Renal Injury in Experimental Diabetes through an Endothelial Nitric Oxide Synthase-Dependent Mechanism. Metabolic, Endocrine, and Genitourinary Pathobiology.2011,178(8):2205-2214.
    [22]. Takahiko Nakagawa, Katsuyuki Tanabe, et al. Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nat. Rev. Nephrol.2011,7:36-44.
    [23]. Liu, Y. et al. T-786C polymorphism of the endothelial nitric oxide synthase gene is associated with albuminuria in the diabetes heart study. J. Am. Soc. Nephrol.2005,16: 1085-1090.
    [24]. Neugebauer, S., Baba, T.& Watanabe, T. Association of the nitric oxide synthase gene polymorphism with an increased risk for progression to diabetic nephropathy in type 2 diabetes. Diabetes.2000,49:500-503.
    [25]. Hohenstein, B. et al. Analysis of NO-synthase expression and clinical risk factors in human diabetic nephropathy. Nephrol. Dial. Transplant.23,1346-1354 (2008).
    [26]. Brodsky, S. v., Gao, S., Li, H.& Goligorsky, M. S. Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells. Am. J. Physiol. Heart Circ. Physiol.283, H2130 H2139 (2002).
    [27]. Shin Shin, Y. et al. Relations between eNOS Glu298Asp polymorphism and progression of diabetic nephropathy. Diabetes Res. Clin. Pract.65,257-265 (2004).
    [28]. Zanchi, A. et al. Risk of advanced diabetic nephropathy in type 1 diabetes is associated with endothelial nitric oxide synthase gene polymorphism. Kidney Int.57, 405-413 (2000).
    [29]. Komers, R. et al. Altered endothelial nitric oxide synthase targeting and conformation and caveolin-1 expression in the diabetic kidney. Diabetes 55,1651-1659 (2006).
    [30]. Frank C., Brosius Ⅲ. New insights into the mechanisms of fibrosis and sclerosis in diabetic nephropathy. Rev Endocr Metab Disord.2008, (9):245-254
    [31]. Nakagawa, T. et al. Diabetic eNOS knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol 18,539-550 (2007).
    [32]. Pandu R. R. Gangula, Sutapa Mukhopadhyay, Kalpana Ravella, et al. Tetrahydrobiopterin (BH4), a cofactor for nNOS, restores gastric emptying and nNOS expression in female diabetic rats. Am J Physiol Gastrointest Liver Physiol.2010,298: G692-G699.
    [33]. SHOSHANA KEYNAN, BOAZ HIRSHBERG, NOMY LEVIN-IAINA, et al. Renal nitric oxide production during the early phase of experimental diabetes mellitus. Kidney International, Vol.58 (2000), pp.740-747
    [34]. Jenny Edlund, Angelica Fasching, Per Liss, et al. The roles of NADPH-oxidase and nNOS for the increased oxidative stress and the oxygen consumption in the diabetic kidney. Diabetes Metab Res Rev.2010,26(5):349-356.
    [35]. Deng A, Miracle CM, Suarez JM, et al. Oxygen consumption in the kidney:Effects of nitric oxide synthase isoforms and angiotensin Ⅱ. Kidney Int.2005; 68:723-730.
    [36]. Jau-Shyang Huang, Lea-Yea Chuang, Jinn-Yuh Guh, et al. Effect of Nitric Oxide-cGMP-Dependent Protein Kinase Activation on Advanced Glycation End-Product-Induced Proliferation in Renal Fibroblasts. J Am Soc Nephrol.2005(16): 2318-2329.
    [37]. Mark L A, Robinson A V, Sehulak J A. Robinson and James A. Schulak. Inhibition of nitric oxide synthase reduces renal ischemia/reperfusion injury[J]. J Surg Res,2005, 129(2):236-241.
    [38]. Oriana Trubiani, Eleonora Salvolini, Arianna Vignini, et al. NF-kB and NOS may play a role in human RPMI-8402 cell apoptosis. Cell Biology International 29 (2005) 529e536.
    1. Katherine R Tuttle. Linking Metabolism and Immunology:Diabetic Nephropathy is an Inflammatory Disease. J Am Soc Nephrol,2005; 16(6):1537-1538.
    2. Nguyen D, Ping F, Mu W, et al. Macrophage accumulation in human progressive diabetic nephropathy. Nephrology(Carlton),2006,11(3):226-231
    3. Navarro-Gonzalez JF, Mora-Fernandez C, de Fuentes MM, et al. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol. 2011 May 3. [Epub ahead of print]
    4. Kaul K, Hodgkinson A, Tarr JM, et al. Is inflammation a common retinal-renal-nerve pathogenic link in diabetes. Curr Diabetes Rev.2010;6(5):294-303.
    5. Astrup AS, Tarnow L, Rossing P, Pietraszek L, Riis Hansen P, Parving HH. Improved prognosis in type 1 diabetic patients with nephropathy:a prospective follow-up study. Kidney Int 2005; 68:1250-1257.
    6. Giunti S, Pinach S, Arnaldi L, et al. The MCP-1/CCR2 system has direct proinflammatory effects in human measangia. Kidney Int,2006,69:856-863.
    7. Tesch GH, Lim AK. Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy. Am J Physiol Renal Physiol. 2011;300(2):301-10.
    8. Lim AK, Nikolic-Paterson DJ, Ma FY, et al. Role of MKK-p38 MAPK signaling in the development of type 2 diabetes and renal injury in obese db/db mice. Diabetologia, 2009; 52(2):347-358..
    9. Chawla T, Sharma D, Singh A. Role of the renin angiotensin system in diabetic nephropathy. World J Diabet.,2010; 1(5):141-5.
    10. Wolf G,Ritz E. Combination therapy with ACE inhibirors and angiotension II receptor blokers to halt progression of chronic renal disease:pathophysiology and indications. Kidney Int,2005; 67:799-812.
    11. Tesch GH, Lim AK. Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy. Am J Physiol Physiol.2011; 300(2): 301-310.
    12. Yang LX, Liu H, Guo RW, et al. Angiotensin II induces EMMPRIN expression in THP-1 macrophages via the NF-kappaB pathway. Regul Pept.,2010; 163(1-3):88-95.
    13. Chen L, Zbang J, Zhang Y. et al. Improvement of inflammatory responses associated with NF-κB pathway in kidneys from diabetic rats. Inflamm. Res.2008; 57: 199-204.
    14. Ha H, Yu MR, Choi YJ, et al, Role of High Glucose-Induced Nuclear Factor-κB Activation in Monocyte Chemoattractant Protein-1 Expression bY Mesangial Cells. J Am Sec Nephrol.2002; 13(4):894-902.
    15. Hon SY, Kim CH, Kim HS, et al. Spironolactone Prevents Diabetic Nephropathy through an Anti-Inflammatory Mechanism in Type 2 Diabetic Bats. J Am Soc Nephrol.2006; 17:1362-1372
    16. Siragy HM, Xue C. Local renal aldosterone production induces inflammation and matrix formation in kidneys of diabetic rats. Exp Physiol.2008; 93(7):817-824.
    17. Rivero A, Mora C, Muros M, et al. Pathogenic perspectives for the role of inflammation in diabetic nephropathy. Clin Sci (Lond),2009; 116(6):479-92.
    18. Sasaki M, Shikata K, Okada S, et al. The macrophage is a key factor in renal injuries caused by glomerular hyperfiltration. Acta Med Okayama,2011; 65(2):81-9.
    19. Jianxin Lu, Edward Randell, YingChun Han, et al. Increased plasma methylglyoxal level, inflammation, and vascular endothelial dysfunction in diabetic nephropathy. Clinical Biochemistry 2011; 44:307-311
    20. Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab,2009; 94(9):3171-82.
    21 Wang W, Koka V, Lan HY. Transforming growth factor beta and Smad signalling in kidney diseases. Nephrology (Carlton),2005,10 (1):48-56.
    22 Verrecchia F, Mauviel A. Transforming growth factor-β and fibrosis. World J Gastroenterol,2007,13 (22):3056-3062.
    23 Phan TT, Lin IJ, Aalami O, et al. Smad3 signalling plays an important role in keloid pathogenesis via epithelial-mesenchymal interactions. J Pathol,2005,207(2): 232-242.
    24 Wang A, Ziyadeh FN, Lee EY, et al. Interference with TGF-beta signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria. Am J Physiol Renal Physiol,2007,293 (5):F1657-F1665.
    25 Phanish MK, Wahab NA, Colville-Nash P, et al. The differential role of Smad2 and Smad3 in the regulation of profibrotic TGFβ1 responses in human proximal-tubule epithelial cells. Biochem J,2006,393 (Pt 2):601-607.
    26 Han SY, Kim CH, Kim HS, et al. Spironolactone prevents diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. J Am Soc Nephrol,2006; 17:1362-1372.
    27 Ninichuk V, Khandoga AG, Segerer S, et al. The role of interstitial macrophages in nephropathy of type 2 diabetic db/db mice. Am J Pathol,2007; 170:1267-1276.
    28. Navarro JF, Mora-Fernandez C. The role of TNF-alpha in diabetic nephropathy: pathogenic and therapeutic implications. Cytokine Growth Factor Rev,2006; 17: 441-450.
    29. Little MA, Bhangal G, Smyth CL, et al. Therapeutic effect of anti-TNFalpha antibodies in an experimental model of anti-neutrophil cytoplasm antibody-associated systemic vasculitis. J Am Soc Nephrol,2006; 17:160-169.