马铃薯氮素吸收分配特性及高效利用生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮是作物生长所必需的营养元素之一,氮素养分的吸收、同化与转运直接或间接地影响作物的生长发育和产量形成。本文通过田间小区试验、微区试验和室内分析相结合的方法,探讨氮营养条件对马铃薯块茎发育过程、产量和品质形成影响的机理及植株不同形态氮素的动态变化规律,揭示不同生育期马铃薯各器官氮素含量与产量的关系;并在田间条件下,利用同位素~(15)N示踪技术,定量地描述了马铃薯~(15)N积累、吸收比例,~(15)N在植株中的分配以及氮肥利用率、马铃薯田间氮素分布等,结果表明:
     1、施氮在马铃薯不同生育时期均增加了单位面积的干物质积累量,播种后105d,施氮处理全株干物质积累量为8725.8~11707.1kg·hm~(-2),比不施氮处理增加46.72%~96.85%,随着施氮量的增加,全株干物质的积累量也逐渐增加;马铃薯收获时,各施氮处理块茎干物质积累量比不施氮处理增加42.8%~91.6%,且施氮120kg·hm~(-2)处理最高。
     2、在磷钾肥的基础上施用氮肥增加了马铃薯的产量,增产幅度为22.3%~61.5%;施氮120kg·hm~(-2)处理产量增加幅度最大,且产量极显著地高于施氮60kg·hm~(-2)和不施氮处理。施氮显著增加了马铃薯中薯所占的比例,各施氮处理的大薯重随着施氮量的增大而极显著的增加,施氮120kg·hm~(-2)处理大薯重比其他处理分别增加4876.8~1265.0kg·hm~(-2)。
     3、播种后63d~91d,不同处理的块茎粗蛋白质含量随施氮水平的增加而增加,之后施氮120kg·hm~(-2)处理下降较快;在整个马铃薯块茎发育过程中,块茎维生素C的含量随着马铃薯生育期的推进先增加后降低,过高的氮肥用量使马铃薯块茎发育后期的维生素C含量显著降低;施氮120kg·hm~(-2)处理的块茎还原糖含量在整个块茎发育期内均最高,块茎可溶性糖含量随着生育期的推进逐渐下降,过量的氮肥不利于可溶性糖向淀粉的转化;马铃薯收获时,各处理马铃薯块茎总淀粉含量分别为61.92~66.91g·100g~(-1).DW,过高的氮肥水平并不利于马铃薯生长后期块茎中淀粉的积累以及直链淀粉的相对含量的提高;整个块茎发育期内,马铃薯块茎酚类物质含量先降低后再升高,施氮可以明显的促进酚类物质的代谢转化,降低块茎发育后期的酚类物质含量,促进品质的提高。
     4、施氮促进了叶片AN含量的增加,块茎AN含量在整个块茎发育时期也表现为施氮处理高于不施氮处里。马铃薯茎秆中SN含量随着氮肥水平的增加而增加。SN合成决定着氮素的流动方向,是促进马铃薯植株各器官间N素流动的主要因素,是块茎从营养器官高效“吸收”氮素的能力来源。
     5、马铃薯各生育期的茎秆氮含量与产量均有极显著的回归关系,茎秆的氮营养水平是影响马铃薯产量非常重要的营养因子,茎秆维持较高的N素含量,成为马铃薯获得高产的关键;块茎形成期马铃薯叶片中氮含量对产量有重要的影响,但没有茎秆氮含量对产量的影响大;淀粉积累期根系氮含量与产量之间也存在极显著的回归关系,但也没有茎秆中氮含量的影响大。
     6、在整个生育期内,马铃薯植株地上部吸收肥料氮占总氮的17.48%~29.31%,块茎吸收肥料氮占总氮的17.25%~20.57%,根吸收肥料氮占总氮的19.72%~24.82%,整株吸收肥料氮占总氮的17.41%~28.98%,马铃薯吸收的氮主要来自土壤;马铃薯地上部来自肥料氮的积累量为0.174~0.327g·plant~(-1),块茎为0.022~0.357g·plant~(-1),根为0.011~0.022g·plant~(-1),整株为0.185~0.578g·plant~(-1);马铃薯整株肥料~(15)N利用率为10.28%~32.11%。供试土壤AN值在马铃薯生长发育过程中变化范围为18.97~36.73kg·hm~(-2),马铃薯播种后49d~77d,土壤AN值降低12.93kg·hm~(-2),下降了35.22%;播种后77d~91d又逐渐提高,增加3.84kg·hm~(-2),提高了16.13%。
     7、马铃薯整个生育期内,整株有机肥氮肥利用率为2.16%~31.62%,化肥氮肥利用率为8.85%~19.42%。有机肥和化肥配合施用时,化肥是马铃薯生育前期的重要氮源,而有机肥在马铃薯生长发育后期作用较大。
Nitrogen is one of the essential nutrient for plant growth. Nitrogen uptake, assimilation and translocationhave important influence on growth and development and yield formation directly or indirectly. In this paper,the method of field plot, micro-plot experiment and laboratory analysis are applied to study the influencemechanism of nitrogen nutrition conditions on potato tuber development, formation of yield and quality, andthe dynamic change regularity of different plant nitrogen forms, and to reveal relationship between N-contentin potato plants in whole growth period and yield; At the same time to study~(15)N accumulation, uptakepercentage, distribution, nitrogen use efficiency in potato and nitrogen distribution in soil using~(15)N tracingtechnique. The main results obtained from this experiment are as follows:
     1、The dry matter accumulation was increased in different Potato growth periods through nitrogenfertilizer application. The plant dry matter accumulation of nitrogen treatments was8725.8~11707.1kg·hm~(-2)at105days after sowing, and was increased from50.37%to71.38%compared with N0. With the increase ofnitrogen amount, the whole plant dry matter accumulation also increased gradually. Compared with N0, potatotuber dry matter accumulation was increased from42.80%to91.59%by nitrogen treatments at harvest, andnitrogen120kg·hm~(-2)treatment was highest.
     2、Nitrogen fertilizer application increased the yield of potato on the basis of phosphorus and potassiumfertilizer, and yield was increased from22.30%to61.48%. Nitrogen120kg·hm~(-2)treatment has the largestincrease in yield, and the yield was significantly higher than0and60kg·hm~(-2)treatments. Nitrogen fertilizerapplication increased significantly the proportion of potato middle tuber. With the increase of nitrogen amount,the large tuber weigh also increased gradually. Compared with other treatments, the large tuber weigh wasincreased from4876.8kg·hm~(-2)to1265.0kg·hm~(-2)by nitrogen120kg·hm~(-2)treatment.
     3、With the increase of nitrogen amount, protein content of tuber also increased gradually from63to91days after sowing, and nitrogen120kg·hm~(-2)treatment decreased rapidly after that. The vitamin C content ofpotato tubers with growth progress increased first and then decreased. When excessive nitrogen fertilizer atpotato tuber development later stage, vitamin C content of tuber decreased. The tuber educing sugar content ofnitrogen120kg·hm~(-2)treatment in the tuber growth period was the highest, and the soluble sugar contentdecreased gradually. Excessive nitrogenous fertilizer was not conducive to the transformation of soluble sugarto starch. The potato tuber starch content respectively was61.92~66.91g·100g~(-1).DW at harvest. Excessivenitrogenous fertilizer was not conducive to the tuber starch accumulation and the amylose relative contentincrease at potato growth later stage. The tuber phenols content decreased first and then increased in potatotuber development period. Nitrogen application could obviously promote the Phenolics Metabolism andtransformation, decreased the tuber phenols content at potato tuber development later stage and improved thequality of tuber.
     4、Nitrogen application increased AN content of leaf. Tuber AN content of nitrogen treatment in the tuberdevelopment period was higher than one of N0. With the increase of nitrogen amount, SN content of stem alsoincreased gradually. Synthesis of SN determined the direction of the flow of nitrogen, was the main factors thatpromote nitrogen flow between potato organs, and was the “power source” through which potato tuber absorbed nitrogen efficiently.
     5、There is a very significant regression relationship between stem nitrogen content at each potato growthstage and yield, and stem nitrogen nutrition levels were important nutritional factors that could influencepotato yield. It was very important for potato to get higher yield that stem maintained higher nitrogen content.The leaf nitrogen content had important effects on yield at tuber formation stage; however one of stem wasmore apparent. There is a very significant regression relationship between root nitrogen content at starchaccumulation stage and yield, but one of stem was more apparent too.
     6、The absorbed nitrogen in above-ground of potato from fertilizer accounted for17.48%~29.31%of thetotal nitrogen, and that in tuber was17.25%~20.57%, and root was19.72%~24.82%, and whole plant was17.41%~28.98%. The absorbed nitrogen in potato plant was mainly from soil. The nitrogen uptake ofabove-ground from fertilizer was0.174~0.327g·plant~(-1), and that of tuber was0.022~0.357g·plant~(-1), and rootwas0.011~0.022g·plant~(-1), and whole plant was0.185~0.578g·plant~(-1). The nitrogen use efficiency of~(15)Nfertilizer was10.28%~32.11%for potato. The range of variation of soil ANvalue was18.97~36.73kg·hm~(-2)inthe process of growth and development of potato. Soil ANvalue reduced12.93kg·hm~(-2)from49to77daysafter sowing, and the decline was by35.22%;It increased3.84kg·hm~(-2)from77to91days after sowing, andthe improvement was by16.13%.
     7、The nitrogen use efficiency of manure was2.16%~31.62%in the whole growth period of potato, andthat of chemical fertilizer was8.85%~19.42%. With the combined application of organic and chemicalfertilizers, the nitrogen from chemical fertilizer was the important N source for potato. However, manure had alarger role in late growth stage of potato.
引文
[1]谢建华.我国马铃薯生产现状及发展对策[J].中国农技推广,2007,23(5):4-7.
    [2]谢开云,屈冬玉,金黎平,等.中国马铃薯生产与世界先进国家的比较[J].世界农业,2008(5):35-38,41.
    [3]隋启君,李先平,杨万林,等.中国马铃薯生产情况分析[J].西南农业学报,2008,21(4):1182-1188.
    [4]胡霭堂.植物营养学[M].北京:中国农业大学出版社,2002.35-36.
    [5] Krass A, Marschner II. Influence of nitrogen nutrition, day length and temperature on contents of GAand ABA and on tuberization of potatoplants[J]. PotatoRes,1982,(25):13-21.
    [6]王季春.不同施氮量对马铃薯的影响[J].马铃薯杂志,1994,8(2):76-80.
    [7]张宝林,高聚林,刘克礼,等.马铃薯氮素的吸收、积累和分配规律[J].中国马铃薯,2003,17(4):93-198.
    [8]杨瑞平,张胜,王珊珊.氮磷钾配施对马铃薯干物质积累及产量的影响[J].安徽农业科学,2011,39(7):3871-3874.
    [9] Oparka K J, Davies H V, Prior D A M. The influence of applied nitrogen in export and partitioning ofcurrent assimilate by field grown potato plants [J]. Annals of Botany,1987,59:311-323.
    [10]孙慧生.马铃薯育种学[M].北京:中国农业出版社,2003.11.
    [11]李玉阔,张巍.马铃薯生产存在的问题与发展对策[J].现代农业科技,2009,16:110.
    [12]王基敬.世界马铃薯生产现状及中国对策[J].世界农业,2001,12:12-13.
    [13]陈伊里,屈冬玉.马铃薯产业与现代农业[M].哈尔滨:哈尔滨工程大学出版社,2007,1-8.
    [14]屈冬玉,谢开云,金黎平,等.中国马铃薯产业发展与食物安全[J].中国农业科学,2005,38(2):358-362.
    [15]农业部.《农业部关于加快马铃薯产业发展的意见》[R].农发【2006】9号文件,2006-9-21.
    [16]黑龙江省农业科学院马铃薯研究所.中国马铃薯栽培学[M].北京:中国农业出版社,1994.26.
    [17] Sirtautaite S, Treciokaite E, Dris R, et al. The influence of storage temperature on composition andprocessability of potato cultivars [J]. Postharvest,2000:73.
    [18] Khan I A, Deadman M L, Al-Habsi K A. Screening potato varieties for cultivation in arid regions:Effect of planting date on emergence of imported and locally-produced seed [J]. Journal of ScientificRearch-Agricultural Sciences,2001,6:41-46.
    [19] Khan I A, Deadman M L, Al-Habsi K A. Comparative yield performance of exotic potato varieties inOman [J]. Annals of Applied Biology, Supplement, Tests of Agrochemicals and Cultivars,2000,21:37-38.
    [20]何长征,刘明月,宋勇,等.马铃薯叶片光合特性研究[J].湖南农业大学学报(自然科学版),2005,3l(5):518-520.
    [21] Boliglowa E, Glen K. Yielding and quality of potato tubers depending on the kind of organicfertilization and tillage method[J]. Electronic Journal of Polish Agricultural University, Agronomy,2003,6(1):3.
    [22] Danicenko V, Treciokaite E. The IV doctorand’s conference of Lithuanian Agricultural Institute [C].In Lithuania: Dotnuva Aka-demija,1997:136-137.
    [23]张朝春,江荣风.氮磷钾对马铃薯营养状况及块茎产量的影响[J].中国农学通报,2005,21(9):279-283.
    [24]张振贤.蔬菜栽培学[M].北京:中国农业大学出版社,2003.68-70.
    [25]邓小强,范贵国,周世龙.氮、钾肥运筹对马铃薯经济性状与产量的影响[J].中国土壤与肥料,2011(2):48-50,75.
    [26]郭淑敏,门福义,刘梦芸,等.马铃薯高淀粉生理基础的研究:一块茎淀粉含量与氮、磷、钾代谢的关系[J].马铃薯杂志,1993,7(2):65-70.
    [27]张宝林,高聚林,刘克礼,等.马铃薯氮素的吸收、积累和分配规律[J].中国马铃薯,2003,17(4):193-198.
    [28]刘克礼,高聚林,任坷,等.旱作马铃薯氮索的吸收、积累和分配规律[J].中国马铃薯,2003,17(6):321-325.
    [29] Vos J. Nitrogen and the growth of Potato crops. Potato Eeology and Modelling of Crops underConditions of Limiting Growth[M]. Kluwer Aeademic Publishers. Dordrecht,1995.35.
    [30] Millard P, Robinson D, Mackie-Dawson L A. Nitrogen partitioning within the potato plant inrelation to nitrogen supply [J]. Annals of Botany,1989,63:289-296.
    [31]太崎满.施氮对马铃薯各器官生长的影响[J].日本土壤肥料学杂志,1992,63(1):46-52.
    [32]高炳德.马铃薯营养特性的研究[J].马铃薯,1984,(4):3-13.
    [33]彭慧峰.马铃薯高产施肥技术[J].农村科技,2006,(2):37.
    [34]王忠.植物生理学[M].北京:中国农业出版社,2000.58-60.
    [35]张新永,郭华春.马铃薯淀粉含量与生长特性相关性的研究进展[J].作物杂志,2004,(2):48-50.
    [36]周娜娜,秦亚斌.马铃薯氮素营养诊断及追肥推荐模型的研究[J].宁夏农业科技,2004(2):1-2.
    [37] N. Pallais,N. Espinota.马铃薯种子形成期施氮及贮藏期间的湿度对种子质量的影响[J].美国马铃薯杂志,1992,69(2):85-92.
    [38] Osaki M, Shirai J, Shinano T, et al. Effects of ammonium and nitrate assimilation on the growth andtuber swelling of potato plants [J]. Soil Sci and Plant Nutr.1995,41(4):709-719.
    [39] Jackson SD. Multiple signaling Path ways control tuber induction in Potato,Plant Physiol,1999,119:l-8.
    [40] B.J. Zebarth and C.J. Rosen. Research perspective on nitrogen BMP development for potato[J].Amer J Potato Res,2007,84:3-18.
    [41]胡云海,蒋先明.氮源对马铃薯微型薯的影响[J].马铃薯杂志,1991,5(4):199-205.
    [42] Iens J D. Bremper P M. Growth development and yield in the potato[J].0utlook Agric, l965,(4):211-217.
    [43] Belanger G, J R Walsh, JE Richards, et al. Nitrogen fertilization and irrigation affect stubercharacteristics of two Potato cultivars[J]. Amer J Potato Res,2002,79:269-279.
    [44]高炳德.马铃薯产量形成与环境条件3.产量形成与营养条件的关系[J].马铃薯杂志,1986(1):9-13.
    [45]张宝林,高聚林,刘克礼.马铃薯在不同密度及施肥处理下叶片叶绿素含量的变化[J].中国马铃薯,2003,17(3):137-14.
    [46]王季春.不同施氮量对马铃薯的影响[J].马铃薯杂志,1994,8(2):76-80.
    [47]李天,大衫立,山岸撤,等.灌浆结实期弱光对水稻籽粒淀粉积累及相关酶活性的影响[J].中国水稻科学,2005,19(6):545-550.
    [48]程方民,蒋德安,吴平,等.早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征[J].作物学报,2002,27(2):201-20.
    [49] A. Krauss, H. Marschner. Influence of nitrogen nutrition, daylength and temperature on contents ofgibberellic and abscisic acid and on tuberization in potato plants[J]. Potato Research,1982,(25):13-21.
    [50]王彦平,蒙美莲,门福义.氮肥对马铃薯块茎收后贮藏期间淀粉还原糖含量的影响[J].现代农业,2004(12):21-23.
    [51] Westermann D T, Kleinkopf G E, Porter L K. Nitrogen fertilizer efficiencies on potato [J]. AmericanPotato Journal,1988,65:377-386.
    [52] Zhang H L, Smeal D, Arnold R N, et al. Potato nitrogen management by monitoring petiole level [J].Journal of Plant Nutrition,1996,19:1405-1412.
    [53]门福义,刘梦芸.马铃薯栽培生理[M].北京:中国农业出版社,1995.135-136.
    [54] Joern BC and ML Vitosh. Influence of applied nitrogen on potato. Part I:Yield, quality, andnitrogen uptake[J]. Amer J Potato Res,1995,72:51-63.
    [55] Miller JS and Rosen. Interactive effects of fangici programms and nitrogen management on potatoyield and quality[J]. Amer J Potato Res,2005,82:399-409.
    [56]周娜娜,王刚.水肥藕合条件下马铃薯产量和NO3--N动态变化研究[J].琼州大学学报,2005,12(5):49-51.
    [57] S.P.sharma,J.shekhar.氮的少量频施对马铃薯产量的影响[J].印度农业科学杂志,1989,59(11):739-73.
    [58]张永成,纳添仓,阮建平,等.马铃薯高产施肥措施研究[J].中国马铃薯,2001,15(5):274-277.
    [59]闫当萍.马铃薯最佳配比施肥试验研究[J].中国马铃薯,2000,14(2):81-82.
    [60]孔令郁,彭启双,熊艳,等.平衡施肥对马铃薯产量及品质的影响[J].土壤肥料,2004,(3):17-19.
    [61]冯瑞琴,田丰.氮钾肥配施对马铃薯产量的影响[J].青海大学学报(自然科学版),2005,23(4):44-46.
    [62]张朝春,江荣风,张福锁,等.氮磷钾肥对马铃薯营养状况及块茎产量的影响.中国农学通报,2005,21(9):279-283.
    [63] Biemond Hand Vos J. Effects of nitrogen on the development and growth of the potato plant2.thepartitioning of dry matter, nitrogen and nitlevel. Annals of Botany,1992,70:37-45.
    [64]郭淑敏,门福义,刘梦芸,等.马铃薯高淀粉生理基础的研究:一块茎淀粉含量与氮、磷、钾代谢的关系[J].马铃薯杂志,1993,7(2):65-70.
    [65] Salazar M, L Busch. Standards and strategics in the Michigan potato industry[J]. Research Report,2001:576.
    [66] Herman TJ, SL Love, B shafii, et al. Chipping performance of three processing potato cultivarsduring long-term storage at two temperature regimes[J]. Amer Potato,1996,73:411-425.
    [67] Baritelle AL, GM Hyde, RE Thornton. Influence of early-season nitrogen application pattern onimpact. sensitivity in Russet Burbank potato tubers[J]. Postharvest Biol Tech,2000,19:273-277.
    [68] Hof JE, Lum S L&EficksonH T. Breeding for Neigh protein and dry matter in the potato at PurdueUniversity[J]. Purdue Univ Agric Exp Station Res Bu11,1978,(9):53.
    [69] Muldes E Getal. Effect of nitrogen, Phospborus, potassium and magnesium nutrition and on theamino acids composition potato plants on the content of free amino acids the protein of tubers[J]. Plant&Soi1,1956,(7):135-166.
    [70]康玉林.土壤施氮与马铃薯块茎中粗蛋白质含量的关系[J].马铃薯杂志,1995,(2):66-69.
    [71]郑若良.氮钾肥比例对马铃薯生长发育,产量及品质的影响[J].江西农业学报,2004,16(4):39-42.
    [72]孔令郁,彭启双,熊艳,等.平衡施肥对马铃薯产量及品质的影响[J].土壤肥料,2004,(3):17-19.
    [73] Evans R J. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.)[J]. PlantPhysiol,1983,72(2):297-302.
    [74]李宪利,高东升,顾曼如,等.铵态和硝态氮对苹果植株SOD和POD活性的影响[J].植物生理学通讯,1997,33(4):254-256.
    [75]李韵珠,陆锦文,罗远培.土集水和养分的有效利用[M].北京:北京农业大学出版社,1994.139-148.
    [76] Garcia M C, Lamattia L. Nitric oxide and abscisic acid cross talk inguard cells[J]. Plant Physiol,2002,128:790-792.
    [77]陆景陵,胡霭堂.植物营养学[M].北京:高等教育出版社,2006.105.
    [78]蒋德安.植物生理学[M].北京:高等教育出版社,2011.39
    [79] Crawford N M, Ford B G. Molecular and developmental biology of inorganic nitrogen nutrition[M].The Arabidopsis Book. American Society of Plant Biologists,2002:2-3.
    [80] Lee RB, Clarkson DT. Nitrogen-13studies of nitrate fluxes in barley roots. I. Compartmentalanalysis from measurements of13N efflux[J]. The EMBO Journal,1986,5:1753-1767.
    [81] Fraisier V, Gojon A, Tillard P, et al. Constitutive expression of aputative high-affinity nitratetransporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogensource[J]. Plant J,2000,23:489-496.
    [82] Siddiqi MY, Glass ADM, Ruth TJ, et al. Studies of the uptake of nitrate in barley[J]. Plant Physiol.,1990,93:1426-1432.
    [83] Von Wiren N, Gazzarini S, Frommer WB. Regulation of mineral nitrogen uptake in plants[J]. PlantSoil,1997,196:191-199.
    [84] Crawford NM, Glass ADM. Molecular and physiological aspects of nitrate uptake in plants. TrendsPlant Sci.,1998,3:389-395.
    [85] Rexach J, Fernandez E, Galvan A. The Chlamydomonasreinhardtii Nar1gene encodes a chloroplastmembrane protein involved in nitrite transport[J]. Plant Cell,2000,12(8):1441-1453.
    [86] Wang XB, Wu P, Xia M, Wu ZC, et al. Identification of genes enriched in rice roots of the localnitrate treatment and their expression patterns in split-root treatment[J]. Gene,2002,297:93-102.
    [87] Wang MY, Siddiqi MY, Ruth T. Ammonium uptake by rice roots. II. Kinetics of13NH4+influxacross the plasma lemma[J]. Plant Physiol,1993,103:1259-1267.
    [88] Kronzucker HJ, Siddiqi MY, Glass A. Kinetics of NH4+influx in spruce[J]. Plant Physiol,1996,110:773-779.
    [89] Gassmann W, Schroeder JI. Inward-rectifying K+channels in root hairs of wheat (A mechanism foraluminum-sensitive low-affinity K+uptake and membrane potential control[J]. Plant Physiol,1994,105:1399-1408.
    [90] Loque D, Ludewig U, Yuan L, et al. Tonoplast intrinsic proteins AtTIP2:1and AtTIP2:3facilitateNH3transport into the vacuole[J]. Plant Physiol,2005,137:671-680.
    [91] Kaiser BN, Rawat SR, Siddiqi MY, et al. Functional analysis of an Arabidopsis T-DNA “knockout”of the high-affinity NH4+transporter at AMT1.1[J]. Plant Physiol,2002,130:1263-1275.
    [92] Marschner H. Mineral Nutrition of Higher Plants[M]. London:Academic Press,1995.236
    [93] Lauter FR, Ninnemann O, Bucher M, et al. Preferential expression of an ammonium transporter andof two putative nitrate transporters in root hairs of tomato[J]. Proc.Natl. Acad. Sci. USA,1996,93:8139-8144.
    [94] Ludewig U. Ion transport versus gas conduction: function of AMT/Rh-type proteins[J]. Transfus ClinBiol,2006,13:111-116.
    [95] Palkova Z, Janderova B, Gabriel J, et al. Ammonia mediates communication between yeastcolonies[J]. Nature,1997,390:532-536.
    [96] Gazzarrini S, Lejay L, Gojon A, et al. Three functional transporters for constitutive, diurnallyregulated, and starvation-induced uptake of ammonium into Arabidopsis roots[J]. The Plant Cell,1999,11:937-947.
    [97] Lorenz MC, Heitman J. The MEP2ammonium permease regulates pseudohyphal differentiation inSaccharomyces cerevisiae[J]. The EMBO Journal,1998,17:1236-1247.
    [98] Marini AM, Soussi-Boudekou S, Vissers S, et al. A family of ammonium transporters inSaccharomyces cerevisiae[J]. Mol. Cell. Biol.,1997,17:4282-4293.
    [99] Siewe RM, Weil B, Burkovski A, et al. Functional and genetic characterization of the(methyl)ammonium uptake carrier of Corynebacterium glutamicum[J]. J.Biol. Chem.,1996,271:5398-5403.
    [100] Huang NC, Chiang CS, Crawford NM, et al. CHL1encodes a component of the low-affinity nitrateuptake system in Arabidopsis and shows cell type-specific expression in roots[J]. The Plant Cell,1996,8:2183-2191.
    [101] ANDRE M A. Atmospheric nitrogen is a reliable standard for natural15N abundancemeasurements[J]. Nature,1983,303(23):685-687.
    [102]李井葵,蔡大同.同位素15N稀释法测定豆科植物固氮初步研究[J].土壤肥料,1991,(1):46-49.
    [103]李玉中,Redmann R E,祝廷成.羊草草原豆科牧草生物固定量研究[J].草地学报,2002,10(3):164-166.
    [104] Rennie R J.15N isotope dilution as a measure of dinitrogen fixation by Azospirillum brasilenseassociated with maize[J]. Canadian Journal of Botany,1980,58:2-24.
    [105] Hussain S, Mirza MS, Malik K A. Production of phytohormones by thenitrogen fixation bacteriaisloated from sugarcan[J]. Biohorizons,1999,2(1):61-76.
    [106]姚拓,蒲小鹏,张德罡,等.高寒地区燕麦根际联合固氮菌研究[J].草业学报,2004,13(5):101-105.
    [107] Broadbent F E, Norman A G. Some factors affecting the availability of the organic nitrogen in soil-apreliminary report[J]. Soil science society of America proceedings,1946,11:264-267.
    [108] Jasson S L. Use of15N in studies of soil nitrogen[J]. Soil Biochemistry,1971,2:129-166.
    [109]沈善敏.无机氮对土壤氮素矿化与固定的影响-兼论土壤氮的“激发效应”[J].土壤学报,1986,23:10-16.
    [110] Jenkinson D S, Fox R H, Rayner J H. Interactions between fertilizer nitrogen and soil nitrogen-theso called ‘priming’ effect[J]. Soil Sci,1985,36:425-444.
    [111] Ye Q F, Zhang Q Z, He Z L, et al. The mineralization and transformation of both added organicnitrogen and native soil N in red soils from four different ecological conditions[J]. Nuclear science andtechniques,1998,9(3):166-172.
    [112]黄东迈,朱培立,高家骅.有机、无机肥料氮在水田和旱地的残留效应[J].中国科学(B辑),1982,(10):907-912.
    [113] Suzuki MK K, Sekiya S, Shiga H. Effect of continuous application of organic or inorganic fertilizerfor sixty years on soil fertilizer and rice yield in paddy field[J]. Transaction of14th ICSS,1990,4:14-19.
    [114]徐明岗,梁国庆,张夫道,等.中国土壤肥力演变[M].北京:中国农业科学技术出版社,2006.138.
    [115]朱培立,黄东迈.土壤中残留氮矿化势研究[J].江苏农业科学,1983,(11):1-6.
    [116]刘德林,聂军,肖剑.15N标记水稻控释氮肥对提高氮素利用效率的研究[J].激光生物学报,2002,11(2):87-92.
    [117]朱兆良.我国土壤供氮和化肥氮去向研究的进展[J].土壤,1985,17:2-9.
    [118] Hauck R D, Melsted S W, Yankwich P E. Use of N-isotope distribution in nitrogen gas in the studyof denitrification[J]. Soil Sci,1958,86:287-29.
    [119] Mulvaney R L, Boast C W. Equations for determination of nitrogen-15labeled dinitrogen andnitrous oxide by mass spectrometry[J]. Soil Sci Soc Am J,1986,50:360-363.
    [120] Rolston D E, Hoffman D L, Toy D W. Field measurement of denitrification.ⅠFlux of N2andN2O[J]. Soil Sci Soc Am J,1978,42:863-869.
    [121]张起刚,何昌永,王化国,等.应用15N示踪技术研究冬灌对小麦生长发育及吸收N素的影响[J].核农学通报,1993,14(4):172-176.
    [122]韦东普,白玲玉,华珞姚,等.用15N同位素稀释法研究牧草的氮素营养[J].核农学报,1998,14(2):104-109.
    [123]王之杰,王纪华,赵春江,,等.用叶面标记态15N研究冬小麦不同叶位氮素的运转[J].华北农学报,2004,19(2):71-75.
    [124]沈其荣,徐国华.小麦和玉米叶面标记尿素态15N的吸收和运输[J].土壤学报,2001,38(1):67-74.
    [125]茹德平,赵彩霞,李习军,等.用15N示踪技术研究高产小麦、玉米的施氮规律[J].核农学报,2005,19(2):151-154.
    [126]周珊庆,陈开铗,李合松,等.应用15N示踪技术研究水稻对氮素的吸收利用[J].湖南农学院学报,1991,17(4):665-669.
    [127]单玉华,王余龙,黄建哗,等.中后期追施15N对水稻氮素积累与分配的影响[J].扬州大学学报(农业与生命科学版),2000,21(4):18-21
    [128]杨雅杰.应用15N-尿素研究硅对水稻吸收肥料氮的影响[J].黑龙江农业科学,2003,(3)::15-16.
    [129]郑广胜,彭根元,张起刚.应用15N示踪法研究叶菜的氮素利用[J].北京农业大学学报,1994,20(3):257-261.
    [130]房耀兰,陈宏怒,刘淑荣,等.应用15N研究甜峰葡萄对肥料氮的利用、分配和平衡[J].葡萄栽培与酿酒,1994,71(4):17-19.
    [131]徐坤,赵德,蒋先明.应用15N示踪研究生姜吸氮规律[J].园艺学报,1993,20(2):161-165.
    [132]张思苏,余美炎,王在序,等.应用15N示踪法研究花生对氮素的吸收利用[J].中国油料,1988,2:52-56.
    [133]郭培国,陈建军,郑燕玲.应用15N示踪法研究烤烟的氮素营养[J].中国烟草学报,1998,4(2):64-68.
    [134]周丕生,裴蓓,史益敏,等.应用核素15N研究郁金香氮素的累积与分配[J].上海交通大学学报,2003,21(4):29-34.
    [135] MacKintosh C, Meek S E M. Regulation of plant NR activity by reversible phosphorylationproteins arid proteolysis[J]. Cellular and Molecular Life Sciences,2001,58:205-214.
    [136] DAVID R B. N as an integrator of the nitrogen cycle[J]. Trends in Ecology and Revolution,2001,16:153-162.
    [137] JENSEN E S. Barley uptake of N deposited in the rhizosphere of assoslated field pea[J].Soil BioBiochem,1996,28:159-168.
    [138] SNOECK D, ZAPATA F, DOMENACK A M. Isotopic evidence of the transfer of nitrogen fixed bylegumes to coffee tress[J]. Biotechnol Agron Soc Environ,2000,4(2):95-10.
    [139]褚贵新,沈其荣,张娟,等.用15N富积标记和稀释法研究旱作水稻/花生间作系统中氮素固定和转移[J].植物营养与肥料学报,2003,9(4):385-389.
    [140]褚贵新,沈其荣,李奕林,等.用15N叶片标记法研究旱作水稻与花生间作系统中氮素的双向转移[J].生态学报,2004,24(2):228-234.
    [141] KOUTROUBAS S D, NTANOS D A. Genotypic differences for grain yield and nitrogen utilizationin Indica and Japonicarice under Mediterranean conditions[J]. Field Crops Research,2003,83:251-260.
    [142]王福钧,彭根元,兰林旺,等.应用15N示踪技术研究水稻吸收肥料氮的动态及不同时期追施氮肥的作用[J].中国农业科学,1981,14(4):66-71.
    [143]刘强,罗泽民,荣湘民,等.不同时期不同施氮量对糙米蛋白质积累的影响初探[J].土壤学报,2000,37(4):529-535.
    [144]黄见良,邹应斌,彭少兵,等.水稻对氮素的吸收、分配及其在组织中的挥发损失[J].植物营养与肥料学报,2004,10(6):579-581.
    [145]徐坤,赵德,蒋先明.应用15N示踪研究生姜吸氮规律[J].园艺学报,1993,20(2):161-165.
    [146]陈萍,李天福,张晓海,等.利用15N示踪技术探讨烟株对氮素肥料的吸收与分配[J].云南农业大学学报,2003,18(1):1-4.
    [147] SAWASK N, SOPER R J. A quantitative measurement of the nitrogen loss from the root system offield peas (Pisum avenseL.) grown in the soil[J]. Soil Bio Biochem,1991,23:255-259.
    [148]程励励,文启孝,李洪.盆栽和田间条件下土壤15N标记肥料氮的转化[J].土壤学报,1989,26(2):124-130.
    [149]阮云泽,唐树梅,何秋香,等.海南花岗岩砖红壤15N示踪尿素氮的去向[J].热带作物学报,2005,26(3):103-108.
    [150]黄见良,邹应斌,彭少兵,等.水稻对氮素的吸收、分配及其在组织中的挥发损失[J].植物营养与肥料学报,2004,10(6):579-583.
    [151]李合松,黄见良,邹应斌,等.应用15N、32P示踪法研究双季稻一次性全层施肥技术的肥料效应[J].核农学报,,2001,15(2):98-105.
    [152]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    [153] ALISON J E, JEFFREY A B, WILLIAM R, et al. Rice yield and nitrogen utilization efficiencyunder alternative straw management practices[J]. Agron J,2000,92:1096-1103.
    [154] LON S, CHEN N C, CHISHAKI N, et al. Behavior of N within rice plants, comparing betweenJaponica and Indica varieties[J]. Ecology and Environment,2004,13(4):646-650.
    [155] S LON, CHEN Neng-chang, N CHISHAKI, et al. Behavior of N within Rice Plants, Comparingbetween Japonica and Indica Varieties[J]. Ecology and Environmen,2004, l3(4):646-65.
    [156] BRUOAO M, RECCOS S, MACHET J M. Nitrogen efficiency in agricultural soils[M]. Londen andNew York:Elsevier Applied Science,1988.89-94.
    [157]李生秀,李宗让,田霄鸿,等.植物地上部分氮素的挥发损失[J].植物营养与肥料学报,1995,2:18-25.
    [158] HARPER E,JAME S. Reductase nitrate in vivo during oxide(s) nitrogen of evolution leaves ofsoybean assay [J]. PlantPhysiol,1981,68:1488-1493.
    [159]谢秋发,刘经荣,石庆华,等.不同施肥方式对水稻产量、吸氮特性和土壤氮转化的影响[J].植物营养与肥料学报,2004,10(5):462-467.
    [160] DangTH, Cai G X, Guo S L, et al. Effect of nitrogen management on yield and water use efficiencyof rainfed heat and maize in northwest China[J]. Pedosphere,2006,16(4):495-504.
    [161]段玉,妥德宝,赵沛义,等.马铃薯施肥肥效及养分利用率的研究[J].中国马铃薯,2008,22(4):197-200.
    [162]董茜,郑顺林,李国培,等.施氮量及追肥比例对冬马铃薯块茎品质形成的影响[J].西南农业学报,2010,23(5):1571-1574.
    [163]张志良.植物生理学实验指导[M].北京:高等教育出版社,2010.35-36.
    [164]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.101.
    [165]张永成.马铃薯试验研究方法[M].北京:中国农业科学技术出版社,2007.126.
    [166] Singleton V L, Orthofer R, Lamuela-Raventos R M. Analysis of total phenols and other oxidationsubstrates and antioxidants by means of Folin-Ciocalteu reagent[J]. Methods Enzymology,1999,299:152-178.
    [167]董钻,沈秀瑛,王伯伦,编.作物栽培学总论(第二版)[M].北京:中国农业出版社,2010.95.
    [168] Padh H. Cellular functions of ascorbic acid[J]. Biochemistry and Cell Biology-Biochimie etBiologie Cellulaire,1990,68:1166-1173.
    [169] Liebler D C,Jeanne A B. Antioxidants protection of phosphlipid bilayer by alpha-tocopherol.Control of alpha-tocopherol status and lipid peroxidation by ascorbic acid and glutathione[J]. BiologicalChemistry,1986,261:12114-12449.
    [170] Asada K. Ascorbate peroxidase-a hydrogen perioxide-scavenging enzyme in plants[J]. PhysiologiaPlantarum,1992,85:235-241.
    [171]赵会杰,林学梧,史宏旨.酚类化合物对大豆的生理调节作用和增产效应[J].作物学报,1995,21(3):35-354.
    [172] AlheNW, Lew DH,Zhang H, et al. Light-induced vegetative anthocyan in pigmentation in Petunia[J]. Journal of Experimental Botany,2009,60(7):2191-2202.
    [173]杨晓玲,张建文,刘永军.马铃薯块茎发芽过程中酚类物质含量及其相关酶活性的变化[J].植物生理学通讯,2002,38(4):347-348.
    [174]曹翠玲,李生秀,苗芳.氮素对植物某些生理生化过程影响的研究进展[J].西北农业大学学报,1999,27(4):96-101.
    [175]张子义,樊明寿.旱作马铃薯养分资源管理研究进展[J].内蒙古农业大学学报,2009,30(3):271-274.
    [176]郑顺林,李国培,杨世民.施氮量及追肥比例对冬马铃薯生育期及干物质积累的影响[J].四川农业大学学报,2009,27(3):271-274.
    [177]吴承金.马铃薯育种现状及建议[J].湖北农业科学,1997,(01):21-23.
    [178]张学军,周娜娜,陈晓群,等.不同滴灌量和施氮量对马铃薯硝酸盐累积的影响[J].灌溉排水学报,2004,23(4):23-25.
    [179]韦冬萍,韦剑锋,熊建文.马铃薯氮素营养研究进展[J].广东农业科学,2011,(22):56-60.
    [180] Van Gelder W J T. Conversion factor from nitrogen to protein for potato tuber protein[M]. PotatoRes,1981,24:423-425.
    [181] Hoff J E, Lam S L. Breeding for high protein and dry matter in the potato at Purdue University[M].Purdue Univ Agric Ezp Station Res Bull,1978.953.
    [182] Millzrd P.马铃薯块茎含N量与施N量的关系[J].Sci Food Agri,1986,37(2):107-114.
    [183]康玉林,王小琴,徐利群.土壤施氮与马铃薯块茎中粗蛋白质含量的关系[J].马铃薯杂志,1995,9(2):66-69.
    [184] Eppendofer W H, Eggum B O. Nutritive Value of potato crude protein as influenced by manuraingand amino acids composition[J]. J Sci Food Agric,1979,30:361-368.
    [185]张耀鸿,张亚丽,黄启为,等.不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较[J].植物营养与肥料学报,2006,12(5):616-621.
    [186] ZhangY H, Fan JB, ZhangY Letal. Nitrogen accumulation and translocation of different Japonicarice cultivars under different nitrogen application rates[J]. Pedosphere,2007,17(6):792-800.
    [187]张耀鸿,吴洁,张亚丽,等.不同株高粳稻氮素积累和转运的基因型差异[J].南京农业大学学报,2006,29(2):71-74.
    [188] Miflin BJ. The location of nitrite reductase and other enzyme related toamino acid biosynthesis inthe Plastids of root and leaves[J]. PlantPhysiol,1974,54:550-555.
    [189]王月福,于振文,李尚霞,等.小麦开花后不同器官中硝酸还原酶和谷氨酰胺合成酶的活性比较[J].植物生理学通讯,2003,(3:209-210.
    [190]王月福,于振文,李尚霞,等.不同施肥水平对不同品种小麦子粒蛋白质和地上器官游离氨基酸含量的影响[J].西北植物学报,2003,23(3):417-421.
    [191]廷波,孙传范,荆奇,等.不同施氮水平和基追比对小麦子粒品质形成的调控[J].作物学报,2005,31(2):248-253.
    [192]段英华,张亚丽,沈其荣,等.增硝营养对不同基因型水稻苗期氮素吸收同化的影响[J].植物营养与肥料学报,2005,11(2):160-165.
    [193]杨铁钢.不同品种和氮素水平下小麦高效氮素利用的生理机制研究[D].南京:南京农业大学博士论文,2007.65-66.
    [194] Claver I P, Zhou HuiMing. Enzymatic hydrolysis of defatted wheat germ by proteases and the effecton the functional properties of resulting protein hydrolysates[J]. Journal of Food Biochemistry,2005,29(1):13-26.
    [195] Rhodes D I, Stone B A. Proteins in walls of wheat aleurone cells[J]. Journal of Cereal Science,2002,36(1):83-101.
    [196]沈建辉,戴廷波,荆奇,等.施氮时期对专用小麦干物质和氮素积累、运转及产量和蛋白质含量的影响[J].麦类作物学报,2004,24(1):55-58.
    [197]焦峰,吴金花,张兴梅,等.不同氮肥水平影响下的水稻根系吸氮率特性分析[J].土壤通报,2009,40(6):1353-1355.
    [198] Ronald P.Cody, Jeffrey K. Smith著.辛涛译. SAS应用统计分析(第5版)[M].人民邮电出版社,2011.235.
    [199]郑丕尧.作物生理学导论[M].北京:北京农业大学出版社,1992.198.
    [200] Solomonson LP, Barber MJ. Assimilatory nitrate reductase: Functional properties andregulation[J].Annu Rev Plant Physiol Plant Mol Biol,1990,41:22-253.
    [201] Lam HM,Coschigano KT,Oliveira IC,et al.The molecular-genetics of nitrogen assimilation intoamino acids in higher plants[J]. Ann Rev Plant Physiol Plant Mol Biol,1996,47:569-593.
    [202] Miflin BJ. The location of nitrite reductase and other enzymes related to amino acid biosynthesis inthe plastids of root and leaves[J]. Plant Physiol,1974,54:550-555.
    [203] Hoff J, Truong HN, Caboche M. The use of mutants andtransgenic plants to study tritrateassimilation.Plant Cell Environ[J].1994,17:489-506.
    [204]刚爽,赵宏伟,王敬国,等.不同氮肥水平下寒地粳稻器官不同形态氮含量变化特征研究[J].植物营养与肥料学报,2011,17(2):276-282.
    [205]Zhang C F, Peng S B, Laza R C. Senescence of top three leaves in field-grown rice plants[J].Journal of Plant Nutrition,2003,26(12):2453-2468.
    [206] Makino A, Mae T, Ohira K. Relation between nitrogen and1,5-bisphosphate carboxylase in riceleaves from emergence through senescence[J]. Plant Cell Physiol,1984,25:429-437.
    [207]修凤英,朱丽丽,李井会.不同施氮量对马铃薯氮素利用特性的影响[J].中国土壤与肥料,2009(3):36-38,43.
    [208] Paul C. Strunik, Dick Vreugdenhil, Herman J. van Eck, et al. Physiological and genetic control oftuber formation[J]. Potato Research,1999,42(2):313-331.
    [209] Muller Rober B, Sonnewald U, Willmitzer L. Inhibition of the ADP-glucose pyrophosphorylase intransgenic potatoes leads tosugar-storing tubers and influences tuber formation and expression of tuber storageprotein genes[J]. The EMBOJ,1992,11:1229-1238.
    [210]柳俊,谢从华.马铃薯块茎发育机理及其基因表达[J].植物学通报,2001,18(5):531-539.
    [211]曹卫星.普通高等教育"十一五"国家级规划教材:作物栽培学总论(第2版)[M].北京:科学出版社,2011.156.
    [212] Markus L, Alberto S, Peter Set al. Root development of maize as observed with minirhizotrons inlysimeters[J]. Crop Sci.,2000,40(6):1665-1672.
    [213]王春霞,孙西欢,马娟娟,等.植物根系吸水研究[J].山西水利,2007,(1):85-86.
    [214]杨明君,樊民夫.旱作马铃薯根系拉力与冠层覆盖度对块茎膨大及产量的影响[J].华北农学报1995,10(l):76-51.
    [215]田丰,张永成.马铃薯根系吸收活力与产量相关性研究[J].干旱地区农业研究,2004,22(2):105-107.
    [216] Shi S L, Liao H Q, Wen Q X. Fate of N from green manures and ammonium sulfate[J]. Pedosphere,1991,1(3):219-227.
    [217] Cheng L L, Wen Q X, Li H.Transformation of15N labeled fertilizer N in soils under greenhouse andfield conditions[J]. Acta Pedologica Sinica,1989,26(2):124-130.
    [218]朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992.213-249.
    [219]张绍林,朱兆良,徐银华.黄泛区潮土—冬小麦系统中尿素的转化和化肥氮去向的研究[J].核农学报,1989,3(1):9-15.
    [220]李庆逵.中国农业持续发展中的肥料问题[M].江西:江西科学技术出版社,1997.138-140.
    [221] JIANG L G, DAI T B, JIANG D,et al. Characterizing physiological N-use efficiency as influencedby nitrogen management in three rice cultivars[J]. Field Crops Research,2004,88:239-250.
    [222]尚兴甲,王梅芳,付宝余.运用同位素15N研究冬小麦不同时期追施尿素的效果及氮肥的利用率[J].土壤肥料,2001,(6):9-11.
    [223]王百群,张卫,余存祖.用15N示踪法研究不同土壤水分条件下小麦对氮的吸收利用[J].核农学报,1999,13(6):362-367.
    [224] BELOW F E, CRAFS S J, HARPER J E. Uptake distribution and remobilization of15N-labeledurea applied to maize canopies[J]. Agron J,1985,77:412-415.
    [225]沈其荣,徐国华.小麦和玉米叶面标记尿素态15N的吸收和运输[J].土壤学报,2001,38(1):67-74.
    [226] Naude S M. The isotopes of nitrogen, mass15, and oxygen, mass18and17, and their abundances[J].Phys Rev,1930,36:333-346.
    [227] Urey H C. The thermodynamic properties of isotopic substances[J]. Chem Soc,1947,1:562-581.
    [228] Schoemnheimer R, Rittenberg D, Foster G L, et al. The application of the nitrogen isotope for thestudy of protein metabolism[J]. Science,1938,88:599-600.
    [229] Vickery H B, Pucher G W, Schoonheimer R, et al. The metabolism of nitrogen in the leaves of thebuckwheat plant[J]. Biol Chem,1939,129:791-792.
    [230] Norman A G, Werksman C H. The use of the nitrogen isotope15N in determining nitrogen recoveryfrom plant materials decomposing in soil[J]. Agron J,1943,35:1023-1025.
    [231]赵其国.发展与创新现代土壤科学[J].土壤学报,2003,40(3):321-327.
    [232]孙志梅,武志杰,陈利军,等.农业生产中的氮肥施用现状及其环境效应研究进展[J].土壤通报,2006,37(4):782-785.
    [233] Darwish T, Atallah T, Hajhasan S, et al. Management of nitrogen by fertigated of potato inlebanon[J]. Nutr Cycl Agroecosys,2003,67:1-11.
    [234]王宁,李大壮,韩世欣,等.黑钙土烤烟氮素积累、分配的研究[J].土壤通报,2011,42(2):378-381.
    [235] Ithapanya P. Genotype differences in nutrient uptake and utilization for grain yield production ofrainfed lowland rice under fertilized and non-fertilized conditions[J]. Field Crop Research,2000,65:57-68.
    [236]徐克章,刘宝,丛雨生,等.大豆叶柄特征的初步研究[J].大豆科学,1988,7(3):239-240,27.
    [237]温贤芳,姚允寅.同位素示踪技术农业应用研究进展[M].北京:中国农业科技出版社,1991:101-131.
    [238]谢学民,王寿祥,张勤争.核技术农学应用[M].上海:上海科学技术出版社,1989:123-127.
    [239]王福钧.农学中同位素示踪技术[M].北京:中国农业出版社,1989.189.
    [240]刘启兴,聂光明.应用15N示踪法对土壤氮AN值的研究[J].土壤通报,1983,2:21-23.
    [241] Dyson P W,Watson D J.An analysis of the effects of nutrient supply on the growth of potatocrops[J].Annals of Botany,1971,69:47-63.
    [242]周桦,宇万太,沈善敏.稳定性核素15N在农业研究中的应用[J].核农学报,2008,22(4):544-549.
    [243]孙羲.中国农业百科全书—农业化学卷[M].北京:中国农业出版社,1996:198-201.
    [244] Schimel JP, Bennett J. Nitrogen mineralization: Challenges of a changing paradigm[J]. Ecology,2004,(85):591-602.
    [245] Monaghan R,Barraclough D. Contributions to N mineralization from soil macro organic matterfractions incorporated into two field soils [J]. Soil Biology&Biochemistry,1997,29:1215-1223.
    [246]熊顺贵.基础土壤学[M].北京:中国农业大学出版社,2000.83-87.
    [247] Magill A H, Aber J D, Hendricks J J, et al. Biogeochemical response of forest ecosystems tosimulated chronic nitrogen deposition[J]. Ecological Applications,1997,7:402-415.
    [248]何红波,张旭东.同位素稀释分析在土壤氮素循环利用研究中的应用[J].土壤通报,2006,37(3):576-581.
    [249]聂光明.应用15N标记法对氮肥的吸收利用、固定与损失规律及氮肥增效剂效果的研究[J].土壤肥料,1980,3:27-30.
    [250]王岩,徐阳春,沈其荣.有机、无机肥料15N在土壤不同粒级中的分布及其生物有效性[J].土壤通报,2002,33(6):410-413.
    [251] Franeis G S. The leaching and chemical transformations of surface–applied urea under fIoodirrigation[J]. Fertilizer Resarch,1991,28(2):139-146.
    [252]贾树龙,孟春香,唐玉霞.肥料氮的淋溶深度对肥效的影响[J].核农学报,1993,7(4),213-217.
    [253]周德超.氮紊化肥对小麦后效作用的观察[J].原子能农业应用,1985,(1):47-50.
    [254]贾树龙.灌溉定额对小麦产量、追肥肥效及损失的影响[J].核农学报,1991,5(4):210-214.
    [255] Morris R A, Garrity D P. Resource capture and utilization in intercropping: Water[J]. Field CropsResearch,1993,34:303-317.
    [256]黄高宝,张恩和.调亏灌溉条件下春小麦玉米间套农田水、肥与根系的时空协调性研究[J].农业工程学报,2002,18(1):53-56.
    [257]刘守龙,童成立,吴金水,等.等氮条件下有机无机肥配比对水稻产量的影响探讨[J].土壤学报,2007,44(1):106-112.
    [258]马俊永,李科江,曹彩云,等.有机-无机肥长期配施对潮土土壤肥力和作物产量的影响[J].植物营养与肥料学报,2007,13(2):236-241.
    [259]王艳博,黄启为,孟琳,等.有机无机肥料配施对菠菜生长和土壤供氮特性的影响[J].南京农业大学学报,2006,29(3):44-48.
    [260]孟琳,张小莉,蒋小芳,等.有机肥料氮替代部分无机氮对水稻产量的影响及替代率研究[J].植物营养与肥料学报2009,15(2):290-296.
    [261]吕卫光,黄启为,沈其荣,等.不同来源有机肥及有机肥与无机肥混施对西瓜生长期土壤酶活性的影[J].南京农业大学学报,2005,28(4):68-71.
    [262]徐阳春,沈其荣,茆泽圣.长期施用有机肥对土壤及不同粒级中酸解有机氮含量与分配的影响[J].中国农业科学,2002,35(4):403-409.
    [263]徐阳春,沈其荣.有机肥和化肥长期配合施用对土壤及不同粒级供氮特性的影响[J].土壤学报,2004,41(1):87-92.
    [264]李菊梅,徐明岗,秦道珠,等.有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J].植物营养与肥料学报,2005,11(1):5l-56.
    [265]李伟,戴亨林,蔡国学.有机-无机复混肥料的肥料效应初探[J].磷肥与复肥,2003,18(6):67-69
    [266]李冬初,李菊梅,徐明岗,等.有机无机肥配施对红壤稻田氮素形态及水稻产量的影响[J].湖南农业科学,2004,(3):23-25.
    [267]杨晶秋,姚腾云,王作尊,等.稳定型有机无机复配肥氮的释放[J].华北农学报,2001,16(4):97-99.
    [268]王奎波,余美炎,申秀珍,等.有机无机肥配施对小麦吸收氮磷及土壤肥力的影响[J].核农学报,1994,25(4):109-111.
    [269]商跃凤.有机无机复混肥对水稻氮素利用率的影响[J].西南农业大学学报,2001,(3):262-266.
    [270]刘青丽,石俊雄,张云贵,等.应用15N示踪研究不同有机物对烤烟氮素营养及品质的影响[J].中国农业科学,2010,43(22):4642-4651.
    [271]张福锁.环境胁迫与植物根际营养[M].北京:中国农业出版社,1998:83-84.
    [272]白成云,刘金城.有机肥养分在农田中的生态效应分析[J].山西农业科学,1999,27(2):33-36.
    [273]朱洪勋,张翔,孙春河.有机肥与氮化肥配施的增产效应及对土壤肥力的影响[J].华北农学报,1996,11(增刊):202-207.
    [274] Trinsoutrot I, Recous S, Bentz B, et al. Relationships between biochemical quality of crop residuesand C and N mineralization kinetics under non-limiting N conditions[J]. Soil Science Society of AmericaJournal,2000,64:918-926.