苯硼酸功能化整体柱的制备、应用及非常规作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
色谱柱是色谱分离方法的核心。近年来,整体柱因其制备简单、柱效高等特点而备受关注。以取代硼酸为亲和配基发展起来的硼亲和色谱技术,是对顺式二羟基化合物进行识别、富集和分离的重要手段。因此,将硼亲和技术与整体柱制备相结合而发展起来的分析技术与方法,无疑对顺式二羟基化合物的分析和研究起到促进的作用。然而,目前的硼亲和色谱方法发展还不完善,存在着诸多问题:1)由于常用的硼亲和配基pKa较高,只能在碱性的条件下使用,无法满足生理条件下对生物样品检测的需求;2)硼亲和色谱对顺式二羟基化合物的识别是广谱性的,无法对不同顺式二羟基化合物进行特异性识别;3)目前的硼亲和整体柱的保留容量低,对样品的富集能力较低;4)有少数文献报道了取代硼酸与羟乙基胺化合物存在着相互作用,但其相互作用机理还未见报道。为了了解硼亲和相互作用可能存在的干扰和进一步扩展硼酸功能化材料的功能,有必要对相关机理进行深入的研究。针对以上问题,我们从以下几个方面开展了研究:
     首先,在苯硼酸单体中引入吸电子基团降低其pKa值,设计了一种具有硼亲和色谱与氢键色谱双重分离机理的混合模式毛细管整体柱。该整体柱以4-(3-丁烯砜基)苯硼酸(BSPBA)为单体,甲叉双丙烯酰胺(MBAA)为交联剂。由于采用的单体和交连剂均有较强的亲水性,整体柱的反相能力得到有效降低。此外,单体苯硼酸中引入了吸电子基团—砜基,使得该整体柱不仅具备在中性pH条件下对顺式二羟基化合物的硼亲和能力,还在一定程度上增强了氢键相互作用的。从而表现出硼亲和色谱和氢键色谱的混合分离机理,在一根整体柱上实现了二维分离。
     其次,发展了一种模拟蛋白A对抗体专一选择性的多孔硼亲和限进整体材料。该整体材料结合了硼酸配基的化学选择性和整体材料的纳米通道的尺寸排阻效应,利用纳米通道内的取代硼酸“分子团队”对抗体Fc-糖链进行识别从而高选择性识别抗体。该整体材料在生理pH条件下能对抗体进行高选择性识别,具有类似于蛋白A的选择性,而且结合后的抗体保持原有免疫活性,可应用于抗体的纯化、富集和固载。
     此外,为了硼亲和整体材料的比表面,选择分子结构高度对称的三(2,3环氧基丙基)异氰酸酯和三聚氰胺作为共聚试剂,利用“团队硼亲和”原理,制备了一种具有高比表面、结构均匀、亲水性好的硼亲和整体材料。与文献中的硼亲和整体材料相比,该整体材料不仅比表面积得到了显著提高,还可以在生理pH条件下对小分子顺式二羟基化合物进行特异性的抓取。
     最后,采用NMR和HPLC相结合的方法考察了取代硼酸与以p-阻断剂和β-兴奋剂为典型代表的羟乙基胺化合物间的相互作用机理。研究表明:取代硼酸与羟乙基胺化合物间的相互作用通过介质中的质子化的溶剂进行相互作用;该相互作用与常规硼亲和相互作用类似,高环境pH加强该相互作用,而低的环境pH消弱甚至破坏该相互作用;此外,与常规硼亲和相互作用不同,该相互作用高度依赖可质子化溶剂环境,大量非质子溶剂(如乙腈)的存在会破坏取代硼酸与羟乙基胺化合物间的相互作用,这为取代硼酸-羟乙基胺化合物相互作用的调控提供了崭新的手段。以上机理为研究苯硼酸功能化材料对p-阻断剂和p-兴奋剂等重要羟乙基胺化合物的识别和分离、富集提供了重要理论依据。
Chromatographic column is the core of chromatography. Recently, monolithic capillary column emerged as an attractive separated tool because of its easy preparation and high performance. The boronate affinity chromatography (BAC) based on the boronic acid reagent is an important technology for recognization; enrichment and saparation of cis-diol containing biomolecules. It is no doubt that the combination of BAC and monolithic column and development their relevant research will improve the knowledge of cis-diol containing compounds. However, the development of boronate affinity is still imperfect, and it encounters some issues:1) because of the high pKa for the normal boronate reagent, it can not satisfy with the detection of biologic sample;2) the boronic acids are of broadspectrum affinity for the recognization of cis-diol compounds, and it can not specific capture different cis-diol compounds;3) the specific surface area of boronate affinity monolith is small, and the binding capacity for cis-diol is low;4) there are only seldom references mentioned the interaction between boronic acid and hydroxypropyl-amino biomolecules, but their interaction mechanism has not been reported. It is necessary to study the revelant mechanism in order to investigate the interferences in the boronate affinity and wide the function of boronate materials. To solve above issues, we carried out research from the following aspects:
     Firstly, we induced the electron-withdrawing group into the phenylboronic acod, and the monolithic capillary with the boronate affinity and hydrogeon separated mechanism was synthesized by in situ free radical polymerization. The4-(3-butenylsulfonyl) phenylboronic acid (BSPBA) is the functional monomer and N, N-methylenebisacrylamide (MBAA) is the crosslinker. Both MBAA and BSPBA are hydrophilic regeants, and the hydrophobility was reduced apparently. BSPBA was selected because its lower pKa value (7.0) enables stronger affinity at neutral pH. Besides, the strong electron-withdrawing sulfonyl group greatly reduces the hydrophobicity of the monomer and enhances the hydrogen bonding interaction. So, the monolithic capillary exhibited secondary separation capability, which enables2D separation on a single column.
     Secondly, we present a restricted access boronate affinity porous monolith, as a mimic of protein A with high selectity for the specific capture of antibodies. This biomimetic relies on a novel strategy that combines the steric hindrance of the porous monolith with the chemical selectivity of boronic acid. Meanwhile, original immunoaffinity and specificity of the captured antibodies were maintained. The boronic acid ligand well-located within appropriate nanochannels permits specific binding with the glycan of immunoglobulin G (IgG). The restricted access boronate affinity porous monolith can enrich and immobilize the andibodies under physiology pH conditioan, and it has the similar high selecitivity as protein A. Meanwhile, the antibodies captured by the monolith can maintain their original immunoaffinity and specificity to their defined antigens.
     Thirdly, in oder to improve the specific area surface of the boronate affinity, the melamine and TEPIC was selected as the copolymer regeant because of their high degree symetry in molecular stuecture. A monolith with high specific surface area homogeous3D skeleton and well hydrophilcility was preparaed. Compared with the references, the specific surface area was increased apparently. Furthermore, the monolith can specific capture the small biomolecular under physiology pH condition.
     At last, the method of NMR and HPLC was used to investigate the interaction between boroate and hyoxypropylamino compounds represented by β-blocker and β-agonist. The results shows that the hydroxypropylamino compounds can colvant through the interaction of B-N between boron atom and amino group, at the same, the hydrogen binding between the hydroxyl group in boronic acid and hydroxyl group in hydroxypropylamino compounds. This interaction similar as the convential boronate affinity, high background pH can enhance it and low background pH can weaken it, even destroy it. Moreover, the interaction between boroate and hyoxypropylamino compounds highly dependend on the protonated solvent environment. A large number of aprotic solvents will destroy the interaction, which afford a new measure for the regulating the interaction between boroate and hyoxypropylamino compounds. All the study provide important theoretical basis for the recognization, separation and enrichment of hyoxypropylamino compounds by phenylboronic acid materials.
引文
[1]于世林,亲和色谱方法及应用,化学工业出版社,2008年.
    [2]Svec F., My favorite materials:Porous polymer monoliths, J. Sep. Sci.2009,32, 3-9.
    [3]Fields S.M., Silica xerogel as a continuous column support for high-performance liquid chromatography, Anal. Chem.1996,68,2709-2712.
    [4]Svec F., Frchet J.M.J., Continuous rods of macroporous polymer as high-performance liquid-chromatography separation media. Anal. Chem.1992,54, 820-822.
    [5]Hjerten S., Liao J.L., Zhang R., High-performance liquid-chromatography on continuous polymer beds. J. Chromatogr.1989,473,273-275.
    [6]Bragg W., Shamsi S. A., Development of a fritless packed column for capillary electrochromatography-mass spectrometry, J. Chromatogr. A,2011,1218, 8691-8700
    [7]Svec F., Kurganov A.A., Less common applications of monoliths-III. Gas chromatography, J. Chromatogr. A 2008,1184,281-295
    [8]Bandari R., Knolle W., BuchmeiserM. R., Comparative study on the separation behavior of monolithic columns prepared via ring-opening metathesis polymerization and via electron beam irradiation triggered free radical polymerization for proteins, J. Chromatogr. A 2008,1191,268-273.
    [9]Tsujioka, N., Hira, N., Aoki, S., Tanaka, N., Hosoya, K., A new preparation method for well-controlled 3D skeletal epoxy resin-based polymer monoliths, Macromolecules 2005,38,9901-9903.
    [10]Chen G., Svec F., Knapp D.R., Light-actuated high pressure-resisting microvalve for on-chip flow control based on thermo-responsive nanostructured polymer, Lab on a Chip 2008,8,1198-1204.
    [11]Cimen D., Denizli A., Immobilized metal affinity monolithic cryogels for cytochrome c purification, Collids and surfaces B-Biointer.2012,93,29-35
    [12]Sinitsyna E.S., Walter J.G., Vlakh E. G., Stahl F., Kasper C., Tennikova, T. B., Macroporous methacrylate-based monoliths as platforms for DNA microarrays, Talanta,2012,193,139-146.
    [13]Garcia M.D., Gallegos A.B., Valverde R.S., Galera M.M., Determination of (fluoro)quinolones in environmental water using online preconcentration with column switching linked to large sample volumes and fluorescence detection, J. Sep. Sci., 2012,35,823-831.
    [14]Al-Othman Z. A., Aqel A., Alharbi M.K.E, Badjah-Hadj-Ahmed A. Y., Al-Warthan A. A., Fast chromatographic determination of caffeine in food using a capillary hexyl methacrylate monolithic column, Food chemistry,2011,132, 2217-2223.
    [15]Hsieh K., Patterson A.S.,Ferguson B.S., Plaxco K. W., Soh H.T., Rapid, Sensitive, and Quantitative detection of Pathogenic DNA at the Point of Care through Microfluidic Electrochemical Quantitative Loop-Mediated Isothermal Amplification. Angew. Chem.2012,51,4898-4900
    [16]Kubin M., Spacek P., Chromecek R., Coll Czechosl. Gel permeation chromatography on porous poly (ethylene glecol methacrylate) Chem. Commun.1967, 32,3881-3887
    [17]Hjertn, S., Standard and capillary chromatography, including electrochromatography, on continuous polymer beds (monoliths), based on water-soluble monomers, Ind. Eng. Chem. Res.1999,38,1205-1214.
    [18]Ghasemzadeh N., Nyberg F., Hjertn S., Highly selective artificial gel antibodies for detection and quantification of biomarkers in clinical samples. I. Spectrophotometric approach to design the calibration curve for the quantification, J. Sep. Sci.,2008,22,3845-3953.
    [19]Rezeli M., Kilar, F., Hjertn S., A new approach for on-line enrichment in electrophoresis of dilute protein solutions, J. Biochem. Biophy. Methods 2008,6, 1098-1103.
    [20]Takatsy A., Vegvari A., Hjertn S., Kilar F., Universal method for synthesis of artificial gel antibodies by the imprinting approach combined with a unique electrophoresis technique for detection of minute structural differences of proteins viruses and cells, (bacteria)lb. Gel antibodies against proteins (hemoglobins), Electrophoresis 2007,14,2345-2350.
    [21]Svec, F., Less common applications of monoliths:Preconcentration and solid-phase extraction, J. Chromatogr. B 2006,841,52-64.
    [22]Peters E.C., Petro M., Svec F., Frchet J.M.J., Molded rigid polymer monoliths as separation media for capillary electrochromatography, Anal. Chem.1997,69,3646-3649.
    [23]Lee D., Svec F., Frechet J. M. J., Photopolymerized monolithic capillary columns for rapid micro high-performance liquid chromatographic separation of proteins, J. Chromatogr. A 2004,1051,53-60.
    [24]Hilder E.F., Svec F., Frechet, J. M. J., Latex-functionalized monolithic columns for the separation of carbohydrates by micro anion-exchange chromatography, J. Chromatogr. A 2004,1053,101-106.
    [25]Tanaka A., Matsumoto S., Tsukamoto N., Itoh S., Chiba K., Endoh T., Nakazato A., Okuyama K., Kumazawa Y., Hijikawa M., Gotoh H., Tanaka T., Teranishi N., Infrared focal plane array incorporating silicon IC process compatible bolometer, IEEE Trans. Electr. Device,1996,43,1844-1850.
    [26]Fields S.M., Silica xerogel as a continuous column support for high-performance liquid chromatography, Anal. Chem.1996,68,2709-2712.
    [27]Malik M., Noor A.K., Accurate determination of transverse normal stresses in hybrid laminated panels subjected to electro-thermo-mechanical loadings, Inter. J. Numer. Methods. Engin.,2000,47,477-495.
    [28]Jin W.H., Fu H.J., Huang X.D., Xiao H., Zou H.F., Optimized preparation of poly(styrene-codivinylbenzene-co-methacrylic acid) monolithic capillary column for capillary electrochromatography, Electrophoresis,2003,24,3172-3180.
    [29]Wei X.Y., Qi L., Yang G.L., Wang F.Y., Preparation and characterization of monolithic column by grafting pH-responsive polymer, Talanta,2009,79,739-745.
    [30]Chen M., Lu Y., Ma Q., Guo L., Feng Y.Q., Boronate affinity monolith for highly selective enrichment of glycopeptides and glycoproteins, Analyst,2009,134, 2158-2164.
    [31]Lin Z.A., Pang J.L., Yang H.H., Cai Z.W., Zhang, L., Chen G.N., One-pot synthesis of an organic-inorganic hybrid affinity monolithic column for specific capture of glycoproteins, Chem. Commun.,2011,47,9675-9677
    [32]Qu Q.S., Wang S., Mangeling D., Wang C.Y., Yang G.J., Hu X.Y., Yan C., Monolithic silica xerogel capillary column for separations in capillary LC and pressurized CEC, Electrophor.,2009,30,1071-1076
    [33]Ren L.B., Liu Z., Liu Y.C., Chen H.Y., Ring-Opening polymerization with synergistic co-monomers:access to a boronate-functionalized polymeric monolith for the specific capture of cis-Diol-containing biomolecules under neutral conditions. Angew. Chem. Int. Ed.,2009,48,6704-6707.
    [34]Peters E.C., Svec F., Frechet J.M.J., Rigid macroporous polymer monoliths, Adv. Mater,1999,11,1169-1181.
    [35]Koide T., Ueno K., Enantiomeric separations of cationic and neutral compounds by capillary electrochromatography with monolithic chiral stationary phases of b-cyclodextrin-bonded negatively charged polyacrylamide gels, J. Chromatogr. A, 2000,893,177-187
    [36]Chirica G.S., Remcho V.T., Novel monolithic columns with templated porosity, J. Chromatogr. A,2001,924,223-232
    [37]Scott L.V., Svec F., Dinan T.,A preliminary study of dehydroepiandrosterone response to low-dose ACTH inchronic fatigue syndrome and in healthy subjects, Psych. R.,2000,97,21-28.
    [38]Hjerten, S.; Mohammad, J.; Nakazato, K., Improvement in flow properties and pH stability of compressed, continuous polymer beds for high-performance liquid chromatography. J. Chromatogr.,1993,646,121-128.
    [39]Hoegger, D.; Freitag, F., Acrylamide-based monoliths as robust stationary phases for capillary electrochromatography. J. Chromatogr. A,2001,914,211-222.
    [40]Wu, S. B.; Sun, L., L.; Ma, J.F.; Yang, K. G.; Liang Z.; Zhang, L., H.; Zhang, Y. K., High throughput tryptic digestion via poly(acrylamide-co-methylenebisacryl-amide) monolith based immobilized enzyme reactor. Talanta,2011,83,1748-1753.
    [41]Gusev I., Huang X., Horvath C., Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography,J. Chromatogr. A,1999,855,273-290
    [42]Ergenekon, P.; Gurbulak, E.; Keskinler, B., A novel method for sulfonation of microporous polystyrene divinyl benzene copolymer using gaseous SO2 in the waste air streams, Chem. Engin.Pro.,2011,50,16-21.
    [43]Kucerova Z., Szumski M., Buszewski B., Jandera P., Alkylated poly(styrene-divinylbenzene) monolithic columns for mu-HPLC and CEC separation of phenolic acids. J. Sep. Sci.2007,30,3018-3026.
    [44]Yu C., Svec F., Frechet J.M.J., Toward stationary phase for chromatography on a microchip:Molded porous polymer monoliths prepared in capillaries by photo initiated in situ polymerization as separation media for electrochromatography. Electrophoresis,2000,21,120-127.
    [45]Peters E.C., Petro M., Svec F., Molded rigid polymer monoliths as separation media for capillary electropchromatography.1. Fine control of porous properties and surface chemistry. Anal. Chem.,1998,70,2288-2295.
    [46]Hutchinson, J., P.; Hilder, E., F.; Shellie, R., A.; Smith, J., A.; Haddad, P., R., Towards high capacity latex-coated porous polymer monoliths as ion-exchange stationary phases. Analyst,2006,131,215-221.
    [47]Bisjak, C., P.; Bakry, R.; Huck, Ch., W.; Bonn, G., K.; Amino-Functionalized monolithic poly (glycidyl methacrylate-codivinylbenzene) ion-exchange stationary phases for the separation of Oligonucleotides. Chromatogr.,2005,62, S31-S36.
    [48]Huse, K.; Bohme, H., J.; Scholz, G., H., Purification of antibodies by affinity chromatography, J. Biochem. Biophys. Methods,2002,51,217-231.
    [49]Bartolini M.; Cavrini V.; Andrisano A., Monolithic micro-immobilized-enzyme reactor with human recombinant acetylcholinesterase for on-line inhibition studies, J. Chromatogr. A,2004,1031,27-34.
    [50]Chandler, D., P.; Stults, J., R.; Anderson, K., K.; Cebula, S.; Schuck, B., L.; Brockman, F., J., Affinity capture and recovery of DNA at femtomolar concentrations with peptide nucleic acid probes Anal. Biochem.,2000,283,241-249.
    [51]Colon, L. A., Li, L., Organo-Silica hybrid monolithic columns for liquid chromatography, Adv. Chromatogr.2008,46,391^421.
    [52]Hayes, J., D.; Malik, A., Sol-gel monolithic columns with reversed electroosmotic flow for capillary electrochromatography, Anal. Chem.2000,72, 4090-4099.
    [53]Yan, L. J., Zhang, Q. H., Zhang, H., Zhang, L. Y., Li, T., Feng, Y. Q., Zhang, L. H., Zhang, W. B., Zhang, Y. K., Hybrid organic-inorganic monolithic stationary phase for acidic compounds separation by capillary electrochromatography, J. Chromatogr. A 2004,1046,255-261.
    [54]Guo, J., Y.; Lu, Y.; Zhang, X., M., Preparation and evaluation of the divinylbenzene-styrene coated monolithic silica column for capillary liquid chromatography, J. Instrum. Anal.,2008,27,377-380.
    [55]Matsui J., Kato T., Takeuchi T., Suzuki M., Yokoyama K., Tamiya E., Karube I., Molecular Recognition in continuouspolymer rods prepared by a molecular imprinting technique, Anal. Chem.,1993,65,2223
    [56]Lin J.M., Nakagama T., Wu X.Z., Uchiyama K., Hobo T., Capillary electrochromatographic separation of amino acid enantiomers with molecularly imprinted polymers as chiral recognition agents, Fresenius J. Anal. Chem.,1997,357, 130-132
    [57]Schweitz L., Andersson L.I., Nilsson S., Capillary electrochroma with predetermined selectivity obtained through molecular imprinting, Anal. Chem.,1997, 69,1179-1183
    [58]Asiaie R., Huang X., Farnan D., Horvath C., Sintered octadecylisica as monolithic column packing in capillary electrochromatography and micro high-performance liquid chromatography, J.Chromatogr. A,1998,806,251-263
    [59]Dulay M.T., Kulkarni R.P., Zare R.N., Preparation and characterization of monolithic porous capillary columns loaded with chromatographic particles, Anal. Chem.,1998,70,5103-5107.
    [60]Karine F., Nathalie D., Guillaume A., Stephane C., Jaen L.R., Optimization of in-situ monolithic synthesis for immunopreconcentration in capillary, J.Chromatogr. A,2007,1149,145-150.
    [61]Cabral J.L., Bandilla D., Skinner C.D., Pore size characterization of monolith for electrochromatography via atomic force microscopy studies in air and liquid phase, J. Chromatogr. A,2006,1108,83-89.
    [62]Courtois J., Szumski M., Georgsson F., Irgum K., Assessing the Macroporous Structure of Monolithic Columns by Transmission Electron Microscopy, Anal. Chem., 2007,79,335-344.
    [63]Motokawa M., Kobayashi H., Ishizuka N., Minakuchi H., Nakanishi K., Jinnai H., Hosoya K., Ikegami T., Nanaka N., Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography, J. Chromatogr. A,2002,961,53-63.
    [64]Tsujioka N., Ishizuka N., Tanaka N., Kubo T., Hosoya K., Well-Controlled 3D Skeletal Epoxy-Based Monoliths Obtained by Polymerization Induced Phase Separation, J.Polym. Sci., Part A:Polym. Chem.,2008,46,3272-3281.
    [65]Johnson S.A., Ollivier P.J., Mallouk T.E., Ordered mesoporous as separation media for capillary electrochromatography, Anal. Chem.,1997,69,3646-3649.
    [66]Gusev I., Huang X., Horvath C., Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography, J.Chromatogr. A,1999,855,273-290
    [67]Hosoya K., Hira N., Yamamoto K., Nishimura M., Tanaka N., High-performance polymer-based monolithic capillary column, Anal. Chem.,2006,78,5729-5735.
    [68]Bristow P.A., Knox J.H., Chromatogr.,1977,10,279-289
    [69]Ricardo, A.; Carrigan, M., A.; Olcott, A., N.; Benner, S., A., Borate Minerals Stabilize Ribose, Science,2004,303,196.
    [70]Amaral, A., F.; Marques, M., M.; Silva, J., A., L.; Silva, J., R., F., Interactions of D-ribose with polyatomic anions, and alkaline and alkaline-earth cations:possible clues to environmental synthesis conditions in the pre-RNA world, New J. Chem., 2008,32,2043-2049.
    [71]Boeseken J., Use of boric acid for the determination of the configuration of carbohydrates, Adv. In Carbohydr. Chem.,1949,4,189-210
    [72]Foster A., Zone electrophoresis of carbohydrates, Adv. In Carbohydr. Chem., 1957,12,81-115
    [73]Weith H.L., Wiebers J.L., Gilham P.T., Synthesis of cellulose derivatives containing the dihydroxyboryl group and a study of their capacity to form specific complexes with sugars and nucleic acid components, Biochem.,1970,9,4396-4401
    [74]Liu X.C., Boronoc acid as ligands for affinity chromatography, Chinese J. Chromatogr.,2006,24,73-80
    [75]Glad M., Ohlson S., Hansson L., Mansson M.O., Mosbach K., High performance liquid affinity chromatography of nucleogides, nucleotides and carbohydrates with boronic acid-substituted microparticulate silica, J.Chromatogr.1980,200,254-260.
    [76]Wulff G., The construction of chiral cavities as specific receptor sites, Pure Appl. Chem.,1982,54,2093-2102
    [77]Potter, O. G.; Breadmore, M. C.; Hilder, E. F., Boronate functionalised polymer monoliths for micro scale affinity chromatography, Analyst,2006,131,1094-1096.
    [78]Li H.Y., Liu Z., Recent advances in monolithic column-based boronate-affinity chromatography, Trends in Anal. Chem.,2012, DOI:http://dx. DOI: Org/10.1016/ji.trac.2012.03.010.
    [79]Lorand J.P., Edwards J.O., Polyol complexes and structure of the benzenebor-onate ion, J. Org. Chem.,1959,24,769-744.
    [80]Aronoff S., Chen T., Cheveldayoff M., Complexation of D-glucose with borate, Carbohydr. Res.,1975,40,299-309.
    [81]Jandera P., Churacek J., Ion-exchange chromatographyof aldehydes, ketones, ethers, alcohols, polyols and saccharides, J.Chromatogr.1974,98,55-104.
    [82]Angyal S.J., Greeves D., Pickles V.A., The stereochemistry of complex formation of polyols with borate and periodate anions, and with metal cations, Carbohydr. Res.,1974,35,165-173.
    [83]Singhal R.P., Ramamurthy B., Govindaraj N., Sarwar Y., New ligands for boronate affinity chromatography. Synthesis and properties, J. Chromatogr.,1991, 543,17-38.
    [84]Sienkiewicz P., Roberts D., pH dependence of boronic acid-diol affinity in aqueous solution, J. Inorg. Nucl. Chem.,1980,42,1559-1571
    [85]Koenig R.J., Blobstein S.H., Gerami A., Strucure of carbohydrate of Hemoglobin A1c, J. Biol. Chem.1977,252,2992-2997.
    [86]Adamek V., Liu X.C., Zhang Y.A., Adamkova K., Scouten W.H., New aliphatic boronate ligands for affinity chromatography, J.Chromatogr.,1992,625,91-99
    [87]Liu X.C., Scouten W.H., In:Balion P, Ehrlich G.K., Fung W.J., Berthold W., eds, Affinity Chromatography. Totowa:Humana Press,2000,119
    [88]Li Y.C., Larsson E.L., Jungvid H., Galaev Y.I., Mattiasson B., Shielding of protein-boronate interactions during boronate chromatography of neoglycoproteins, J. Chromatogr. A,2001,909,137-145
    [89]Higa S., Suzuki T., Hayashi A., Tsuge I., Yamamura Y., Isolation of catecholamines in biological fluids by boric acid gel, Anal. Biochem.1977,77,18-24.
    [90]Zhu L., Shabbir S.H., Gray M., Lynch V.M., Sorey S., Anslyn E.V., A Structural investigation of the N-B interaction in an o-(N,N-Dialkylaminomethyl)arylboronate system, J. Am. Chem. Soc.2006,128,1222-1232
    [91]Li Y.C., Larsson E.L.., Jungvid H., Galaev Y.I., Mattiasson B., Affinity chromatography of neoglycoproteins, Biosep.,2001,9,315-323.
    [92]Soundararajan S., Badawi M., Kohlrust C.M., Hageman J., Boronic acids for affinity chromatography:spectral methods of ionization and diol-binding constants, Anal. Biochem.,1989,178,125-134
    [93]Liu X.C., Scouten W.H., New ligands for boronate affinity chromatography, J. Chromatogr. A,1994,687,61-69
    [94]Li X.B., Pennington J., Stobaugh J.F., Schoneich C., Synthesis of sulfonamide-and sulfonyl-phenylboronic acid-modified silica phases for boronate affinity chromatography at physiological pH, Anal. Chem.,2008,372,227-236.
    [95]Meenakshi D. Dennis G.H., An Improved Class of Sugar-Binding Boronic Acids, Soluble and Capable of Complexing Glycosides in Neutral Water, J. Am. Chem. Soc. 2006,128,4226-4227
    [96]Kyoung T.K., Jeroen J.L.M, Roeland J.M., Jan C.M., Polymeric monosaccharide receptors responsive at neutral pH, J. Am. Chem. Soc.2009,131,13908-13909
    [97]Boeseken J., The use of boric acid for the determination of the configuration of carbohydrates, Adv. Carbohydr. Chem.,1949,4,189-210
    [98]Olsson R.A., Phenyl(dihydroboryl) polyacrylamide beads for chromatography of ribonucleosides in tissue extracts, J.Chromatogr.,1979,176,239-241
    [99]Bourne E.J., Lees E.M., Weigel H., Paper chromatography of carbohydrates and related compounds in the presence of benzeneboronic acid, J. Chromatogr.1963,11, 253-257
    [100]Robertson H.D., Barrell B.G., Weith H.L., Donelson JEIsolation and sequence analysis of a ribosome-protected fragment from bacteriophage phiX 174 DNA, Nat. New Biol.,1973,241,38-40
    [101]Uguzdogan E., Denkbas E.B., Tuncel A., RNA-sensitive N-isopropylacrylamide/vinylphenylboronic acid random copolymer, Macromle. Biosci.2002,2,214-222
    [102]Elmas B., Onur M.A., Senel S., Tuncel A., Thermosensitive N-isopropylacrylamidevinylphenyl boronic acid copolymer latex particles for nucleotide isolation, Colloids and Surfaces A:Physicochem. Eng. Aspects,2004,232, 253-259.
    [103]Tanaka T., Matsunaga T., Detection of HbAlc by boronate affinity immunoassay using bacterial magnetic particles, Biosen. Bioel.,2001,16,1089-1094.
    [104]Azevedo A.M., Gomes A.G., Borlido L., Santos I.F.F., Prazeres D.M.F., Aires-Barros M.R., Capture of human monoclonal antibodies from a clarified cell culture supernatant by phenyl boronate chromatography, J. Mol. Recognit.2010,23, 569-576
    [105]Yamamoto T., Amuro Y., Matsuda Y., Nakaoka H., Shimomura S., Hata T., Higashino K., Boronate affinity chromatography of gamma-glutamyltransferase in patients with hepatocellular carcinoma, Am. J. Gastreoenterol,1991,86,495-499
    [106]Albers H.M., Meetern L.A., Egan D.A., Tilburg E.W., Moolenaar W.H., Ovaa H., Discovery and optimization of boronic acid based inhibitors of autotoxin, J. Med. Chem.,2010,53,4958-4957
    [107]Myohanen T A, Bouriotis V, Dean P D G. Affinity chromatography of yeastglucosidase using ligand-mediated chromatography on immobilized phenylboronicacids Biochem. J.,1981,197,683-688
    [108]Hawkins C. J., Lavin M. F., Parry D.L., Ross I L. Isolation of 3,4-dihydroxyphenylalaine-containing proteins using boronate affinity chromatography, Anal Biochem,1986,159,187-190
    [109]Williams G T, Johnstone A P, Dean P D G. Franction of membrane proteins on phenylboronic acid-agarose, Biochem J,1982,205,167-171
    [110]Suksrichavalit T., Yoshimatsu K., Prachayasittikul V., Bulowa L., Lei Y., "Clickable" affinity ligands for effective separation of glycoproteins, J. Chromatogr. A,2010,1217,3635-3641
    [111]Krishna N., Lemuel B., Wingard J.R., Enhanced direct electron transport with glucose oxidase immobilized on (aminophenyl)boronic acid modified glassy carbon electrode, Anal. Chem.,1986,58,2984-2987
    [112]Williams G.T., Johnstone A.P., Dean P.D.G., Fractionation of membrane proteins on phenylboronic acid-agarose, J. Biochem.,1982,205,167-171
    [113]Ho N.W.Y., Duncan R.E., Gilham P.T., Esterification of terminal phosphate groups in nucleic acids with sorbitol and its application to the isolation of terminal polynucleotide fragments, Biochem.1981,20,64-67
    [114]Ganer C. W., Boronic acid inhibitor of porcine pancreatic lipase, J. Biol. Chem., 1980,255,5064-5068.
    [115]Jack E.B., Timothy D.W., Andrew E.D., Christopher J.S., Bradley D.S.,11B NMR structure of an aryl boronic acid bound to chymotrypsin and subtilin, Bioorg. Med. Chan. Letters,1991,1,9-12.
    [116]Zembower D. E., Neudauer C. L., Wick M J., Ames M. M., Versatile synthetic ligands for affinity chromatography of serine proteinses, Int. J.Pept. Protein Res.,1996,47,405-413.
    [117]Alexander E.I., Galaev I.Y., Mattiasson B., Interaction of sugars, polysaccharides and cells with boronate-containing copolymers:from solution to polymer brushes,J. Mol. Recognit.2006,19,322-331
    [118]Bassil E., Hu H., Brown P.H., Use of phenylboronic acids to investigate boron function in plants. possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion, Plant Phys.,2004,136,3383-3395
    [119]Martin P., Leadbetter B., Wilson I.D., Immobilized phenylboronic acid for the selective extraction of β-blocking drugs from aqueous solution, J. Pharm.Biomed.Anal.,1993,11,307-312
    [1]Nishiyabu R., Kubo Y., James T.D., Fossey J.S., Boronic acid building blocks: tools for sensing and separation. Chem. Commun.,2011,47,1106-11123.
    [2]Nishiyabu R., Kubo Y., James T.D., Fossey J.S., Boronic acid building blocks: tools for self assembly. Chem. Commun.,2011,47,1124-1150.
    [3]James T. D., Sandanayake K. R. A. S. and Shinka S., Saccharide sensing with molecular receptors based on boronic acid. Angew. Chem. Int. Ed. Engl.,1996,35, 1910-1922.
    [4]Hjerten S., Li Y.Y.-M., Liao J.-L., Mohammad J., Nakazato K., Pettersson G., Continuous beds-high-resolving cost-effective chromatographic matrices. Nature, 1992,356,810-811.vi
    [5]Svec F., Frechet M.J., New designs of macroporous polymers and supports:From separation to biocatalysis. Science,1996,273,205-211.
    [6]Peters E.C., Svec F., Frechet M.J., Rigid macroporous polymer monoliths. Adv. Mater.1999,11,1169-1181.
    [7]Ikegami T., Tanaka N., Monolithic columns for high-efficiency HPLC separations. Curr. Opinion in Chem. Biol.,2004,8,527-533.
    [8]Potter O.G., Breadmore M.C., Hilder E.F., Boronate functionalised polymer monoliths for microscale affinity chromatography. Analyst,2006,131,1094-1096.
    [9]Ren L., Liu Z., Dong M., Ye M., Zou H., Synthesis and characterization of a new boronate affinity monolithic capillary for specific capture of cis-diol-containing compounds. J. Chromatogr. A,2009,1216,4768-4774.
    [10]Ren L., Liu Y., Liu Z., Synthesis of hydrophilic boronate affinity monolithic capillary for specific capture of glycoproteins by capillary liquid chromatography. J. Chromatogr. A,2009,1216,8421-8425.
    [11]Ren L., Liu Z., Liu Y., Dou P., Chen H.Y., Ring-Opening polymerization with synergistic co-monomers:access to a boronate-functionalized polymeric monolith for the specific capture of cis-Diol-containing biomolecules under neutral conditions. Angew. Chem. Int. Ed.,2009,48,6704-6707.
    [12]Chen M., Lu Y., Ma Q., Guo L., Feng Y, Boronate affinity monolith for highly selective enrichment of glycopeptides and glycoproteins. Analyst,2009,134, 2158-2164.
    [13]Cakal C., Ferrance J.P., Landers J.P., Caglar P., Development of a micro-total analysis system (mu-TAS) for the determination of catecholamines. Anal. Bioanal. Chem.,2010,398,1909-1917.
    [14]Sun X.L., Liu R., He X.W., Chen L.X., Zhang Y.K., Preparation of phenylboronic acid functionalized cation-exchange monolithic columns for protein separation and refolding. Talanta,2010,81,856-864.
    [15]Li X., Pennington J., Stobaugh J.F., Schoeich C., Synthesis of sulfonamide-and sulfonyl-phenylboronic acid-modified silica phases for boronate affinity chromatography at physiological pH. Anal. Biochem.,2008,372,227-236.
    [16]Matsumoto A., Yoshida R., Kataoka K., Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules,2004,5,1038-1045.
    [17]Wulff G., Selective binding to polymers via covalent bonds-the construction of chhiral cavities as specific receptor-sites. Pure Appl. Chem.,1982,54,2093-2102.
    [18]Wulff G., Lauer M., Bohnke H., On the chemistry of binding-sites.5. rapid proton-transfer as cause of an unusually large neighboring group effect. Angew. Chem. Int. Ed.,1984,23,741-742.
    [19]Dowlut M., Hall D.G., An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J. Am. Chem. Soc.,2006,128, 4226-4227.
    [20]Berube M., Dowlut M., Hall D.G., An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J. Org. Chem., 2008,73,6471-6479.
    [21]Liang L., Liu Z., A self-assembled molecular team of boronic acids at the gold surface for specific capture of cis-diol biomolecules at neutral pH. Chem. Commun., 2011,47,2255-2257.
    [22]Li X., Pennington J., Stobaugh J.F., Schoneich C., Synthesis of sulfonamide-and sulfonyl-phenylboronic acid-modified silica phases for boronate affinity chromatography at physiological pH. Anal. Biochem.,2008,372,227-236.
    [23]Wu R., Zou H., Ye M., Lei Z., Ni J., Capillary electrochromatography for separation of peptides driven with electrophoretic mobility on monolithic column. Anal. Chem.,2001,73,4918-4923.
    [24]Lowe E.A., Lu M., Wang A., Cortez H., Ellis D., Liu X., Stationary phase-based two-dimensional chromatography combining both covalent and noncovalent interactions on a single HPLC column. J. Sep. Sci.,2006,29,959-965.
    [1]Walsh G., Biopharmaceutical benchmarks 2010. Nat. Biotechnol.2010,28, 917-924.
    [2]Roque A.C.A., Silv C.S.O. a, Taipa M.A., Affinity-based methodologies and ligands for antibody purification:Advances and perspectives. J. Chromatogr. A 2007,1160,44-55.
    [3]Low D., O'Leary R., Pujar N. S., Future of antibody purification. J. Chromatogr. B 2007,848,48-63.
    [4]Owaku K., Goto M., Ikariyama Y., Aizawa M., Protein-A Langmuir-Blodgett-film for antibody immobilization and its use in optical immunosensing. Anal. Chem.1995,2067,1613-1616.
    [5]Yuan Y., He H.Y., Lee J., Protein A-based antibody immobilization onto polymeric microdevices for enhanced sensitivity of enzyme-linked immunosorbent assay. Biotech. Bioeng.2009,102,891-901.
    [6]Akerstrom B., Bjorck L., A physicochemical study of protein-G, A molecule with unique immunoglobulin-G-binding proteins. J. Biol. Chem.1986,261, 240-247.
    [7]Kouki T., Inui T., Okabe H., Ochi Y., Kajita Y., Separation method of IgG fragments using protein L. Immunol. Invest.1997,26,399-408.
    [8]Lew A.M., Beck D.J., Thomas L.M., Recombinant fusion proteins of protein-A and protein-G with glutathione-S-transferase as reporter molecules.J. Immunol. Methods 1991,136,211-219.
    [9]Roque A.C.A., Taipa M.A., Lowe C.R., An artificial protein L for the purification of immunoglobulins and Fab fragments by affinity chromatography J. Chromatogr. A 2005,1064,157-167.
    [10]Li R.X., Dowd V., Stewart D.J., Burton S.J., Lowe C.R., Design, synthesis, and application of a Protein A mimetic. Nat. Biotechnol.1998,16,190-195.
    [11]Chhatre S., Titchener-Hooker N.J., Newcombe A.R., Keshavarz-Moore E., Purification of antibodies using the synthetic affinity ligand absorbent MAbsorbent A2P, Nat. Protoc.2007,302,1763-1769.
    [12]Meyer D.E., Chilkoti A., Purification of recombinant proteins by fusion with thermally-responsive polypeptides, Nat. Biotechnol.1999,17,1112-1115.
    [13]Binz H.K., Amstutz P., Pluckthun A., Engineering novel binding proteins from nonimmunoglobulin domains, Nat. Biotechnol. 2005,23,1257-1268.
    [14]Nisnevitch M., Firer M.A., The solid phase in affinity chromatography: strategies for antibody attachment, J. Biochem. Biophys. Methods 2001,49,35 467-480.
    [15]James T.D., Sandanayake K.R.A.S., Shinkai S., Saccharide sensing with molecular receptors based on boronic acid. Angew. Chem. Int. Ed. Engl.1996,35, 1911-1922.
    [16]Edwards N.Y., Sager T.W., McDevitt J.T., Anslyn E.V., Boronic acid based peptidic receptors for pattern-based saccharide sensing in neutral aqueous media, an application in real-life samples, J. Am. Chem. Soc.2007,129,13575-13583.
    [17]Nishiyabu R., Kubo Y., James T.D., Fossey J.S., Boronic acid building blocks:tools for sensing and separation, Chem. Commun.2011,47,1106-1123.
    [18]Nishiyabu R., Kubo Y., James T.D., Fossey J.S., Boronic acid building blocks:tools for self assembly, Chem. Commun.2011,47,1124-1150.
    [19]Borlido L., Azevedo A.M., Roque A.C.A., M.R. Aires-Barros, Potential of boronic acid functionalized magnetic particles in the adsorption of human antibodies under mammalian cell culture conditions, J. Chromatogr. A 2011, 1218,7821-7827.
    [20]Azevedo A.M., Gomes A.G., Borlido L., Santos I.F.S., Prazeres D.M.F., Aires-Barros M.R., Capture of human monoclonal antibodies from a clarified cell culture supernatant by phenyl boronate chromatography, J. Mol. Recognit. 2010,23,569-576.
    [21]Ren L.B., Liu Y.C., Dong M.M., Liu Z., Synthesis of hydrophilic boronate affinity monolithic capillary for specific capture of glycoproteins by capillary liquid chromatography, J. Chromatogr. A 2009,1216,8421-8425.
    [22]Liu Y.C., Ren L.B., Liu Z., A unique boronic acid functionalized monolithic capillary for specific capture, separation and immobilization of cis-diol biomolecules, Chem. Commun.2011,47,5067-5069.
    [23]Dou P., Liu Z., At-line coupling of magnetic-nanoparticle-based extraction with gel isoelectric focusing for protein analysis, Anal. Bioanal. Chem.2011,399, 3423-3429.
    [24]Yan J., Springsteen G., Deeter S., Wang B.H., The relationship among pK(a),pH, and binding constants in the interactions between boronic acids and diols-it is not as simple as it appears, Tetrahedron 2004,60,11205-11209.
    [25]Hjerten S., Li Y.M., Liao J.L., Mohammad J., Nakazato K., Pettersson G., Continuous beds-high-resolving, cost-effective chromatographic matrices, Nature 1992,356,810-811.
    [26]Svec F., Frechet M.J., New designs of macroporous polymers and supports: From separation to biocatalysis, Science 1996,273,205-211.
    [27]Peters E.C., Svec F., Frechet M.J., Rigid macroporous polymer monoliths, Adv. Mater.1999,11,1169-1181.
    [28]Ikegami T., Tanaka N., Monolithic columns for high-efficiency HPLC separations, Curent Opinion in Chem. Biol.2004,8,527-533.
    [29]Leinweber F.C., Lubda D., Cabrera K., Tallarek U., Characterization of silica-based monoliths with bimodal pore size distribution, Anal. Chem.2002,74, 2470-2477.
    [30]Grimes B.A., Skudas R., Unger K.K., Dieter Lubda, Pore structural characterization of monolithic silica columns by inverse size-exclusion chromatography, J. Chromatogr. A 2007,1144,14-29.
    [31]Guiochon G., Monolithic columns in high-performance liquid chromatography,J.Chromatogr. A 2007,1168,101-168.
    [32]Desilets C.P., Rounds M.A., Regnier F.E., Semipermeable-surface revesed-phase media for high-performance liquid-chromatography, J. Chromatogr.1991,544,25-29.
    [33]Tian R.J., Zhang H., Ye M.L., Jiang X.G., Hu L.H., Li X., Bao X.H., Zou H.F., Selective extraction of peptides from Human plasma by highly ordered mesoporous silica particles for peptidome analysis, Angew. Chem. Int. Ed.2007, 46,962-965.
    [34]Tian R.J., Ren L.B., Ma H.J., Li X., Hu L.H., Y M.L.e, Wu R.A., Tian Z.J., Liu Z., Zou H.F., Selective enrichment of endogenous peptides by chemically modified porous nanoparticles for peptidome analysis, J. Chromatogr. A 2009, 1216,1270-1278
    [35]Xu Y.W., Wu Z.X., Zhang L.J., Lu H.J., Yang P.Y., Webley P.A., Zhao D.Y., Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica, Anal. Chem.2009,81,503-508.
    [36]Ren L.B., Liu Z., Liu Y.C., Dou P., Chen H.Y., Ring-opening polymerization with synergistic co-monomers:access to a boronate-functionalized polymeric monolith for the specific capture of cis-diol-containing biomolecules under neutral conditions, Angew. Chem. Int. Ed. 2009,48,6704-6707.
    [37]Liang L., Liu Z., A self-assembled molecular team of boronic acids at the gold surface for specific capture of cis-diol biomolecules at neutral pH, Chem. Commun.2011,47,2255-2257.
    [38]Aoki H., Tanaka N., Kubo T., Hosoya K., Polymer-based monolithic columns in capillary format tailored by using controlled in situ polymerization, J. Sep. Sci.2009,32,341-358.
    [39]Hortin G.L., The MALDI-TOF mass spectrometric view of the plasma proteome and peptidome, Clin. Chem.2006,52,1223-1237.
    [40]Nematollahzadeh A., Sun W., Aureliano C.S.A., Lutkemeyer D., Stute J., Abdekhodaie M.J., Shojaei A., B. Sellergren, High-capacity hierarchically imprinted polymer beads for protein recognition and capture, Angew. Chem. Int. Ed.2011,50,495-498.
    [1]Hosoya K., Hira N., Yamamoto K., Nishimura M., Tanaka N., High-performance polymer-based monolithic capillary column. Anal. Chem.,2006,78,5729-5735.
    [2]Nguyen A., Irgum K., Epoxy-based monoliths. A novel hydrophilic material for liquid chromatography of biomolecules. Chem. Mater.,2006,18,6308-6315.
    [3]Saskia R. K., Alexander D. F., Claudia F., Daniel K. S., Pablo U., Paili Y.K., A small-scale method for the preparation of plant N-linked glycans from soluble proteins for analysis by MALDI-TOF mass spectrometry. Plant Physi. Bio.,2009,47, 160-166.
    [4]Kakehi K., Kinoshita M., Kawakami D., Tanaka J., Sei J., Endo K., Oda Yasuo, Iwaki M., Masuko T., Capillary electrophoresis of sialic acid-containing glycoprotein: Effect of the heterogeneity of carbohydrate chains on glycoform separation using an alfa-acid glycoprotein as a model. Anal. Chem.,2001,73,2640-2647.
    [5]Jens H.M., Remco S., Christian G.H., Morphology and efficiency of poly (styrene-co-divinylbenzene)-based monolithic capillary columns for the separation of small and large molecules, Anal. Bioanal. Chem.,2011,400,2391-2402.
    [6]Peters E.C., Petro M., Svec F., Molded rigid polymer monoliths as separation media for capillary electropchromatography.1. Fine control of porous properties and surface chemistry. Anal. Chem.,1998,70,2288-2295.
    [7]Andrew I.C., Andrew B.H., Synthesis of molded porous polymers using supercritical carbon dioxide as the porogenic solvent, Adv. Mat.,1999,11,1270-1274.
    [8]Ren L., Liu Z., Liu Y, Dou P., Chen H.Y., Ring-Opening polymerization with synergistic co-monomers:access to a boronate-functionalized polymeric monolith for the specific capture of cis-Diol-containing biomolecules under neutral conditions. Angew. Chem. Int. Ed.,2009,48,6704-6707.
    [9]Liu Y.C., Lu Y.; Liu Z., Restricted access boronate affinity porous monolith as a protein A mimetic for specific capture of immunoglobulin G, Chemical Science,2012, 3,1467-1471.
    [10]Liu, Y.C., Ren L.B., Liu Z., A unique boronic acid functionalized monolithic capillary for specific capture, separation and immobilization of cis-diol biomolecules, Chemical Communications,2011,47,5067-5069.
    [11]Ren L.B., Liu, Y.C., Dong M.M., Liu Z., Synthesis of hydrophilic boronate affinity monolithic capillary for specific capture of glycoproteins by capillary liquid chromatography, Journal of chromatogr. A,2009,1216,8421-8425.
    [12]Ren L.B., Liu Z., Dong M.M., Ye M.L., Zou H.F., Synthesis and characterization of a new boronate affinity monolithic capillary for specific capture of cis-diol-containing compounds, Journal of chromatogr. A,2009,1216,4768-4771.
    [13]Chen M., Lu Y., Ma Q., Guo L., Feng Y.Q., Boronate affinity monolith for highly selective enrichment of glycopeptides and glycoproteins, Analyst,2009,134, 2158-2164
    [14]Yanga F., Lind Z., Hea X.W., Chena L.X., Zhang Y.K., Synthesis and application of a macroporous boronate affinity monolithic column using a metal-organic gel as a porogenic template for the specific capture of glycoproteins, J. Chromatogr. A,2011, 1218,9194-9201.
    [15]Jiang Z.J., Smith N.M., Ferguson P.D., Taylor M.R., Hydrophilic interaction chromatography using methacrylate-based monolithic capillary column for the separation of polar analytes. Anal. Chem.,2007,79,1243-1250.
    [16]Jiang Z.J., Smith N.M., Ferguson P.D., Taylor M.R., Novel highly hydrophilic zwitterionic monolithic column for hydrophilic interaction chromatography. J. Sep. Sci.,2009,32,2544-2555.
    [1]Lorand J.P., Edwards J.O., Polyol complexes and structure of the benzenebor-onateion, J. Org. Chem.,1959,24,769-744.
    [2]Kuiper H. A., Noordam M. Y., van Dooren-Flipsen M.M.H., Schilt R., Roos A.H., Illegal use of β-adrenergic agonists:European community, J. Anim. Sci.1998,76, 195-207.
    [3]Institut municipal d'investigacio media, internal report of activities. Game of the XXV Olympiad of Barcelona'92, Report IMIM/FT/DOPPING/JJOO/1/1.2, Barcelana,1992.
    [4]Code of Federal Regulations, Part 530.41, Title 21, Volume 6,2000
    [5]Polettin A., Montagna M., Determination of β2-agonists in hair by gas chromatography/mass spectrometry, J. Mass Spectr.,1996,31,47-54
    [6]Harkins J.D., Woods W.E., Lethner A.F., Fisher M., Tobin T., Clenbuterol in the horse:urinary concentration determined by ELISA and GC/MS after clinical dose, J. vet. Pharmacol. Therap.,2001,24,7-14.
    [7]Adel J., Doron S., Valery M. D., Arieh M., Batia Z., Morris S., Synthesis and evaluation of oxazaborolidines for antibacterial activity against streptococcus mutans, J. Med. Chem.2004,47,2409-2410
    [8]Martin P., Leadbetter B., Wilson I.D., Immobilized phenylboronic acid for the selective extraction of β-blocking drugs from aqueous solution, J. Pharm.Biomed.Anal.,1993,11,307-312
    [9]Takafumi O., Satoko N., Hiroshi N., Selective extraction of β-blockers from biological fluids by column-switching high-performance liquid chromatography using an internal-surface phenylboronic acid precolumn, J. Chromatogr. B,1996,675, 168-173.
    [10]Ren L.B., Liu Y.C., Dong M.M., Liu Z., Synthesis of hydrophilic boronate affinity monolithic capillary for specific capture of glycoproteins by capillary liquid chromatography, J. Chromatogr. A,2009,1216,8421-8425
    [11]Li H.Y., Wang H.Y., Liu Y. C., Liu Z., A benzoboroxole-functionnalized monolithic column for the selective enrichment and separation of cis-diol containing biomolecules. Chem. Commun.,2012,48,4115-4117.
    [12]Su J., Chen F., Cryns L.V., Messersmith P.B., Catechol polymers for pH-responsive, targeted drug delivery to cancer cells, J. Am. Chem. Soc.2011,133, 11850-11853
    [21]Sookcharoenpinyo B., Klein E., Ferrand Y, Walker D. B., High-Affinity Disaccharide Binding by Tricyclic Synthetic Lectins, Angew. Chem. Int. Ed. 2012,51, 4586-4590