新型电纺纳米纤维制备及其氰酸酯树脂基复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料独有的可设计性和协同效应使之成为继金属、陶瓷和聚合物之后的第四大类材料。纳米复合材料独特的尺寸效应、隧道效应和表界面效应及不同于宏观复合材料的结构和性能,为复合材料的发展注入了新内容。无机纳米纤维/树脂基复合材料是纳米复合材料的重要形式,其性能不仅取决于无机纳米纤维和树脂基体,还与纳米纤维在树脂基体中的分散性及界面结构密切相关。如何在不降低纤维本身性能的基础上,实现无机纳米纤维在树脂基体中良好的分散及界面结合仍然是一个很大的挑战。此外,目前无机纳米纤维的制备还存在成本高、种类有限,不易实现规模制备等问题。本文针对无机纳米纤维/树脂基复合材料领域存在的关键问题,展开以下五个方面的工作。
     首先,分别以硅酸四乙酯(TEOS)、钛酸四丁酯(TNBT)和正丙醇锆(ZNP)为主要组分通过静电纺丝技术制备了各种电纺复合纳米纤维。考察了这些复合纳米纤维在空气中进行静电纺丝过程和储存阶段的稳定性,并系统研究了电纺复合纳米纤维在上述过程中的形貌、结构及化学变化。研究结果表明,空气中水分与复合纳米纤维的相互作用,会对纤维的最终形貌和性能产生重要影响。因此,在煅烧前保持复合纳米纤维形貌与性能的稳定是低成本、规模制备高质量无机纳米纤维的关键和前提。通过调整复合纳米纤维的组分,能使其在静电纺丝过程中就完成水解和聚合反应,有利于得到稳定性好的复合纳米纤维。这种纤维在标准环境下储存15天仍能保持初纺纤维的形貌,这一特性使其在规模制备和工业化生产方面具有广阔的应用前景。
     其次,通过对在标准环境下储存一定时间后的复合纳米纤维进行煅烧、浸水等后续处理,研究上述低成本后处理方法对TNBT(HAc)、ZNP(HAc)等复合纳米纤维结构与形貌的影响及其特殊结构的形成机理。结果表明,通过煅烧、浸水等后处理方法不但可以实现表面粗糙氧化钛(TiO2)纳米纤维的低成本制备,而且也可以通过工艺条件的控制得到具有纤维套管(fiber-in-tube)结构的TiO2纳米纤维及纯金红石相实心TiO2纳米纤维。同时,利用TNBT和ZNP在空气中快速水解和聚合的特性,可以在TiO2和氧化锆(ZrO2)纳米纤维表面进行包覆,形成具有核壳(core-shell)结构的纤维。
     第三,以锆醇盐作为电纺前驱物原料,基于静电纺丝和溶胶-凝胶技术建立了制备化学性能和纤维形貌可控的ZrO2纳米纤维的方法,并制得了ZrO2纳米纤维/氰酸酯基(CE)复合材料。通过标准静电纺丝装置制备的复合纳米纤维在不同温度下煅烧后得到具有孔洞尺寸可调和晶体结构可控的ZrO2纳米纤维及相应纤维聚集体。通过构建这种形貌、结构可控的ZrO2纳米纤维聚集体,使聚集体中纳米纤维间的相对位置在其与树脂基体形成复合材料前后都保持固定,有效地防止纤维间发生团聚。这种纤维聚集体有效地解决了纳米纤维在树脂基体中的分散问题,得到具有优异综合性能的ZrO2纳米纤维/CE基复合材料。
     第四,设计并制备表面包覆纳米氧化硅(SiO2)颗粒的ZrO2纳米纤维(SiO2@ZrO2)。这种新型纤维表面不仅具有能与CE树脂基体反应的活性基团,而且还有能与CE树脂基体间产生物理作用的特殊形貌。在通过构建纤维聚集体解决纳米纤维在树脂基体中分散问题的前提下,包覆纳米SiO2颗粒的ZrO2纳米纤维有效地改善了与树脂基体间的界面结合。系统考察了SiO2@ZrO2纳米纤维的特殊结构对于SiO2@ZrO2/CE基复合材料性能的影响,建立了上述复合材料体系结构与性能的关系。研究结果表明,通过对ZrO2纳米纤维表面进行纳米SiO2颗粒包覆得到的SiO2@ZrO2纳米纤维,可以与CE树脂基体间形成良好的界面结合,从而获得高性能SiO2@ZrO2/CE基复合材料。
     第五,首次通过静电纺丝及后续处理制备了钛酸铜钙(CCTO)纳米纤维。系统地研究了静电纺丝前驱物溶液的组分对前驱物溶液粘度及可纺性的影响。通过乙酸(HAc)作为缓冲剂改善前驱物溶液的可纺性,利用静电纺丝技术制备了CCTO复合纳米纤维。探讨了CCTO复合纳米纤维的后处理工艺对最终得到的CCTO纳米纤维结构与性能的影响。制备了CCTO纳米纤维与CE树脂基体的复合材料,并对相应复合材料进行了介电性能测试和计算。结果表明,通过静电纺丝技术制备的高质量纯相CCTO纳米纤维具有与CCTO块体材料不同的介电性能。
The excellent designability and synergistic effects make the composites become the fourthindependent category of materials follow-up to the metals, ceramics and polymers. Furthermore,compared with the macroscopic composites, nano-composites have outstanding performancefrom unique dimensional effects, quantum tunneling effects, and surface effects, which canbreathe new life into the field of composites. The inorganic nanofibers/resin matrix composite isthe important part of nano-composites. The performance of nano-composite not only depends onthe inorganic nanofibers and resin matrix, but also is greatly related to nanofibers dispersion andinterfacial adhesion in matrix. However, the manufacture process of high quality inorganicnanofibers is too costly, the sort and production of commercial inorganic nanofibers is limited.Meanwhile, how to keep good dispersion and desirable interfacial bonding of inorganicnanofibers in resin matrix without structural damage of nanofibers is still a challenge. We focuson these problems from inorganic nanofibers/resin matrix composite’s field in this dissertation,and raise five questions about the nano-composites.
     First, the various electrospun composite nanofibers have been prepared with keycomponents of tetraethyl orthosilicate (TEOS), titanium butoxide (TNBT), or zirconiumpropoxide (ZNP) respectively. Then the chemical and morphological stability of compositenanofibers in the air has been investigated and studied systematically during the electrospinningprocess and storage periods. The results show that moisture in the air will interact with theelectrospun composite nanofibers, and made a significant impact on ultimate morphology andperformance of the nanofibers. Hence, how to remain morphology and chemical properties ofcomposite nanofiber unchanged before the next steps, such as calcination and soak, are the basicrequirements for preparation of inorganic nanofibers with high production at low-cost. Bychoosing components in the electrospun composite nanofibers, the TNBT and ZNP in compositenanofibers can complete reaction of hydrolysis and polymerization during the electrospinningprocess. As the result, the as-spun composite nanofibers have excellent chemical and morphologystability, which can remain their morphology even after stored in the standard environment for15days, showing great potential in the large-scale preparation.
     Second, the influences of low-cost post-treatment, such as calcination and soak, on thestructure and morphology of electrospun composite nanofibers (TNBT(HAc) and ZNP(HAc)),which use TNBT and ZNP as key components respectively, have been investigated. Theformation mechanism of the composite nanofibers with special structures is worth studying. Theresults of the research show that the low-cost post-treatment can not only prepare titanium oxide(TiO2) nanofibers with rough surface, but also fabricate fiber-in-tube, solid and pure rutile-phasestructure TiO2nanofibers with a few simple steps. Meanwhile, for TNBT and ZNP can quicklyhydrolyze and polymerize in the air, it can be used conveniently to prepare TiO2and zirconiumoxide (ZrO2) nanofibers with core-shell structures by coating hydrolysis and polymerizationproducts from TNBT and ZNP.
     Third, using zirconium alkoxides as the key components in electrospun precursor materials,ZrO2nanofibers with controllable chemical properties and morphology were prepared by a newmethod based on electrospinning and sol-gel technology. The ZrO2nanofiber/cyanate ester (CE)resin composites with comprehensive properties were prepared by dispersing ZrO2nanofibercongeries in CE resin matrix. Through a standard electrospinning device and muffle, the porousZrO2nanofibers with different pore sizes and crystal structures can be prepared by calcining theelectrospun composite nanofibers at different temperatures. The ZrO2nanofibers congeries fromelectrospinning has a special structure, in which the relative positions of ZrO2nanofibers arefixed during the preparation process of ZrO2nanofiber/CE composites. As a result, theaggregation of ZrO2nanofibers can be avoided, and good dispersion of ZrO2nanofibers in thecan be gotten, leading to form ZrO2nanofiber/CE composites with excellent performance.
     Fourth, ZrO2nanofibers coated with nano-SiO2particles (SiO2@ZrO2) have been designedand prepared. The SiO2@ZrO2nanofibers not only have surface functional groups which willreact with the CE resin, but also can produce non-chemical mechanical interlocking effectsbetween the nanofibers and CE resin. The influence of SiO2@ZrO2nanofibers on the structureand properties of the SiO2@ZrO2nanofibers/CE composites was studied systematically. Theresults indicate that the SiO2@ZrO2nanofibers can obviously raise the bonding performance ofinterface layers between nanofibers and resin matrix, and consequently, improving performanceof the composite materials.
     Fifth, the copper-calcium titanate (CCTO) nanofibers have been firstly prepared byelectrospinning technique. The compositions of electrospinning precursor solutions have beencarefully studied. And the CCTO electrospun composite nanofibers have been successfully prepared by adding modifier (HAc) into the precursor solutions. The post-treatment on CCTOcomposite nanofibers has also been examined to distinguish the influence of process parameterson the structure and morphology of CCTO nanofibers. In addition, the dielectric properties ofpure-phase CCTO nanofibers and CCTO/CE composites have been measured and calculated. Theresults show that pure-phase CCTO nanofibers have different dielectric properties from theCCTO bulk materials.
引文
[1] Ajayan PM, Schadler LS, Braun PV. Nanocomposite Science and Technology [M]. Weinheim: Wiley-VCHVerlag GmbH Co. KGaA,2003.
    [2]闻荻江.复合材料原理[M].湖北:武汉理工大学出版社,1998.
    [3]王荣国,武卫莉,谷万里,王芝国.复合材料概论[M].黑龙江:哈尔滨工业大学出版社,2001.
    [4] Sullivan RW, Hwang Y, Rais-Rohani M, Lacy T. Structural analysis and testing of an ultralight unmanned-aerial-vehicle carbon-composite wing [J]. J Aircraft,2009,46(3):814-820.
    [5] Sebastian MT, Jantunen H. Polymer-ceramic composites of0-3connectivity for circuits in electronics: Areview [J]. Int J Appl Ceram Tec,2010,7(4):415-434.
    [6] Hongois S, Kuznik F, Stevens P, Roux JJ. Development and characterisation of a new MgSO4-zeolitecomposite for long-term thermal energy storage [J]. Sol Energ Mat Sol C,2011,95(7):1831-1837.
    [7]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2006.
    [8]林志东.纳米材料基础与应用[M].北京:北京大学出版社,2010.
    [9]柯扬船.聚合物纳米复合材料[M].北京:科学出版社,2009.
    [10] Jesson DA, Watts JF. The interface and interphase in polymer matrix composites: effect on mechanicalproperties and methods for identification [J]. Polym Rev,2012,52(3-4):321-354.
    [11]丁彬,俞建勇.静电纺丝与纳米纤维[M].北京:中国纺织出版社,2011.
    [12]莫秀梅,何创龙.静电纺丝与纳米纤维导论[M].上海:东华大学出版社,2012.
    [13] Agarwal S, Greiner A, Wendorff JH. Functional materials by electrospinning of polymers [J]. Prog PolymSci,2013,38(6):963-991.
    [14] Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M. Electrospinning versus fibre production methods:from specifics to technological convergence [J]. Chem Soc Rev,2012,41(13):4708-4735.
    [15] Inagaki M, Yang Y, Kang FY. Carbon nanofibers prepared via electrospinning [J]. Adv Mater,2012,24(19):2547-2566.
    [16] Hu JT, Odom TW, Lieber CM. Chemistry and physics in one dimension: synthesis and properties ofnanowires and nanotubes [J]. Accounts Chem Res,1999,32(5):435-445.
    [17] Fan M, Dai D, Yang A. High strength natural fiber composite: defibrillation and its mechanisms of nanocellulose hemp fibers [J]. Int. J Polym Mater,2011,60(13):1026-1040.
    [18] Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism ofmultiwalled carbon nanotubes under tensile load [J]. Science,2000,287(5453):637-640.
    [19] Yun J, Wang R, Choi WK, Thong JTL, Thompson CV, Zhu M, Foo YL, Hong MH. Field emission from alarge area of vertically-aligned carbon nanofibers with nanoscale tips and controlled spatial geometry [J].Carbon,2010,48(5):1362-1368.
    [20] Pumarol ME, Rosamond MC, Tovee P, Petty MC, Zeze DA, Falko V, Kolosov OV. Direct nanoscaleimaging of ballistic and diffusive thermal transport in graphene nanostructures [J]. Nano Lett,2012,12(6):2906-2911.
    [21] Wang ZL, Song JH. Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]. Science,2006,312(5771):242-246.
    [22] Kuykendall T, Ulrich P, Aloni S, Yang P. Complete composition tunability of InGaN nanowires using acombinatorial approach [J]. Nat Mater,2007,6(12):951-956.
    [23] Yu G, Liang B, Huang HT, Chen G, Liu Z, Chen D, Shen GZ. Contact printing of horizontally-alignedp-type Zn3P2nanowire arrays for rigid and flexible photodetectors [J]. Nanotechnology,2013,24(9):Article ID095703.
    [24] Gong JF, Yang S, Han C, Guan W, Wang Y, Gao B, Wang D, Song XP, Sun ZB, Xu MW. Modelingmagnetic nanotubes using a chain of ellipsoid-rings approach [J]. J Appl Phys,2012,111(6): Article ID063912.
    [25] Kai D, Prabhakaran MP, Stahl B, Eblenkamp M, Wintermantel E, Ramakrishna S. Mechanical propertiesand in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications [J].Nanotechnology,2012,23(9): Article ID095705.
    [26] Han SJ, Chung DDL. Through-thickness thermoelectric power of a carbon fiber/epoxy composite anddecoupled contributions from a lamina and an interlaminar interface [J]. Carbon,2013,52:30-39.
    [27]晋传贯,裴立宅,俞海云.一维无机纳米材料[M].北京:冶金工业出版社,2007.
    [28] Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ. One-dimensionalnanostructures: synthesis, characterization and application [J]. Adv Mater,2003,15(4):353-389.
    [29] Magniez K, Krajewski A, Neuenhofer M, Helmer R. Effect of drawing on the molecular orientation andpolymorphism of melt-spun polyvinylidene fluoride fibers: Toward the development of piezoelectric forcesensors [J]. J Appl Polym Sci,2013,129(5):2699-2706.
    [30] Wang D, Wang K, Xu WL. Novel fabrication of magnetic thermoplastic nanofibers via melt extrusion ofimmiscible blends [J]. Polym Advan Technol,2013,24(1):70-74.
    [31] Nakata K, Fujii K, Ohkoshi Y, Gotoh Y, Nagura M, Numata M, Kamiyama M. Poly(ethylene terephthalate)nanofibers made by sea-island-type conjugated melt spinning and laser-heated flow drawing [J]. MacromolRapid Comm,2007,28(6):792-795.
    [32] Ganan-Calvo AM, Perez-Saborid M, Lopez-Herrera JM, Gordillo JM. Steady high viscosity liquidmicro-jet production and fiber spinning using co-flowing gas conformation [J]. Eur Phys J B,2004,39(1):131-137.
    [33] Houweling ZS, Verlaan V, ten Grotenhuis GT, Schropp REI. Formation of isolated carbon nanofibers withhot-wire CVD using nanosphere lithography as catalyst patterning technique [J]. Thin Solid Films,2009,517(12):3566-3569.
    [34] Boobalan G, Imran PKM, Manoharan C, Nagarajan S. Fabrication of highly fluorescent perylene bisimidenanofibers through interfacial self-assembly [J]. J Colloid Interf Sci,2013,393:377-383.
    [35] Huang ZF, Chen YW, Zhou WH, Nie HR, Hu YH. Preparation of silica hollow fibers by surface-initiatedatom transfer radical polymerization from electrospun fiber templates [J]. Mater Lett,2009,63(21):1803-1806.
    [36] Pan BJ, Zhu L, Li XF. Preparation of PVDF/CaCO3composite hollow fiber membrane via a thermallyinduced phase separation method [J]. Polym Composite,2013,34(7):1204-1210.
    [37]杨大祥,李恩重,郭伟玲,王海斗,徐滨士.静电纺丝制备纳米纤维及其工业化研究进展[J].材料导报,2011,25(8):64-68.
    [38] Rutledge GC, Fridrikh SV. Formation of fibers by electrospinning [J]. Adv Drug Deliv Rev,2007,59(14):1384-1391.
    [39] Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma ZW, Ramaseshan R. Electrospun nanofibers: solvingglobal issues [J]. Mater Today,2006,9(3):40-50.
    [40] Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning [J].Nanotechnology,1996,7(3):216-223.
    [41] Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables on the morphology ofelectrospun nanofibers and textiles [J]. Polymer,2001,42(1):261-272.
    [42] Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets ofpolymer solutions in electrospinning [J]. J Appl Phys,2000,87(9):4531-4547.
    [43] Zarkoob S, Eby RK, Reneker DH, Hudson SD, Ertley D, Adams WW. Structure and morphology ofelectrospun silk nanofibers [J]. Polymer,2004,45(11):3973-3977.
    [44] Huang CB, Chen SL, Lai CL, Reneker DH, Qiu H, Ye Y, Hou HQ. Electrospun polymer nanofibres withsmall diameters [J]. Nanotechnology,2006,17(6):1558-1563.
    [45] Huang CB, Chen SL, Reneker DH, Lai CL, Hou HQ. High-strength mats from electrospun poly(p-Phenylene Biphenyltetracarboximide) nanofibers [J]. Adv Mater,2006,18(5):668-671.
    [46] Li Y, Huang ZM, Lu YD, Electrospinning of nylon-6,66,1010terpolymer [J]. Eur Polym J,2006,42(7):1696-1704.
    [47] Ma ZW, Kotaki M, Yong T, He W, Ramakrishna S. Surface engineering of electrospun polyethyleneterephthalate (PET) nanofibers towards development of a new material for blood vessel engineering [J].Biomaterials,2005,26(15):2527-2536.
    [48] Wang C, Tsou SY, Lin HS. Brill transition of nylon-6in electrospun nanofibers [J]. Colloid Polym Sci,2012,290(17):1799-1809.
    [49] Shin MK, Kim YJ, Kim SI, Kim SK, Lee H, Spinks GM, Kim SJ. Enhanced conductivity of alignedPANi/PEO/MWNT nanofibers by electrospinning [J]. Sens Actuators B,2008,134(1):122-126.
    [50] Sujith Nair, Erik Hsiao, Seong H. Kim, Melt-welding and improved electrical conductivity of nonwovenporous nanofiber mats of Poly(3,4-ethylenedioxythiophene) grown on electrospun polystyrene fibertemplate [J]. Chem Mater,2009,21(1):115-121.
    [51] Zhou SB, Peng HS, Yu XJ, Zheng XT, Cui WG, Zhang ZR, Li XH, Wang JX, Weng J, Jia WX, Li F.Preparation and characterization of a novel electrospun spider silk fibroin/poly(d,l-lactide) composite fiber[J]. J Phys Chem B,2008,112(36):11209-11216.
    [52] Zhang F, Zuo BQ, Zhang HX, Bai L. Studies of electrospun regenerated SF/TSF nanofibers [J]. Polymer,2009,50(1):279-285.
    [53] Ren XH, Kocer HB, Worley SD, Broughton RM, Huang TS. Biocidal nanofibers via electrospinning [J]. JAppl Polym Sci,2013,127(4):3192-3197.
    [54] Liu JY, Min Y, Chen JY, Zhou HW, Wang C. Preparation of the ultra-low dielectric constant polyimidefiber membranes enabled by electrospinning [J]. Macromol Rapid Commun,2007,28(2):215-219.
    [55] Li D, McCann JT, Xia YN. Electrospinning: A simple and versatile technique for producing ceramicnanofibers and nanotubes [J]. J Am Ceram Soc,2006,89(6):1861-1869.
    [56] Avila HA, Ramajo LA, Goes MS, Reboredo MM, Castro MS, Parra R. Dielectric behavior ofepoxy/BaTiO3composites using nanostructured ceramic fibers obtained by electrospinning [J]. ACS ApplMater Inter,2013,5(3):505-510.
    [57] Li D, Xia YN. Fabrication of titania nanofibers by electrospinning [J]. Nano Lett,2003,3(4):555-560.
    [58] Li D, Wang YL, Xia YN. Electrospinning of polymeric and ceramic nanofibers as uniaxially alignedarrays [J]. Nano Lett,2003,3(8):1167-1171.
    [59] Li D, Herricks T, Xia YN, Magnetic nanofibers of nickel ferrite prepared by electrospinning [J]. Appl PhysLett,2003,83(22):4586-4588.
    [60] Liu HQ, Yang JX, Liang JH, Huang YX, Tangz CY. ZnO nanofiber and nanoparticle synthesized throughelectrospinning and their photocatalytic activity under visible light [J]. J Am Ceram Soc,2008,91(4):1287-1291.
    [61] Yang A, Tao XM, Pang GKH, Siu KGG. Preparation of porous tin oxide nanobelts using theelectrospinning technique [J].2008, J Am Ceram Soc,91(1):257-262.
    [62] Wu H, Sun Y, Lin DD, Zhong R, Zhang C, Pan W. GaN Nanofibers based on electrospinning: facilesynthesis, controlled assembly, precise doping, and application as high performance UV photodetector [J].Adv Mater,2009,21(2):227-231.
    [63] Son WK, Cho D, Park WH. Direct electrospinning of ultrafine titania fibres in the absence of polymeradditives and formation of pure anatase titania fibres at low temperature [J]. Nanotechnology,2006,17(2):439-443.
    [64] Ding B, Kim H, Kim C, Khil M, Park S. Morphology and crystalline phase study of electrospunTiO2-SiO2nanofibres [J]. Nanotechnology,2003,14(5):532-537.
    [65] Li D, Xia YN. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning [J]. NanoLett,2004,4(5):933-938.
    [66] Li FY, Zhao Y, Wang S, Han D, Jiang L, Song YL. Thermochromic core-shell nanofibers fabricated bymelt coaxial electrospinning [J]. J Appl Polym Sci,2009,112(1):269-274.
    [67] Alves AK, Berutti FA, Clemens FJ, Graule T, Bergmann CP. Photocatalytic activity of titania fibersobtained by electrospinning [J]. Mater Res Bull,2009,44(2):312-317.
    [68] Park SJ, Chase GG, Jeong KU, Kim HY. Mechanical properties of titania nanofiber mats fabricated byelectrospinning of sol-gel precursor [J]. J Sol-Gel Sci Technol,2010,54(2):188-194.
    [69] Cacciotti I, Bianco A, Pezzotti G, Gusmano G. Terbium and ytterbium-doped titania luminescentnanofibers by means of electrospinning technique [J]. Mater Chem Phys,2011,126(3):532-541.
    [70] Widiyandari H, Munir MM, Iskandar F, Okuyama K. Morphology-controlled synthesis of chromia-titaniananofibers via electrospinning followed by annealing [J]. Mater Chem Phys,2009,116(1):169-174.
    [71] Tang HZ, Wang H, He JH. Superhydrophobic titania membranes of different adhesive forces fabricated byelectrospinning [J]. J Phys Chem C,2009,113(32):14220-14224.
    [72]郭景坤,寇华敏,李江.高温结构陶瓷研究浅论[M].北京:科学出版社,2011.
    [73] Manicone PF, Iommetti PR, Raffaelli L. An overview of zirconia ceramics: Basic properties and clinicalapplications [J]. J Dent,2007,35(11):819-826.
    [74] Zhang HB, Edirisinghew MJ. Electrospinning zirconia fiber from a suspension [J]. J Am Ceram Soc,2006,89(6):1870-1875.
    [75] Azad AM. Fabrication of yttria-stabilized zirconia nanofibers by electrospinning [J]. Mater Lett,2006,60(1):67-72.
    [76] Zhang YF, Li JY, Li Q, Zhu L, Liu XD, Zhong XH, Meng J, Cao XQ. Preparation of CeO2-ZrO2ceramicfibers by electrospinning [J]. J Colloid Interf Sci,2007,307(2):567-571.
    [77] Zhao YY, Tang YF, Guo YC, Bao XY. Studies of electrospinning process of zirconia nanofibers [J]. FiberPolym,2010,11(8):1119-1122.
    [78] Kim BH, Yang KS, Woo HG, Kim SY. Improvement of anti-oxidation properties of carbon fibers bySiC/SiO2ceramic coating [J]. J Nanosci Nanotechno,2011,11(8):7119-7123.
    [79] Xia KD, Lu CX, Yang Y. Preparation of anti-oxidative SiC/SiO2coating on carbon fibers fromvinyltriethoxysilane by sol-gel method [J]. Appl Surf Sci,2013,265:603-609.
    [80] Zheng Y, Wang SB. The effect of SiO2-doped boron nitride multiple coatings on mechanical properties ofquartz fibers [J]. Appl Surf Sci,2012,258(7):2901-2905.
    [81] Yin YJ, Wang CX. Water-repellent functional coatings through hybrid SiO2/HTEOS/CPTS sol on thesurfaces of cellulose fibers [J]. Colloid Surface A,2013,417:120-125.
    [82] Xue CH, Yin W, Jia ST, Ma JZ. UV-durable superhydrophobic textiles with UV-shielding properties bycoating fibers with ZnO/SiO2core/shell particles [J]. Nanotechnology,2011,22(41): Article ID415603.
    [83] Persano L, Camposeo A, Tekmen C, Pisignano D. Industrial upscaling of electrospinning and applicationsof polymer nanofibers: A review [J]. Macromol Mater Eng,2013,298(5, SI):504-520.
    [84] Yarin AL, Zussman E. Upward needleless electrospinning of multiple nanofibers [J]. Polymer,2004,45(9):2977-2980.
    [85] Jirsak O, Sanetrnik F, Lukas D, Kotek V, Martinova L, Chaloupek J. A method of nanofibres productionfrom a polymer solution using electrostatic spinning and a device for carrying out the method [P]. WO2005/024101A1,2005.
    [86] Liu Y, He JH. Bubble electrospinning for mass production of nanofibers [J]. Int J Nonlinear Sci,2007,8(3):393-396.
    [87] Wang X, Niu H, Lin T, Wang X. Needleless electrospinning of nanofibers with a conical wire coil [J].Polym Eng Sci,2009,49(8):1582-1586.
    [88] Thoppey NM, Bochinski JR, Clarke LI, Gorga RE. Unconfined fluid electrospun into high qualitynanofibers from a plate edge [J]. Polymer,2010,51(21):4928-4936.
    [89] Tang S, Zeng Y, Wang X. Splashing needleless electrospinning of nanofibers [J]. Polym Eng Sci,2010,50(11):2252-2257.
    [90] Lu BA, Wang YJ, Liu YX, Duan HG, Zhou JY, Zhang ZX, Wang YQ, Li XD, Wang W, Lan W, Xie EQ.Superhigh-throughput needleless electrospinning using a rotary cone as spinneret [J]. Small,2010,6(15):1612-1616.
    [91] Wu D, Huang X, Lai X, Sun D, Lin L. High throughput tip-less electrospinning via a circular cylindricalelectrode [J]. J Nanosci Nanotechno,2010,10(7):4221-4226.
    [92] Thoppey NM, Bochinski JR, Clarke LI, Gorga RE. Edge electrospinning for high throughput productionof quality nanofibers [J]. Nanotechnology,2011,22(34): Article ID345301.
    [93] Niu HT, Lin T. Fiber generators in needleless electrospinning [J]. J Nanomater,2012,725950:1-13.
    [94]高鹤森.静电纺丝制备纳米纤维及其装置的研究进展[J].材料导报,2012,26(20):102-106.
    [95] Ding B, Kimura E, Sato T, Fujita S, Shiratori S. Fabrication of blend biodegradable nanofibrousnonwoven mats via multi-jet electrospinning [J]. Polymer,2004,45(6):1895-1902.
    [96] Tomaszewski W, Szadlkowski M. Investigation of electrospining with the use of a multijet electrospininghead [J]. Fibers Textiles Eastern Eur,2005,13(4):22-26.
    [97] Yang Y. A shield ring enhanced equilateral hexagon distributed multi-needle electrospinning spinneret [J].IEEE T Dielect El In,2010,17(5):1592-1601.
    [98] Kumar A. Controlling fiber repulsion in multijet electrospinning for higher throughput [J]. MacromolMater Eng,2010,295(8):701-708.
    [99]陈祥宝.聚合物基复合材料手册[M].北京:化学工业出版社,2004.
    [100]刘锋,周恒,赵彤.高性能树脂基体的最新研究进展[J].宇航材料工艺,2012,4:1-6.
    [101]陈宇飞,郭艳宏,戴亚杰.聚合物基复合材料[M].北京:化学工业出版社,2010.
    [102]吴人洁.复合材料[M].天津:天津大学出版社,2002.
    [103] Hamerton I. Chemistry and technology of cyanate ester resins [M]. London: BlackieAcademic&Professional,1994.
    [104] Simon SL,Gillham JK.Cure kinetics of a thermosetting liquid dicyanate ester monomer/high-Tgpolycyanurate material [J]. J Appl Polym Sci,1993,47(3):461-485.
    [105] Shimp DA. ACS Meeting [M]. New York: ACS,1986.
    [106]程邦仁.氰酸酯树脂的结构固化与改性研究[D].西北工业大学硕士学位论文.陕西:西北工业大学,2004.
    [107]王胜杰,许元泽,杨振忠,俞浩,赵得禄.氰酸酯聚合物的研究[J].化学通报,1996,12:1-8.
    [108]戴善凯,顾嫒娟,梁国正,袁莉.氰酸酯树脂的固化催化研究新进展[J].材料导报,2009,23(5):57-64.
    [109]黄丽.聚合物复合材料[M].北京:中国轻工业出版社,2001.
    [110]生瑜,朱德钦,陈建定.聚合物基无机纳米复合材料的制备方法[J].高分子通报,2001,4:9-14.
    [111]李娟.碳纳米管/尼龙6复合材料的结构与性能研究[D].浙江大学博士学位论文.浙江:浙江大学,2006.
    [112]徐如人,庞文琴,霍启升.无机合成与制备化学[M].北京:高等教育出版社,2009.
    [113]毕辉,寇开昌,吴海维,王志超,张教强.溶胶-凝胶法制备聚酰亚胺/纳米SiO2复合材料的研究进展[J].中国胶粘剂,2008,17(9):50-54.
    [114]牟其伍,赵玉顺,林涛.溶胶-凝胶法制备环氧树脂/纳米SiO2复合材料中纳米粒子的分散性研究[J].材料导报,2007,21(S1):209-211.
    [115]陈平,陈辉.先进聚合物基复合材料界面及纤维表面改性[M].北京:科学出版社,2010.
    [116] Guo JH, Lu CX, An F. Effect of electrophoretically deposited carbon nanotubes on the interface ofcarbon fiber reinforced epoxy composite [J]. J Mater Sci,2012,47(6):2831-2836.
    [117]娄渊华,刘梅红,王新平.纳米无机粒子/聚合物复合材料界面结构的研究[J].高分子通报,2009,4:38-42.
    [118]尹荔松,张进修.无机刚性粒子/聚合物复合材料的界面[J].材料导报,2002,16(3):44-46.
    [119] George J, Sreekala MS, Thomas S. A review on interface modification and characterization of naturalfiber reinforced plastic composites [J]. Polym Eng Sci,2001,41(9):1471-1485.
    [120] Zhou TL, Gu MY, Jin YP, Wang JX. Effects of nano-sized carborundum particles and amino silanecoupling agent on the cure reaction kinetics of DGEBA/EMI-2,4system [J]. Polymer,2005,46(16):6216-6225.
    [121]朱雅红,马晓燕,陈娜.聚合物基复合材料的界面及改性研究[J].玻璃钢/复合材料,2005,3:44-48.
    [122] Song KA, Zhang YY, Meng JS, Green EC, Tajaddod N, Li H, Minus ML. Structural polymer-basedcarbon nanotube composite fibers: understanding the processing-structure-performance relationship [J].Materials,2013,6(6):2543-2577.
    [123] Reinoso J, Blazquez A, Estefani A, Paris F, Canas J, Arevalo E, Cruz F. Experimental andthree-dimensional global-local finite element analysis of a composite component including degradationprocess at the interfaces [J]. Compos Part B-Eng,2012,43(4):1929-1942.
    [124] Varesano A, Carletto RA, Mazzuchetti G. Experimental investigations on the multi-jet electrospinningprocess [J]. J Mater Process Tech,2009,209(11):5178-5185.
    [125] Tekmen C, Tsunekawa Y, Nakanishi H. Electrospinning of carbon nanofiber supported Fe/Co/Ni ternaryalloy nanoparticles [J]. J Mater Process Tech,2010,210(3):451-455.
    [126] Azad AM, Hershey R, Ali S, Goel V. Bactericidal efficacy of electrospun pure and Fe-doped titaniananofibers [J]. J Mater Res,2010,25(9):1761-1770.
    [127] Eick B, Youngblood J. SiC nanofibers by pyrolysis of electrospun preceramic polymers [J]. J Mater Sci,2009,44(1):160-165.
    [128]崔英德.聚乙烯吡咯烷酮的合成与应用[M].北京:科学出版社,2001.
    [129] Lancry M, Regnier E, Poumellec B. Fictive temperature in silica-based glasses and its application tooptical fiber manufacturing [J]. Prog Mater Sci,2012,57(1):63-94.
    [130] Shi HY, Li H. Challenges and developments of micro drill bit for printed circuit board: A review [J].Circuit World,2013,39(2):75-81.
    [131] Pal P, Knox WH. Low loss fusion splicing of micron scale silica fibers [J]. Opt Express,2008,6(15):11568-11573.
    [132]孙立,张力,陈立富.溶胶-凝胶法制备二氧化硅陶瓷纤维的研究[J].厦门大学学报(自然科学版),2007,46(6):822-826.
    [133]史铁钧,周玉波,廖若谷,王华林.二氧化硅/聚乙烯醇杂化电纺纤维膜的制备与结构形态[J].高等学校化学学报,2005,26(12):2373-2376.
    [134]赵一阳,王海鹰,李响,杨洋,杨敏,王策.静电纺丝法制备硫酸化的二氧化锆/二氧化硅复合纤维[J].高等学校化学学报,2007,28(2):382-384.
    [135]张双虎,董相廷,徐淑芝,王进贤.静电纺丝技术制备TiO2@SiO2亚微米同轴电缆与表征[J].化学学报,2007,65(23):2675-2679.
    [136] Guan HY, Zhou W, Fu SW, Shao CL, Liu YC. Electrospun nanofibers of NiO/SiO2composite [J]. J PhysChem Solids,2009,70(10):1374-1377.
    [137] Zhan SH, Chen DR, Jiao ML. Co-electrospun SiO2hollow nanostructured fibers with hierarchical walls[J]. J Colloid Interf Sci,2008,318(2):331-336.
    [138] Lee SW, Kim YU, Choi SS, Park TY, Joo YL, Lee SG. Preparation of SiO2/TiO2composite fibers bysol-gel reaction and electrospinning [J]. Mater Lett,2007,61(3):889-893.
    [139] Liu Y, Sagi S, Chandrasekar R, Zhang, LF, Hedin NE, Fong H. Preparation and characterization ofelectrospun SiO2nanofibers [J]. J Nanosci Nanotechno,2008,8(3):1528-1536.
    [140]赵丽,余家国,程蓓,赵修建.单分散二氧化硅球形颗粒的制备与形成机理[J].化学学报,2003,61(4):562-566.
    [141]郑林丽.单分散纳米二氧化硅及掺铒二氧化硅的制备[D].吉林大学硕士学位论文.吉林:吉林大学,2005.
    [142] Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S. Photocatalytic activity for hydrogen evolution ofelectrospun TiO2nanofibers [J]. ACS Appl Mater Inter,2009,1(5):1140-1143.
    [143] Xu XM, Guo GQ, Fan YW. Fabrication and characterization of dense zirconia and zirconia-silicaceramic nanofibers [J]. J Nanosci Nanotechno,2010,10(9):5672-5679.
    [144] Onozuka K, Ding B, Tsuge Y, Naka T, Yamazaki M, Sugi S, Ohno S, Yoshikawa M, Shiratori S.Electrospinning processed nanofibrous TiO2membranes for photovoltaic applications [J].Nanotechnology,2006,17(4):1026-1031.
    [145] Costa RGF, Ribeiro C, Mattoso LHC. Morphological and photocatalytic properties of PVA/TiO2nanocomposite fibers produced by electrospinning [J]. J Nanosci Nanotechno,2010,10(8):5144-5152.
    [146] Lamastra FR, Bianco A, Meriggi A, Montesperelli G, Nanni F, Gusmano G. Nanohybrid PVA/ZrO2andPVA/Al2O3electrospun mats [J]. Chem Eng J,2008,145(1):169-175.
    [147] Yin LF, Niu JF, Shen ZY, Bao YP, Ding SY. Preparation and photocatalytic activity of nanoporouszirconia electrospun fiber mats [J]. Mater Lett,2011,65(19-20):3131-3133.
    [148] Li D, Xia YN. Electrospinning of nanofibers: reinventing the wheel [J]. Adv Mater,2004,16(14):1151-1170.
    [149] Rahima AL, Paul AC. A one-step approach to the synthesis of ZrO2-modified TiO2nanotubes insupercritical carbon dioxide [J]. Adv Mater,2008,20(9):1755-1759.
    [150] Ivanova T, Harizanova A. Surtchev M. Formation and investigation of sol-gel TiO2-V2O5system [J].Mater Lett,2002,55(5):327-333.
    [151] Sugimoto T, Zhou X, Muramatsu A. Synthesis of uniform anatase TiO2nanoparticles by gel-sol method1.solution chemistry of Ti(OH)(4n)+ncomplexes [J]. J Colloid Interf Sci,2002,252(2):339-346.
    [152] Hayashi H, Suzuki H, Kaneko S. Effect of chemical modification on hydrolysis and condensationreaction of zirconium alkoxide [J]. J Sol-Gel Sci Techn,1998,12(2):87-94.
    [153] Benabid F, Couny F, Knight JC, Birks TA, Russell PS. Compact, stable and efficient all-fibre gas cellsusing hollow-core photonic crystal fibres [J]. Nature,2005,434(7032):488-491.
    [154] Guo CL, Zhu X, Liao Q, Wang YZ, Chen R, Lee DJ. Enhancement of photo-hydrogen production in abiofilm photobioreactor using optical fiber with additional rough surface [J]. Bioresource Technol,2011,102(18, SI):8507-8513.
    [155] Zhang J, Choi SW, Kim SS. Micro-and nano-scale hollow TiO2fibers by coaxial electrospinning:Preparation and gas sensing [J]. J Solid State Chem,2011,184(11):3008-3013.
    [156] Devi LG, Murthy BN. Characterization of Mo doped TiO2and its enhanced photo catalytic activity undervisible light [J]. Catal Lett,2008,125(3-4):320-330.
    [157] Gong J, Li YH, Hu ZS, Zhou ZZ, Deng YL. Ultrasensitive NH3gas sensor from polyaniline nanograinenchased TiO2fibers [J]. J Phys Chem C,2010,114(21):9970-9974.
    [158] Lin YP, Chen YY, Lee YC, Chen-Yang YW. Effect of wormhole-like mesoporous anatase TiO2nanofiberprepared by electrospinning with ionic liquid on dye-sensitized solar cells [J]. J Phys Chem C,2012,116(24):13003-13012.
    [159] Paul T, Miller PL, Strathmann TJ. Visible-light-mediated TiO2photocatalysis of fluoroquinoloneantibacterial agents [J]. Environ Sci Technol,2007,41(13):4720-4727.
    [160] Lang LM, Wu D, Xu Z. Controllable fabrication of TiO21D-nano/micro structures: solid, hollow, andtube-in-tube fibers by electrospinning and the photocatalytic performance [J]. Chem Eur J,2012,18(34):10661-10668.
    [161] Cheng YL, Huang WZ, Zhang YF, Zhu L, Liu YJ, Fan XZ, Cao XQ. Preparation of TiO2hollownanofibers by electrospining combined with sol-gel process [J]. Cryst Eng Comm,2010,12(7):2256-2260.
    [162] Wesselt C, Ostermann R, Dersch R, Smarsly BM. Formation of inorganic nanofibers from preformedTiO2nanoparticles via electrospinning [J]. J Phys Chem C,2011,115(2):362-372.
    [163]俞建长,胡胜伟.高分散氧化锆纳米晶体的合成与表征[J].硅酸盐学报,2006,34(2):162-166.
    [164]李映伟,贺德华,袁余斌,程振兴,朱起明.纳米二氧化锆催化剂上一氧化碳加氢合成异丁烯[J].催化学报,2002,23(2):185-190.
    [165]罗志安,钱晓良,孙尧卿,耿卫芹.二氧化锆氧传感器的零电位[J].传感器技术,2002,21(9):14-17.
    [166]喻德忠,蔡汝秀,潘祖亭.纳米级二氧化锆的合成及其在六价铬污染处理中的应用[J].分析科学学报,2002,18(5):418-420.
    [167]关宏宇,邵长路,刘益春,韩冬雪,杨兴华,于娜.静电纺丝法制备ZrO2纳米纤维[J].高等学校化学学报,2004,25(8):1413-1415.
    [168] Wen SP, Liu L, Zhang LF, Chen Q, Zhang LQ, Fong H. Hierarchical electrospun SiO2nanofiberscontaining SiO2nanoparticles with controllable surface-roughness and/or porosity [J]. Mater Lett,2010,64(13):1517-1520.
    [169] Nakayama N, Hayashi T. Preparation and characterization of poly(L-lactic acid)/TiO2nanoparticlenanocomposite films with high transparency and efficient photodegradability [J]. Polym Degrad Stabil,2007,92(7):1255-1264.
    [170] Su YR, Yu JG, Lin J. Vapor-thermal preparation of highly crystallized TiO2powder and its photocatalyticactivity [J]. J Solid State Chem,2007,180(7):2080-2087.
    [171] Hong YL, Li DM, Zheng J, Zou GT. Sol-gel growth of titania from electrospun polyacrylonitrilenanofibres [J]. Nanotechnology,2006,17(8):1986-1993.
    [172]潘一凡,吴志威,王远亮.炉内氧气含量对竹材炭化的影响[J].南京林业大学学报(自然科学版),2011,35(1):116-118.
    [173] Bahloul W, Bounor-Legare V, Seytre G, Cassagnau P. Influence of a non-polar medium (alkane andmolten polypropylene) on the titanium n-butoxide hydrolysis-condensation reactions [J]. J Sol-Gel SciTechnol,2011,57(1):86-94.
    [174] Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds,6th ed [M]. NewJersey: John Wiley&Sons,2009.
    [175] Chan K, Kostun LE, Tenhaeff WE, Gleason KK. Initiated chemical vapor deposition ofpolyvinylpyrrolidone-based thin films [J]. Polymer,2006,47(20):6941-6947.
    [176] Zhan SH, Chen DR, Jiao XL, Tao CH. Long TiO2hollow fibers with mesoporous walls: sol-gelcombined electrospun fabrication and photocatalytic properties [J]. J Phys Chem B,2006,110(23):11199-11204.
    [177] Caldeira L, Vasconcelos DCL, Nunes EHM, Costa VC, Musse AP, Hatimondi SA, Nascimento JF, GravaW, Vasconcelos WL. Processing and characterization of sol-gel titania membranes [J]. Ceram Int,2012,38(4):3251-3260.
    [178] Wang XX, Lam KH, Tang XG, Chan HLW. Dielectric characteristics and polarization response oflead-free ferroelectric (Bi0.5Na0.5)0.94Ba0.06TiO3-P(VDF-TrFE)0-3composites [J]. Solid State Commun,2004,130(10):695-699.
    [179] Kuo DH, Chang CC, Su TY, Wang WK, Lin BY. Dielectric properties of three ceramic/epoxy composites[J]. Mater Chem Phys,2004,85(1):201-206.
    [180] Ren PG, Liang GZ, Zhang ZP, Lu T. ZnO whisker reinforced M40/BADCy composite [J]. Compos PartA-Appl S,2006,37(1):46-53.
    [181] Sun ZQ, Gu AJ, Liang GZ, Dai SK, Yuan L. Novel aluminum phosphate/cyanate ester composites:Thermo degradation behaviors and kinetic analyses [J]. J Appl Polym Sci,2009,113(6):3427-3435.
    [182] Sever K, Erden S, Gulec HA, Sekid Y, Sarikanatb M. Oxygen plasma treatments of jute fibers inimproving the mechanical properties of jute/HDPE composites [J]. Mater Chem Phys,2011,129(1-2):275-280.
    [183] Paunikallio T, Suvanto M, Pakkanen TT. Composition, tensile properties, and dispersion ofpolypropylene composites reinforced with viscose fibers [J]. J Appl Polym Sci,2004,91(4):2676-2684.
    [184] Marie LB, Kristiina O. The effect of processing on fiber dispersion, fiber length, and thermal degradationof bleached sulfite cellulose fiber polypropylene composites [J]. J Thermoplast Compos,2009,22(2):115-133.
    [185] Macias M, Chacko A, Ferraris JP, Balkus KJ. Electrospun mesoporous metal oxide fibers [J]. MicroporMesopor Mat,2005,86(1-3):1-13.
    [186] Rusli R, Eichhorn SJ. Interfacial energy dissipation in a cellulose nanowhisker composite [J].Nanotechnology,2011,22(32): Article ID325706.
    [187] Zhang XK, Wang YX, Lu C, Cheng SJ. Interfacial adhesion study on UHMWPE fiber-reinforcedcomposites [J]. Polym Bull,2011,67(3):527-540.
    [188] Nie WZ, Li XZ, Sun FF. The effect of surface modification on the interfacial feature of polystyrenecomposite filled with carbon fiber [J]. J Mater Eng Perform,2010,19(9):1240-1243.
    [189] Clancy TC, Gates TS. Modeling of interfacial modification effects on thermal conductivity of carbonnanotube composites [J]. Polymer,2006,47(16):5990-5996.
    [190] Lee B, Dai G. Influence of interfacial modification on the thermal conductivity of polymer composites [J].J Mater Sci,2009,44(18):4848-4855.
    [191] Belsky AJ, Brill TB. Spectroscopy of hydrothermal reactions.14. Kinetics of the pH-sensitiveaminoguanidine-semicarbazide-cyanate reaction network [J]. J Phys Chem A,1999,103(39):7826-7833.
    [192] Jiang ZX, Huang YD, Liu L, Long J. Effects of roughness on interfacial performances of silica glass andnon-polar polyarylacetylene resin composites [J]. Appl Surf Sci,2007,253(24):9357-9364.
    [193] Song W, Gu AJ, Liang GZ, Yuan L. Effect of the surface roughness on interfacial properties of carbonfibers reinforced epoxy resin composites [J]. Appl Surf Sci,2011,257(9):4069-4074.
    [194] Davies E, Lowew A, Sterns M, Fujihara K, Ramakrishna S. Phase morphology in electrospun zirconiamicrofibers [J]. J Am Ceram Soc,2008,91(4):1115-1120.
    [195] Azad AM, Matthews T, Swary J. Processing and characterization of electrospun Y2O3-stabilized ZrO2(YSZ) and Gd2O3-doped CeO2(GDC) nanofibers [J]. Mat Sci Eng B-Solid,2005,123(3):252-258.
    [196]凌伟.电子封装用氰酸酯树脂基复合材料的研究[D].苏州大学硕士学位论文.江苏:苏州大学,2009.
    [197] Jayabalan M, Shalumon KT, Mitha MK, Ganesan K, Epple M. The effect of radiation processing andfiller morphology on the biomechanical stability of a thermoset polyester composite [J]. Biomed Mater,2010,5(2):1-12.
    [198] Zhang QL, Ma XY, Liang GZ, Qu XH, Huang Y, Wang SH, Kou KC. Morphology and properties ofcyanate ester/liquid polyurethane/silica nanocomposites [J]. J Polym Sci Polym Phys,2008,46(12):1243-1251.
    [199] Hwang HJ, Li CH, Wang CS. Dielectric and thermal properties of dicyclopentadiene containingbismaleimide and cyanate ester. Part IV [J]. Polymer,2006,47(4):1291-1299.
    [200] Laskoski M, Dominguez DD, Keller TM. Development of an oligomeric cyanate ester resin withenhanced processability [J]. J Mater Chem,2005,15(16):1611-1613.
    [201] Hertl W. Surface chemistry of zirconia polymorphs [J]. Langmuir,1989,5(1):96-100.
    [202] Lu MC, Hong JL. Cure kinetics and gravimetric analysis of a flexible aromatic dicyanate cyanatedphenylene sebacate oligomer [J]. Polymer,1994,35(13):2822-2827.
    [203] Jung KT, Bell AT. The effects of synthesis and pretreatment conditions on the bulk structure and surfaceproperties of zirconia [J]. J Mol Catal A-Chem,2000,163(1-2):27-42.
    [204] Dai SK, Zhuo DX, Gu AJ, Liang GZ, Yuan L. A novel hybrid catalyst system and its effects on the curing,thermal and dielectric properties of cyanate ester [J]. Polym Eng Sci,2011,51(11, SI):2236-2244.
    [205] Nair CPR, Mathew DA, Ninan KN. Cyanate ester resins, recent developments [J]. Adv Polym Sci,2001,155:1-99.
    [206] Marieta C, del Rio M, Harismendy I, Mondragon I. Effect of the cure temperature on the morphology ofa cyanate ester resin modified with a thermoplastic: characterization by atomic force microscopy [J]. EurPolym J,2000,36(7):1445-1454.
    [207] Sheng X, Akinc M, Kessler MR. The effects of alumina and silica nanoparticles on the cure kinetics ofbisphenol E cyanate ester [J]. Polym Eng Sci,2010,50(6):1075-1084.
    [208] Loustalot MF, Grenier CL. A study of the mechanisms and kinetics of the molten state reaction ofnon-catalyzed cyanate and epoxy-cyanate systems [J]. Eur Polym J,1995,31(11):1139-1153.
    [209] Purton DG, Love RM, Chandler NP. Rigidity and retention of ceramic root canal posts [J]. Oper Dent,2000,25(3):223-227.
    [210] Maria CL, Scherrer SS, Ammann P, Jobin M, Wiskott HW. Low temperature degradation of a Y-TZPdental ceramic [J]. Acta Biomater,2011,7(2):858-865.
    [211] Han CF, Gu AJ, Liang GZ, Yuan L. Carbon nanotubes/cyanate ester composites with low percolationthreshold, high dielectric constant and outstanding thermal property [J]. Compos Part A-Appl S,2010,41(9):1321-1328.
    [212] Pothan LA, Oommen Z, Thomas S. Dynamic mechanical analysis of banana fiber reinforced polyestercomposites [J]. Compos. Sci Technol,2003,63(2):283-293.
    [213] Ling W, Gu AJ, Liang GZ, Yuan L, Liu J. Dynamic mechanical properties of aluminum nitride/cyanateester composites for high performance electronic packaging [J]. Polym Adv Technol,2010,21(5):365-370.
    [214] Stephen MA, Steve G. Image analysis with rapid and accurate two-dimensional gaussian fitting [J].Langmuir,2009,25(14):8152-8160.
    [215] Sheng X, Lee JK, Kessler MR. Influence of cross-link density on the properties of ROMP thermosets [J].Polymer,2009,50(5):1264-1269.
    [216] Levita G, Petris SD, Marchetti A, Lazzeri A. Crosslink density and fracture toughness of epoxy resins [J].J Mater Sci,1991,26(9):2348-2352.
    [217] Lin CH, Hsiao CN, Li CH, Wang CS. Low dielectric thermoset. IV. Synthesis and properties of adipentene-containing cyanate ester and its copolymerization with bispheno A dicyanate ester [J]. J PolymSci Polym Chem.2004,42(16):3986-3995.
    [218] Thompson DP, Dickins AM, Thorp JS. The dielectric properties of zirconia [J]. J Mater Sci,1992,27(8):2267-2271.
    [219] Malini KA, Mohammed EM, Sindhu S, Joy PA, Date SK, Kulkarni SD, Kurian P, Anantharaman MR.Magnetic and process ability studies on rubber ferrite composites based on natural rubber and mixedferrite [J]. J Mater Sci,2001,36(23):5551-5557.
    [220] Qin DK, Gu AJ, Liang GZ, Yuan L. A facile method to prepare zirconia electrospun fibres with differentmorphologies and their novel composites based on cyanate ester resin [J]. RSC Adv,2012,2:1364-1372.
    [221] Wu SJ, Lin TK, Zhang JX, Shyu SS. Properties of cyanate ester-cured epoxy/polyphenylene oxide blendsas a matrix material for Kevlar fibre composites [J]. J Adhes Sci Technol,2000,14(11):1423-1438.
    [222] Chou KS, Chen CC. The critical conditions for secondary nucleation of silica colloids in a batch Stobergrowth process [J]. Ceram Int,2008,34(7):1623-1627.
    [223] Chen S, Osaka A, Hayakawa S, Kanji T, Eiji F, Koji K. Microstructure evolution in Stober-type silicananoparticles and their in vitro apatite deposition [J]. J Sol-Gel Sci Technol,2008,48(3):322-335.
    [224] Sears GW. Determination of specific surface area of colloidal silica by titration with sodium hydroxide[J]. Anal Chem,1956,28(12):1981-1983.
    [225] Heinroth F, Münnekhoff R, Panz C, Schmoll R, Behnisch J, Behrens P. The sears number as a probe forthe surface chemistry of porous silicas: Precipitated, pyrogenic and ordered mesoporous silicas [J].Micropor Mesopor Mater,2008,116(1-3):95-100.
    [226] Chraska T, Hostomsky J, Klementova M, Dubsky J. Crystallization kinetics of amorphous alumina-zirconia-silica ceramics [J]. J Eur Ceram Soc,2009,29(15):3159-3165.
    [227] Shao CL, Guan HY, Liu YC, Gong J, Yu N, Yang XH. A novel method for making ZrO2nanofibres viaan electrospinning technique [J]. J Cryst Growth,2004,267(1-2):380-384.
    [228] Tajvidi M, Falk RH, Hermanson JC. Effect of natural fibres on thermal and mechanical properties ofnatural fibre polypropylene composites studied by dynamic mechanical analysis [J]. J Appl Polym Sci,2006,101(6):4341-4349.
    [229] Mohanty S, Nayak SK. Interfacial, dynamic mechanical, and thermal fibre reinforced behavior of MAPEtreated sisal fibre reinforced HDPE composites [J]. J Appl Polym Sci,2006,102(4):3306-3315.
    [230] Zeng Z, Ren WT, Xu C, Lu WQ, Zhang Y, Zhang YX. Effect of bis(3-triethoxysilylpropyl) tetrasulfideon the crosslink structure, interfacial adhesion, and mechanical properties of natural rubber/cotton fibrecomposites [J]. J Appl Polym Sci,2009,111(1):437-443.
    [231] Fan J, Hu X, Yue CY. Static and dynamic mechanical properties of modified bismaleimide and cyanateester interpenetrating polymer networks [J]. J Appl Polym Sci,2003,88(8):2000-2006.
    [232] Pang H, Zhang YC, Chen T, Zeng BQ, Li ZM. Tunable positive temperature coefficient of resistivity inan electrically conducting polymer/graphene composite [J]. Appl Phys Lett,2010,96(25): Article ID251907.
    [233] Liu HY, Shen Y, Song Y, Nan CW, Lin YH, Yang XP. Carbon nanotube array/polymer core/shellstructured composites with high dielectric permittivity, low dielectric loss, and large energy density [J].Adv Mater,2011,23(43):5104-5108.
    [234] Chang JF, Liang GZ, Gu AJ, Cai SD, Yuan L. The production of carbon nanotube/epoxy composites witha very high dielectric constant and low dielectric loss by microwave curing [J]. Carbon,2012,50(2):689-698.
    [235] Xu D, Sridhar V, Mahapatra SP. Dielectric properties of exfoliated graphite reinforced flouroelastomercomposites [J]. J Appl Polym Sci,2009,111(3):1358-1368.
    [236] Shi XL, Cao MS, Fang XY. β-MnO2/SiO2core-shell nanorods: Synthesis and dielectric properties [J]. JNanosci Nanotechno,2011,11(8):6953-6958.
    [237] Subramanian MA, Li D, Duan N, Reisner BA, Sleight AW. High dielectric constant in ACu3Ti4O12andACu3Ti3FeO12phases [J]. J Solid State Chem,2000,151(2):323-325.
    [238] Sulaiman MA, Hutagalung SD, Ain MF, Ahmad ZA. Dielectric properties of Nb-doped CaCu3Ti4O12electroceramics measured at high frequencies [J]. J Alloy Compd,2010,493(1-2):486-492.
    [239] Yuan WX, Hark SK. Investigation on the origin of the giant dielectric constant in CaCu3Ti4O12ceramicsthrough analyzing CaCu3Ti4O12-HfO2composites [J]. J Eur Ceram Soc,2012,32(2):465-470.
    [240] Pandey RK, Stapleton WA, Tate J, Bandyopadhyay AK, Sutanto I, Sprissler S, Lin S. Applications ofCCTO supercapacitor in energy storage and electronics [J]. AIP Adv,2013,3(6): Article ID062126.
    [241] Schmidt R, Pandey S, Fiorenza P, Sinclair DC. Non-stoichiometry in "CaCu3Ti4O12"(CCTO) ceramics[J]. RSC Adv,2013,3(34):14580-14589.
    [242] Luo XJ, Yang CP, Song XP, Tang SL, Xiao HB, Barner KHO. Slow relaxation processes in CCTOdetected by capacitance versus voltage curves [J]. J Am Ceram Soc,2013,96(1):253-258.
    [243] Bueno PR, Ribeiro WC, Ramirez MA, Varela JA, Longo E. Separation of dielectric and space chargepolarizations in CaCu3Ti4O12/CaTiO3composite polycrystalline systems [J]. Appl Phys Lett,2007,90(14): Article ID142912.
    [244] Ramirez MA, Simoes AZ, Felix AA, Tararam R, Longo E, Varela JA. Electric and dielectric behavior ofCaCu3Ti4O12-based thin films obtained by soft chemical method [J]. J Alloy Compd,2011,509(41):9930-9933.
    [245] Shao SF, Zhang JL, Zheng P, Zhong WL, Wang CL. Microstructure and electrical properties ofCaCu3Ti4O12ceramics [J]. J Appl Phys,2006,99(8): Article ID084106.
    [246] Fu DS, Taniguchi H, Taniyama T, Itoh M, Koshihara SY. Origin of giant dielectric response innonferroelectric CaCu3Ti4O12: inhomogeneous conduction nature probed by atomic force microscopy [J].Chem Mater,2008,20(5):1694-1698.
    [247] Thomas P, Dwarakanath K, Varma KBR. Effect of calcium stoichiometry on the dielectric response ofCaCu3Ti4O12ceramics [J]. J Eur Ceram Soc,2012,32(8):1681-1690.
    [248] Adams TB, Sinclair DC, West AR. Giant barrier layer capacitance effects in CaCu3Ti4O12ceramics [J].Adv Mater,2002,14(18):1321-1323.
    [249] Saji VS, Choe HC. Chemical solution deposition of CaCu3Ti4O12thin film [J]. B Mater Sci,2010,33(3):203-207.
    [250] Felix AA, Orlandi MO, Varela JA. Schottky-type grain boundaries in CCTO ceramics [J]. Solid StateCommun,2011,151(19):1377-1381.
    [251] Romero JJ, Leret P, Rubio-Marcos F, Quesada A, Fernandez JF. Evolution of the intergranular phaseduring sintering of CaCu3Ti4O12ceramics [J]. J Eur Ceram Soc,2010,30(3):737-742.
    [252] Li J, Sleight AW, Subramanian MA. Evidence for internal resistive barriers in a crystal of the giantdielectric constant material: CaCu3Ti4O12[J]. Solid State Commun,2005,135(4):260-262.
    [253] Whangbo MH, Subramanian MA. Structural model of planar defects in CaCu3Ti4O12exhibiting a giantdielectric constant [J]. Chem Mater,2006,18(14):3257-3260.
    [254] Vijayakumar GNS, Devashankar S, Rathnakumari M, Sureshkumar P. Synthesis of electrospun ZnO/CuOnanocomposite fibers and their dielectric and non-linear optic studies [J]. J Alloy Compd,2010,507(1):225-229.
    [255] Li HP, Sun Y, Zhang W, Pan W. Preparation of heterostructured Ag/BaTiO3nanofibers viaelectrospinning [J]. J Alloy Compd,2010,508(2):536-539.
    [256] Yu PC, Yang RJ, Tsai YY, Sigmund W, Yen FS. Growth mechanism of single-crystal alpha-Al2O3nanofibers fabricated by electrospinning techniques [J]. J Eur Ceram Soc,2011,31(5):723-731.
    [257] Lee SJ, Cho NI, Lee DY. Effect of collector grounding on directionality of electrospun titania fibers [J]. JEur Ceram Soc,2007,27(13-15):3651-3654.
    [258]沈艳萍.高介电常数氰酸酯基复合材料的研究[D].苏州大学硕士学位论文.江苏:苏州大学,2011.
    [259] Amaral F, Rubinger CPL, Henry F, Costa LC, Valente MA, Barros-Timmons A. Dielectric properties ofpolystyrene-CCTO composite [J]. J Non-Cryst Solids,2008,354(47-51):5321-5322.
    [260] Dang ZM, Zhou T, Yao SH, Yuan JK, Zha JW, Song HT, Li JY, Chen Q, Yang WT, Bai J. Advancedcalcium copper titanate/polyimide functional hybrid films with high dielectric permittivity [J]. AdvMater,2009,21(20):2077-2082.
    [261] Ramajo LA, Ramirez MA, Bueno PR, Reboredo MM, Casto MS. Dielectric behaviour of CaCu3Ti4O12-epoxy composites [J]. Mater Res,2008,11(1):85-88.
    [262] Shri Prakash B, Varma KBR. Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites [J].Compos Sci Technol,2007,67(11-12):2363-2368.
    [263] Madhugiri S, Zhou WL, Ferraris JP, Balkus KJ. Electrospun mesoporous molecular sieve fibers [J].Micropor Mesopor Mat,2003,63(1-3):75-84.
    [264] Madhugiri S, Sun B, Smirniotis PG, Ferraris JP, Balkus KJ. Electrospun mesoporous titanium dioxidefibers [J]. Micropor Mesopor Mat,2004,69(1-2):77-83.
    [265] Bajaj B, Lee S, Yoon S, Park B, Kim B, Park B, Lee J. Effect of new poly(amide-co-imide)/poly(trimellitic anhydride chloride-co-4,40-methylenedianiline) blends on nanofibre web formation [J]. JMater Chem,2012,22(7):2975-2981.
    [266] Vajargah SH, Hosseini HRM, Nemati ZA. Preparation and characterization of yttrium iron garnet (YIG)nanocrystalline powders by auto-combustion of nitrate-citrate gel [J]. J Alloy Compd,2007,430(1-2):339-343.
    [267] Cho SD, Lee SY, Hyun JG, Paik KW. Comparison of theoretical predictions and experimental values ofthe dielectric constant of epoxy/BaTiO3composite embedded capacitor films [J]. J Mater Sci Mater El,2005,16(2):77-84.
    [268] Cao L, Liu P, Zhou JP, Wang YJ, Su LN, Liu C, Zhang HW. Calcination and sintering effects on themicrostructure and dielectric properties of CaCu3Ti4O12ceramics [J]. J Ceram Process Res,2010,11(4):453-459.
    [269] Wang CM, Kao KS, Lin SY, Chen YC, Weng SC. Processing and properties of CaCu3Ti4O12ceramics [J].J Phys Chem Solids,2008,69(2-3):608-610.