氮素高效吸收型水稻的基本特点
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国稻田施氮量大,氮肥利用率低。过大的施氮量和较低的氮肥利用率,增加了氮肥资源消耗和水稻生产成本,还导致河水富营养化、地下水污染等不良的环境反应。因此,提高水稻氮素吸收利用效率对于提高我国种稻效益与生态环境效益,促进稻作生产的可持续发展具有重要现实意义。选育氮素高效吸收利用的品种,充分挖掘水稻自身对氮素吸收利用的潜力是提高水稻产量和氮素吸收利用效率最经济、最有效的途径。水稻产量可理解为吸氮量与氮素籽粒生产效率(吸收到植株体内单位氮素生产的籽粒产量)的乘积,提高吸氮量或提高氮素籽粒生产效率均可显著提高水稻产量水平。从这个角度看,氮高效水稻可以分为氮素高效吸收和氮素高效利用两种类型。关于氮素吸收与水稻其他性状关系的研究已有不少报道,但供试材料多为几个品种,亦有含较多材料的品种试验,但多为籼型水稻。关于不同氮素吸收类型粳稻品种间产量及其构成因素、源库指标、物质生产与分配、氮素吸收利用及根系性状的演变趋势及差异,氮素高效吸收型粳稻品种上述指标有何特点,目前尚不清楚。本研究于2008-2009年在群体水培条件下,以国内外不同年代育成的94个常规粳稻品种为供试材料,测定其抽穗期和成熟期的产量及其构成因素、不同器官的干物重、含氮率、叶面积系数、库容量、根系形态性状、根系活性等,试图明确氮素高效吸收型粳稻品种的基本特点及影响氮素吸收利用的主要因素,以期为粳稻品种氮素高效吸收利用的遗传改良,持续提高粳稻品种的产量水平提供参考依据。前人研究及本研究粳稻品种生育期、株高差异较大,据一些研究表明,生育期、株高可能会对水稻氮素吸收利用产生较大的影响,在生育期、株高分布相对集中的遗传群体中,它们是否会对氮素吸收利用产生明显影响目前尚不清楚。为此,于2010-2011年进一步开展试验,以生育期、株高分布相对集中的染色体单片段代换系群体(Single Segment Substitution Lines, SSSLs)122个株系为材料,分析氮高效吸收型水稻株系的基本特点,分析两个不同水稻群体影响氮素吸收利用的因素是否存在差异,差异多大。主要研究结果如下:
     1.供试水稻品种或株系间吸氮量的差异很大。粳稻品种吸氮量的变幅为16.47~48.41g·m-2(2008年)和14.27~37.00g·m2(2009年),吸氮量最大品种为最小品种的2.94倍(2008年)和2.59倍(2009年);SSSLs吸氮量的变幅为14.25-53.59g·m-2,最大的株系是最小的株系的3.76倍(2010年)。
     2.供试水稻品种株高、生育期和全生育期吸氮强度均存在显著差异,但SSSLs的株高、生育期分布较粳稻品种相对集中,生育期更集中。氮高效吸收型水稻株高、全生育期吸氮强度明显大于氮低效吸收型水稻,生育期明显长于(粳稻)或稍长于(SSSLs)氮低效吸收型水稻。生育期、全生育期吸氮强度均是影响水稻氮素吸收的重要因素,相关和通径分析均表明,全生育期吸氮强度对吸氮量的影响大于生育期,SSSLs更突出。
     3.不同氮素吸收型水稻产量的差异显著。随着吸氮量增加,粳稻品种产量水平呈显著提高趋势,SSSLs的产量呈先增加后下降趋势。吸氮量与粳稻品种产量呈极显著线性正相关(r2008=0.8096**,r2009=0.7864**),与SSSLs产量呈极显著抛物线型正相关(R201o=0.5916**)。增加吸氮量有利于粳稻品种产量水平的提高,但过大会导致SSSLs的产量下降。
     4.在产量构成因素方面,不同氮素吸收型水稻间单位面积穗数、每穗颖花数差异显著,氮素高效吸收型单位面积穗数、每穗颖花数多(粳稻品种)或较多(SSSLs),结实率和千粒重差异较小。在稳定结实率和千粒重的基础上,增加(粳稻品种)或适当(SSSLs)增加穗数、增加每穗粒数,可显著提高吸氮量,进而显著提高水稻的产量水平。
     5.氮素高效吸收型粳稻品种抽穗期叶面积系数(高效、有效、总叶面积)、抽穗期单穗叶面积(高效、有效、总叶面积)、成熟期单穗和总叶面积系数、抽穗期绿叶重、单穗和群体库容量均大于氮素低效吸收类型品种,但比叶重无显著优势,吸氮量过大时,使单位叶面积籽粒产量、结实期净同化率下降。氮高效吸收型SSSLs水稻在抽穗期和成熟期总叶面积系数、绿叶重、单穗和群体库容量、结实期净同化率等性状与粳稻品种有相同的趋势,均显著大于氮低效吸收型水稻,且比叶重也大于氮低效吸收型。粳稻品种分析表明,叶面积系数和库容量对总吸氮量均有重要的影响,库容量的作用大于叶面积系数。
     6.不同氮素吸收型粳稻品种间干物质生产量存在显著差异,氮素高效吸收型水稻抽穗期、成熟期群、个体干物质生产量显著大于其它类型水稻,经济系数无显著优势(粳稻品种)或小于中等吸收型(SSSLs)。氮素高效吸收型粳稻品种各器官(根、茎鞘叶、穗)干重和单穗重大;氮素高效吸收型SSSLs根干重、茎鞘叶干重大,穗干重、单穗重虽较大但小于中等偏大吸收型SSSLs。粳稻品种相关和通径分析表明:成熟期群体干物质生产量对总吸氮量作用大于经济系数的作用;抽穗前物质生产量、抽穗后物质生产量对成熟期物质生产量均有重要的作用,前者略大于后者;单穗干物质生产量对群体干物质生产量的作用大于单位面积穗数的作用,抽穗前更明显;提高抽穗前后茎鞘叶干重和成熟期穗干重有利于成熟期干物质生产量提高;促进单穗干物质生产量尤其是抽穗前单穗干物质生产量,促进抽穗前后茎鞘叶干重和抽穗后穗干重的提高可显著提高氮高效吸收型品种成熟期群体物质生产量。
     7.氮素高效吸收型水稻抽穗期吸氮量显著大于氮素低效吸收型品种。氮高效吸收型粳稻品种各器官(根、茎鞘叶、穗)吸氮量、单穗吸氮量、全生育期(群、个体)吸氮强度均较大,但植株含氮率、氮素籽粒生产效率、氮素干物质生产效率和氮素收获指数较无优势。氮素高效吸收型SSSLs根、茎鞘叶吸氮量表现与粳稻品种有相同的趋势,均大于氮低效吸收型;植株含氮率较大,氮素籽粒生产效率、氮素干物质生产效率和氮素收获指数较小,穗吸氮量虽较大但小于中等偏大型水稻。粳稻品种的通径分析表明,抽穗前吸氮量对总吸氮量影响显著大于抽穗后吸氮量的影响;单穗吸氮量对总吸氮量的影响显著大于穗数;干物质生产量对总吸氮量的影响显著大于植株含氮率
     8.不同氮素吸收型水稻品种(株系)间根系性状差异显著。氮素高效吸收型粳稻品种单株根系性状(单株根数、单株根干重、单株不定根总长、单株总吸收面积、单株活跃吸收面积、单株根系活力、最长根长、众数根长)、单条根系形状(单条不定根长、单条不定根粗)、单穗根系性状(单穗根数、单穗根干重、单穗根系活跃吸收面积)、抽穗期冠根比、成熟期冠根比均不同程度地优于氮素低效吸收型粳稻品种,单条不定根干重较大但小于氮素中等偏大吸收型品种,单穗总根长、单穗根系总吸收面积、单穗根粗没有差异。氮素高效吸收型SSSLs单株根干重、单株不定根总长、单株根系总吸收面积、单株根系活跃吸收面积、最长根长、众数根长、抽穗期冠根比与粳稻品种表现相同的趋势,均大于氮低效吸收型水稻,但成熟期冠根比、单株不定根数、单株根系活力或小或无优势。通径分析表明,无论是粳稻品种还是SSSLs,根干重、成熟期冠根比、单株不定根长、单条不定根重是影响粳稻品种吸氮能力的主要根系性状,说明氮高效吸收型株系根系不仅较长,且充实程度也较高。改良根干重、冠根比(抽穗期和成熟期)、单株不定根总长、单条不定根重等性状能显著提高水稻的吸氮量。
The common problem in paddy field of China is the excessive usage of nitrogen fertilizer and low nitrogen utilization efficiency, which caused eutrophication and ground water pollution, meanwhile increased the cost of rice production. In light of this, improving nitrogen uptake and utilization efficiency of rice is very important for sustainable development of rice production. The increase of rice yield could be achieved by exploring genotypic variation in nitrogen uptake and utilization efficiency among rice cultivars and developing new varieties with high nitrogen uptake and utilization efficiency. Rice yield is the product of amount of nitrogen absorption (ANA) and nitrogen use efficiency for grain yield (NUEg), the increase of ANA or NUEg can improve yield, accordingly, rice cultivars with high nitrogen efficiency could be grouped into high nitrogen uptake efficiency and high nitrogen utilization efficiency. Previous reports on the relationship between nitrogen uptake and other traits usually included only a few varieties, or most of them are indica rice varieties. The genotypic variation in conventional japonica rice cultivars of different ANA types on yield and yield components, index of source and sink, dry matter accumulation and distribution, nitrogen distribution, nitrogen uptake efficiency and use efficiency and root traits are not known, and no work has been conducted on characterising traits determing high nitrogen uptake efficiency in conventional japonica rice cultivars. Some studies suggested that, plant height and growth duration have great influence on nitrogen uptake and use efficiency, but it's not clear these two factors affect nitrogen uptake efficiency of rice cultivars with similar plant height and phenology. Ninty four conventional japonica rice cultivars were solution-cultured in2008and2009, respectively. Grain yield, dry matter weight, as well as nitrogen content in individual organs, leaf area index (LAI), sink potential, morphological and physiological traits of root were measured. The objectives of the study were to characterize the traits of japonica rice cultivars with high nitrogen uptake efficiency, in order to provide experimental evidence for genetic improvements of conventional japonica rice cultivars.122Single Segment Substitution Lines(SSSLs) were solution-cultured in2010and2011to characterize lines with different nitrogen uptake efficiency. The similarities and differences between Japonic rice cultivars and SSSLs with similar genetic background were compared on nitrogen uptake effeciency. The main results were as follows:
     1. There was a significant difference among all tested cultivars and lines on amount of nitrogen absorption (ANA). The range of ANA in japonica rice cultivars was16.47-48.41g·m-2(2008) and14.27~37.00g·m-2(2009), the biggest ANA was2.94and2.59times of the minimum one in2008and2009, respectively; The range of ANA in SSSLs was14.25-53.59g·m-2, the biggest ANA was3.76times of the minimum one(2009).
     2. There was a significant difference in plant height, growth duration and nitrogen uptake intensity among different types of cultivars and SSSLs, while the distribution of growth duration and nitrogen uptake intensity was more concentrated in SSSLs. The plant height, growth duration and nitrogen uptake intensity of high nitrogen uptake efficiency types were superior to those with low uptake efficiency. Plant height and growth duration were the main factors influencing ANA, correlation analysis and direct path analysis showed that, the influence of nitrogen uptake intensity to ANA was bigger than growth duration, especially in SSSLs.
     3. There was a significant difference in yield among different types of japonica rice cultivars and SSSLs. With the increase of ANA, The grain yield ofjaponica rice cultivars increased significantly, the yield of SSSLs increased first then declined. Grain yield of japonica rice cultivars was significantly related to ANA(r2008=0.8096**,r2009=0.7864**), while grain yield was significantly parabolic related to ANA(R2010=0.5916**). Enhancing ANA was beneficial to improve the grain yield of japonica rice cultivars, while the grain yield of SSSLs will decline when the ANA was too big.
     4. In terms of yield components, there were remarkable differences in panicle number per area and spikelet number per panicle among different uptake efficiency types of conventional japonica rice cultivars and SSSLs. Rice cultivars with high N uptake efficiency showed more panicle number per area and spikelet number per panicle than those with low N uptake efficiency. There was no significant difference in grain filling rate and1000-grain weight both of Japonic rice cultivars and SSSLs. Enhancing panicle number per area and spikelet number per panicle on stable grain filling rate and1000-grain weight, could improve the grain yield of japonica rice cultivars significantly.
     5. The traits of rice cultivars with high N uptake efficiency, including LAI (high effective LAI, effective LAI, total LAI) and leaf area per panicle (high effective leaf area per panicle, effective leaf area per panicle, total leaf area per panicle) at heading stage, LAI and leaf area per panicle at ripening stage, green leaf weight in heading stage, Sink potential, as well as sink potential per panicle were bigger than those with low N uptake efficiency. Grain yield per unit leaf area and net assimilation rate would declined when ANA was too big, there was no significant superiority in green leaf weight per unit leaf area among different types. The traits of SSSLs with high N uptake efficiency, including LAI at heading and ripening stage, green leaf weight in heading stage, green leaf weight per unit leaf area, Sink potential and sink potential per panicle, as well as net assimilation rate were bigger than those with low N uptake efficiency. Both the LAI and sink potential had important influence on the ANA, and the influence of sink potential was stronger than the LAI.
     6. There was remarkable difference in dry matter accumulation among different types of rice. Dry matter accumulation and dry matter accumulation per panicle at heading and maturity stage with high N uptake efficiency were significantly higher than those with low N uptake efficiency, while there was no significant difference in harvest index. Japonica rice cultivars of high N uptake efficiency types showed higher organic dry matter weight (root, stem, sheath and leaf, panicle) and panicle weight. SSSLs in high nitrogen uptake efficiency types showed bigger dry matter weight of root, dry matter weight of stem, sheath and leaf than other types, while dry matter weight of panicle, single panicle weight, harvest index was smaller than those in medium nitrogen uptake efficiency types. Correlation analysis and direct path analysis showed that:dry matter accumulation at maturity stage had more important effect on ANA than the harvest index. Both of dry matter accumulation before and after heading had important influence on the dry matter accumulation at maturity stage, especially the dry matter accumulation before heading. The dry matter accumulation per single panicle had more important effect on the dry matter accumulation at maturity than the panicle numbers per unit area, especially the dry matter accumulation per single panicle before heading. The improving of dry matter accumulation of leaf sheath and stem and panicle weight at maturity was beneficial to improving dry matter accumulation at maturity stage. The promotion of the dry matter accumulation per single panicle, especially the dry matter accumulation per single panicle before heading, as well as the promotion of dry matter per leaf sheath and stem heading and after heading and dry matter per panicle after heading could significantly improved the dry matter accumulation per population in the N uptake efficiency of japonica rice cultivars.
     7. Rice cultivars of high N uptake efficiency types had significantly higher ANA at heading stage than those with low N uptake efficiency. The ANA of organics (root, stem, sheath and leaf, panicle), ANA per panicle, population nitrogen uptake intensity and nitrogen uptake intensity per panicle of rice cultivars with high N uptake efficiency were bigger than those with low N uptake efficiency, while N content, N use efficiency for grain output, N use efficiency for dry matter production and nitrogen harvest index had no advantage. SSSLs of high nitrogen uptake efficiency types showed bigger ANA of root, ANA of stem, sheath and leaf, N content, while N use efficiency for grain output, N use efficiency for dry matter production and nitrogen harvest index were smaller. ANA of panicle of SSSLs with high nitrogen uptake efficiency was smaller than that with medium N uptake efficiency. Direct path analysis showed that:ANA before heading stage had significant effect on the total ANA than the ANA at grain filling stage; ANA of single panicle makes significant greater effect on total ANA than the panicle number; Dry matter accumulation makes significant greater effect on total ANA than N content.
     8. There was a significant difference in root traits among different types of japonica rice cultivars and lines. The root traits of rice cultivars with high N uptake efficiency, including root traits per plant (number of adventitious roots, root dry weight, total length of adventitious roots, total root absorptions area, root activity absorptions area, root activity per plant, the longest root length, model root length), single root traits (single adventitious root length, single adventitious root diameter), root traits per panicle (number of adventitious roots, root dry weight, root activity absorptions area per panicle), ratio of shoot to root at heading and ripening stage, were superior to those with low N uptake efficiency more or less. Weight of single adventitious root with high N uptake efficiency was smaller than that with medium N uptake efficiency, while total length of adventitious roots per panicle, total root absorption area per panicle and adventitious root diameter per panicle had no advantage. SSSLs of high nitrogen uptake efficiency types showed bigger root dry weight per plant, total length of adventitious roots per plant, total root absorptions area per plant, root activity absorptions area, the longest root length, model root length and ratio of shoot to root at heading stage, but smaller Shoot to root at ripening stage. There was no advantage in number of adventitious roots per plant and root activity per plant. Further analysis showed that, both of japonica rice cultivars and lines, high ANA could be reached by improving root dry weight per plant, ratio of shoot to root (at heading and ripening stage), number of adventitious roots per plant, Weight of single adventitious root. Root dry weight per plant, the ratio of shoot to root (at heading and ripening stage), the total length of adventitious roots per plant and dry weight per adventitious are the main factors influencing N absorptive capacity.
引文
1.袁隆平.超级杂交稻栽培技术研究[M].上海科学技术出版社,2006,288-296.
    2.童依平,李继云,李振声.不同小麦品种(系)吸收利用氮素的差异及有关机理研究11.影响吸收效率的因索分析[J].西北植物学报,1999,19(3):393-401.
    3.曾希柏,李菊梅.中国不同地区化肥施用及其对粮食生产的影响[J].中国农业科学,2004,37(3):387-392.
    4.邹应斌,周上游,唐起源.中国超级杂交水稻超高产栽培研究的现状与展望[J].中国农业科技导报,2003,5(1):31-35.
    5. Cai G X, Cao Y C, Yang N C, et al. Direct estimation of nitrogen gasses emitted from flooded soil during demystification of applied nitrogen[J]. Agriculture Ecosystems and Environment,1990,1:241-251.
    6. Y.M. Zheng, Y.F. Ding, Q.S. Wang, et al. Effect of nitrogen applied before transplanting on NUE in rice[J]. Agricultural Sciences in China,2007,6(7):842-848.
    7.李荣刚,翟云忠.江苏省武进市高产水稻田氮素渗漏损失研究[J].农村生态环境,2000,16(3):19-22.
    8.李虎,唐启源.我国水稻氮肥利用率及研究进展[J].作物研究,2006,5(3):401-408.
    9.李庆逵,于天仁,朱兆良.中国农业持续发展中的肥料问题.南昌:江西科学技术出版社,1997.
    10.孙传范,曹卫星.土壤—作物系统中氮肥利用率的研究进展[J].土壤,2001,33(2):64-69.
    11. H. Konishi, K. Ishiguro, S. Komatsu. A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization[J]. Proteomics, 2001,1(9):1162-1171.
    12.尤小涛,荆奇,姜东,等.节水灌溉条件下氮肥对粳稻稻米产量和品质及氮素利用的影响[J].中国水稻科学,2006,20(2):199-204.
    13.张洪熙,戴正元,复广宏.不同栽培持施对扬粳9538稻米品质的影响[J].江苏农业科学,2006(2):14-16.
    14.贺帆,黄见良,崔克辉,等.实时实地氮肥管理对水稻产量和稻米品质的影响[J].·中国农业科学,2007,40(1):123-132.
    15.徐春梅,王丹英,邵国胜,等.施氮量和栽插密度对超高产水稻中早22产量和品质的影响[J].中国水稻科学,2008,22(5):507-512.
    16.张军,张洪程,段祥茂,等.地力与施氮量对超级稻产量、品质及氮素利用率的影响[J].作物学报,2011,37(11):2020-2029.
    17.江福英,翁伯琦.农田硝态氮的污染及其防治对策[J].福建农业学报,2003,18(3):196-200.
    18.彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    19.娄庭,龙怀玉,杨丽娟,等.在过量施氮农田中减氮和有机无机配施对土壤质量及作物产量的影响[J].中国土壤与肥料,2010(2):11-15.
    20. Q. Jing, Bam Bouman, H. Hengsdijk, et al. Exploring options to combine high yields with high nitrogen use efficiencies in irrigated rice in China[J]. European Journal of Agronomy, 2007,26(2):166-177.
    21.严小龙,张福锁.植物营养遗传学[M].中国农业出版社,1997,6-9.
    22.童汉华.水稻氮高效资源筛选及相关基因的分子定位[M].武汉:华中农业大学,2005.
    23. P.S. Bing, Huang Jian-Liang, Zhong Xu-Hua, et al. Roland Buresh Christian Witt. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Agricultural Sciences in China,2002(007):776-785.
    24. Ej Kamprath, Rh Moll,Wa Jackson. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J]. Agronomy Journal,1982,74(3):562-564.
    25.叶全宝.不同水稻基因型对氮肥反应的差异及氮素利用效率的研究[D].扬州:扬州大学,2005.
    26.崔世友,缪亚梅,史传怀,等.氮高效水稻育种研究及展望[J].中国农业科技导报,2007,8(6):47-51.
    27.邹长明,秦道珠,徐明岗,等.水稻的氮磷钾养分吸收特性及其与产量的关系[J].南京农业大学学报,2002,25(4):6-10.
    28.单玉华.不同类型水稻品种氮素吸收利用的差异及控制[D].扬州:扬州大学,2002.
    29.单玉华,王海候,龙银成,等.不同库容量类型水稻在氮素吸收利用上的差异[J].扬州大学学报:农业与生命科学版,2004,25(001):41-45.
    30.张岳芳.不同氮素累积量类型籼稻品种的基本特点及其对供氮浓度的响应[D].扬州: 扬州大学,2006.
    31.于小凤,李进前,田昊,等.影响粳稻品种吸氮能力的根系性状[J].中国农业科学2011,44(21):4358-4366.
    32.罗连光,田昌,颜应成,等.无机肥配施生物有机肥对超级稻Y两优1号产量及碳氮代谢的影响[J].杂交水稻,2011,26(1):61-64.
    33.林洪鑫,潘晓华,石庆华,等.施氮量与栽插密度对超级早稻中早22产量的影响[J].植物营养与肥料学报,2011,17(1):22-28.
    34.龙继锐.超级杂交稻节氮高效栽培生理生化特性及关键技术研究[D].长沙:湖南农业大学,2008,44-66.
    35.董桂春,王余龙,张岳芳,等.不同氮素籽粒生产效率类型籼稻田种产量及其构成的基本特点[J].作物学报,2006,32(10):1511-1518.
    36.董明辉,孟立明.不同粳稻品种氮素吸收利用特点的研究[J].扬州大学学报:农业与生命科学版,2002,23(4):43-46.
    37.朴钟泽,韩龙植,高熙宗,等.水稻不同基因型氮素利用效率差异[J].中国水稻科学,2003,17(3):233-238.
    38.朴钟泽,韩龙植,高熙宗,等.水稻氮素利用效率的选择效果[J].作物学报,2004,30(7):651-656.
    39.张亚丽,樊剑波,段英华,等.不同基因型水稻氮利用效率的差异及评价[J].土壤学报,2008,45(2):267-273.
    40.张岳芳,王余龙,张传胜,等.籼稻品种间氮素吸收利用的差异及其对产量的影响[J].江苏农业学报,2006,22(4):318-324.
    41.杨肖娥,孙羲.不同水稻品种对低氮反应的差异及其机制的研究[J].土壤学报,1992,29(1):73-79.
    42.江立庚,曹卫星.水稻高效利用氮索的生理机制及有效途径[J].中国水稻科学,2002,16(3):261-264.
    43. P. Inthapanya, P. Sihavong, V. Sihathep, et al. Genotype differences in nutrient uptake and utilisation for grain yield production of rainfed lowland rice under fertilised and non-fertilised conditions[J]. Field Crops Research,2000,65(1):57-68.
    44.曾建敏,崔克辉,黄见良,等.水稻生理生化特性对氮肥的反应及与氮利用效率的关系[J].作物学报,2007,33(7):1168-1176.
    45.张俊国,张三元,杨春刚,等.水稻氮高效品种资源筛选的初步研究Ⅰ.不同施氮水平下水稻产量和干物质生产的品种间差异[J].吉林农业科学,2009,33(6):7-10.
    46.尹西翔.水稻氮高效品种的筛选及其机理的初步探讨[D].武汉:华中农业大学,2005.
    47.赵首萍,赵学强,施卫明.不同氮效率水稻品种苗期吸氮效率差异及其机理研究[J].土壤,2006,38(4):400-409.
    48.童汉华,余新桥,梅捍卫,等.水稻苗期氮素营养高效基因型的筛选[J].浙江农业科学,2007,(5):537-541.
    49. SOPB Samonte, LT Wilson, JC Medley, et al. Nitrogen utilization efficiency:relationships with grain yield, grain protein, and yield-related traits in rice[J]. Agronomy J,2006(98): 168-176.
    50. Park H, Mok S K. Nitrogen efficiency and its relation to various physiological characteristics among rice varieties[J]. J Korean Soc Soil Sci,1975,8(2):105-111.
    51. Jk Ladha, Gjd Kirk, J. Bennett, et al. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm[J]. Field Crops Research,1998,56(1-2):41-71.
    52. U. Singh, Jk Ladha, Eg Castillo, et al. Genotypic variation in nitrogen use efficiency in medium-and long-duration rice[J]. Field Crops Research,1998,58(1):35-53.
    53.罗志祥,施伏芝,阮新民,等.杂交中籼组合协优9019的高产及稳产性研究[J].中国稻米,2008(5):31-32.
    54.樊剑波,沈其荣,谭炯壮,等.不同氮效率水稻品种根系生理生态指标的差异[J].生态学报,2009,29(6):3052-3058.
    55.樊剑波.不同氮效率基因型水稻氮素吸收和根系特征研究[D].南京:南京农业大学,2008.
    56. D. Isfan, I. Cserni, M. Tabi. Genetic variation of the physiological efficiency index of nitrogen in triticale[J]. Journal of Plant nutrition,1991,14(12):1381-1390.
    57.徐富贤,熊洪,谢戎,等.水稻氮素利用效率的研究进展及其动向[J].植物营养与肥料学报,2009,15(5):1215-1225.
    58.童依平,李继云,牟振声.农作物素利用效率基因型差异及其机理[J].生态农业研究,1999,7(2):23-27.
    59.陈周前,阮新民,施伏芝,等.氮高效组合协优9019的氮肥运筹规律与效益分析[J].安徽农业科学,2009,37(9):4089-4090.
    60.叶利庭,樊剑波,徐晔红,等.不同氮效率水稻的生长特性[J].南京农业大学学报,2010(3):77-81.
    61.张亚丽.水稻氮效率基因型差异评价与氮高效机理研究.南京:南京农业大学,2006.
    62.张云桥,吴荣生,蒋宁,等.水稻的氮素利用效率与品种类型的关系[J].植物生理通讯,1989,25(2):127-143.
    63. D. Ray, Ms Sheshshayee, K. Mukhopadhyay, et al. High nitrogen use efficiency in rice genotypes is associated with higher net photosynthetic rate at lower Rubisco content[J]. Biologia plantarum,2003,46(2):251-256.
    64.张俊国,张三元.吉粳88号产量构成因素对产量作用的分析[J].2005年全国作物遗传育种学术研讨会暨中国作物学会分子育种分会成立大会论文集(一)[C],2005.
    65. T. Takashima, K. Hikosaka,T. Hirose. Photosynthesis or persistence:nitrogen allocation in leaves of evergreen and deciduous Quercus species[J]. Plant, Cell & Environment,2004, 27(8):1047-1054.
    66.汤玉玮.硝酸还原酶活性与作物耐肥性的相关性及其在生化育种上应用的探讨[J].中国农业科学,1985(6):39-44.
    67.黄发松,王连铮,戴景瑞.水稻根系生长生理与根系遗传育种研究[J1.作物育种学术论文集,1998,67-71.
    68.董桂春,王余龙,王坚刚,等.不同类型水稻品种间根系性状的差异[J].作物学报,2002,28(6):749-755.
    69.程建峰,戴廷波,荆奇,等.不同水稻基因型的根系形态生理特性与高效氮素吸收[J].土壤学报,2007,44(2):266-272.
    70. J.B. Fan, Y.L. Zhang, D. Turner, el al. Root physiological and morphological characteristics of two rice cultivars with different nitrogen-use efficiency[J]. Pedosphere,2010,20(4): 446-455.
    71.徐富贤,张乃周.杂交中稻发根力及根系活力与地上部性状的关系[J].西南农业学报,2002,15(2):34-37.
    72.董桂春.不同氮索籽粒生产效率类型籼稻品种的基本特点[D].扬州:扬州大学,2007.
    73.张岳芳,王余龙,张传胜,等.籼稻品种的氮素累积量与根系性状的关系[J].作物学报,2006,32(8):1121-1129.
    74.栾明宝,员海燕.玉米高效利用氮素的生理机制研究进展[J].西北农业学报,2005, 14(2):50-53.
    75.殷春渊,张庆,魏海燕,等.不同产量类型水稻基因型氮素吸收、利用效率的差异[J].中国农业科学,2010,43(1):39-50.
    76.居静.水稻氮素吸收利用的差异及其原因分析[D].扬州:扬州大学,2003.
    77. J. Ju, Y. Yamamoto, Y. Wang, et al. Genotypic differences in grain yield, and nitrogen absorption and utilization in recombinant inbred lines of rice under hydroponic culture[J]. Soil science and plant nutrition,2006,52(3):321-330.
    78.江立庚,戴廷波,韦善清,等.南方水稻氮素吸收与利用效率的基因型差异及评价[J].植物生态学报,2003,27(4):466-471.
    79.石庆华,潘晓华,钟旭华,等.不同熟期杂交晚稻的氮素吸收特性与产量形成的研究[J].江西农业学报,1991,3(1):43-50.
    80.顾世梁,莫惠栋.动态聚类的一种新方法—最小组内平方和法[J].江苏农学院学报,1989,10(4):1-8.
    81.李义珍,郑景生.杂交稻施氮水平效应研究[J].福建农业学报,1998,13(2):58-64.
    82.苏祖芳,周培南,许乃霞,等.密肥条件对水稻氮素吸收和产量形成的影响[J].中国水稻科学,2001,15(4):281-286.
    83.肖恕贤,覃步生,陈盛球,等.杂交早稻需肥特性和施肥技术研究[J].作物学报,1982,8(1):23-32.
    84.张岳芳,张传胜,陈培峰,等.不同氮素累积量类型籼稻品种产量及其构成因素的差异[J].扬州大学学报:农业与生命科学版,2006,27(1):43-48.
    85.鲁艳红,廖育林,汤海涛,等.不同施氮量对水稻产量,氮素吸收及利用效率的影响[J].农业现代化研究,2010,31(4):479-483.
    86.江立庚,曹卫星,甘秀芹,等.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响[J].是中国农业科学,2004,37(4):490-496.
    87.凌启鸿.作物群体质量[M].上海科学技术出版社,2000.
    88.石庆华,徐益群.籼粳杂交稻的氮素吸收特性及其对库源特征的影响[J].江西农业大学学报,1994,16(4):333-339.
    89. Da Ntanos, Sd Koutroubas. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions[J]. Field Crops Research,2002,74(1):9 3-101.
    90.吴文革,杨联松,苏泽胜,等.不同施氮条件下杂交中籼稻的群体质量与产量形成[J].中国生态农业学报,2008,16(5):1083-1089.
    91.于小凤,袁秋梅,王熠,等.氮素高效吸收型粳稻品种物质生产与分配的基本特征研究[J].安徽农业科学,2012,40(12):7015-7020,7028.
    92. S. Yoshida. Fundamentals of rice crop science[M]. Int. Rice Res. Inst.1981.
    93.王永锐.水稻营养和合理施肥[M].科学出版社,1989.
    94.张岳芳,王余龙,陈留根.不同氮素累积量类型籼稻品种有关源库指标的基本特点[J].江西农业学报,2008,20(6):1-4.
    95.石庆华,徐益群.籼粳杂交稻的氮素吸收特性及其对“库”“源”特征的影响[J].杂交水稻,1995(4):19-22.
    96. M. Ohnishi, T. Horie, K. Homma, el al. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand[J]. Field Crops Research,1999, 64(1-2):109-120.
    97.于小凤,王熠,袁秋梅,等.氮素高效吸收型粳稻品种源库指标的基本特点[J].扬州大学学报(农业与生命科学版),2012,33(1):54-60.
    98. Y. Wada, G. Wada. Varietal difference in leaf senescence during ripening period of advanced indica rice[J]. Jpn. J. Crop Sci,1991,60(4):529-536.
    99.张传胜,龙银成,周娟,等.不同产量类型釉稻品种氮素吸收利用特征的研究[J].扬州大学学报(农业与生命科学版),2004,25(2):17-21.
    100.董桂春,于小凤,董燕萍,等.不同库容量类型常规籼稻品种氮素吸收与分配的差异[J].中国农业科学,2009,42(10):3432-3441.
    101.田昊.不同库容量类型常规粳稻品种的基本特点[M].扬州:扬州大学,2010,55-59.
    102.黄农荣,钟旭华,郑海波.水稻氮高效基因型及其评价指标的筛选[J].中国农学通报,2006,22(006):29-34.
    103.张洪程,王秀芹,戴其根,等.施氮量对杂交稻两优培九产量、品质及吸氮特性的影响[J].中国农业科学,2003,36(007):800-806.
    104. Sd Koutroubas, Da Ntanos. Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice under Mediterranean conditions[J]. Field Crops Research,2003, 83(3):251-260.
    105.白建江,李培德,王慧,等.不同氮素籽粒生产效率类型水稻在氮素吸收利用上的差 异[J].安徽农业大学学报,2010,37(3):401-406.
    106.单玉华,王余龙,山本由德,等.不同类型水稻在氮素吸收及利用上的差异[J].扬州大学学报:自然科学版,2001,4(3):42-45.
    107.陈彩虹,刘承柳.杂交中稻汕优63氮素营养特性的研究[J].华中农业大学学报,1989,8(1):1-9.
    108.于小凤,王坚纲,李进前,等.不同氮素吸收类型粳稻品种吸氮能力的差异及其原因分析[J].中国水稻科学,2012,26(3):331-340.
    109.周娟,李进前,张彪,等.不同氮素籽粒生产效率类型籼稻品种氮素吸收利用的差异[J].安徽农业科学,2008,36(36):15805-15808.
    110.董桂春,于小凤,赵江宁,等.不同穗型常规籼稻品种氮素吸收利用的基本特点[J].作物学报,2009,35(11):2091-2100.
    111.张岳芳,王余龙,陈培峰,等.不同氮素累积量类型的籼稻品种物质生产与分配特点[J].江苏农业学报,2007,23(5):385-390.
    112.韩碧文.根系的合成作用及其与地上部部分的相关[J].植物学通报,1984,2:23-25.
    113.杨建昌,朱庆森.亚种间杂交稻光合特性及物质积累与运转的研究[J].作物学报,1997,23(1):82-88.
    114. T. Higuchi, K. Yoda, K. Tensho. Further evidence for gaseous CO2 transport in relation to root uptake of CO2 in rice plant[J]. Soil science and plant nutrition,1984,30(2):125-136.
    115.董桂春,王余龙,吴华,等.氮素对水稻不同生育阶段根系形态特征的影响[J].上海交通大学学报:农业科学版,2004,21(4):331-335.
    116.朱兆民,吴同斌,郑圣先,等.氮肥分次施用对肥料效果的研究[J].土壤肥料,1984,4:29-32.
    117.孙静文,陈温福,臧春明,等.水稻根系研究进展[J].沈阳农业大学学报,2002,33(6):466-470.
    118.李木英,石庆华.水稻根系营养吸收特性及其与干物质生产和稻米品种关系的[J].江西农业大学学报,1996,18(4):376-382.
    119.石庆华,李木英.杂交水稻根系生长优势与吸氮特性关系的初步研究[J].江西农业大学学报,1999,21(2):145-148.
    120.邹春琴,李振声,李继云.小麦对钾高效吸收的根系形态学和生理学特征[J].植物营养与肥料学报,2001,7(1):36-43.
    121.王海候.水稻氮素吸收利用与稻株重要农艺性状的关系[D].扬州:扬州大学,2005.
    122.戢林.水稻氮高效基因型筛选及其生理机制研究[D].四川农业大学,2010.
    123.董桂春,王熠,于小凤,等.不同生育期水稻品种氮素吸收利用的差异[J].中国农业科学,2011,44(22):4570-4582.
    124.杨从党,朱德峰,应继锋,等.高产水稻对氮的吸收、分配和利用研究[J].西南农业学报,2006,19(3):400-403.
    125. Sk De Datta, Fe Broadbent. Nitrogen-use efficiency of 24 rice genotypes on an N-deficient soil[J]. Field Crops Research,1990,23(2):81-92.
    126.吴建富,潘晓华,石庆华.施氮量对免耕抛栽稻产量及氮素吸收利用的影响[J].江西农业大学学报,2011,33(6):1031-1036.
    127.刘立军.水稻氮肥利用效率及其调控途径[D].扬州:扬州大学,2005.
    128.梁天锋,徐世宏,刘开强,等.栽培方式对水稻氮索吸收利用与分配特性影响的研究[J].植物营养与肥料学报,2010,16(1):20-26.
    129. F.T. Nielsson. Granulation. Manual of Fertilizer processing.1987(5):159-225.
    130.刘德林,聂军.15N标记水稻控释氮肥对提高氮素利用效率的研究[J].激光生物学报,2002,11(2):87-92.
    131.张晴雯,杜春祥,李晓伟,等.控释肥条件下沿南四湖农田水稻吸氮特征[J].环境科学,2011,32(7):1908-1915.
    132.李方敏,艾天成,周升波,等.缓释氮肥对水稻的增产效果及其氮素利用率[J].土壤通报,2004,35(3):311-315.
    133.潘圣刚,黄胜奇,曹凑贵,等.氮肥运筹对稻田田面水氮素动态变化及氮素吸收利用效率影响[J].农业环境科学学报,2010,29(5):1000-1005.
    134.叶全宝,许甸,霍中洋,等.不同土壤及氮肥条件下水稻氮利用效率和增产效应[J].作物学报,2005,1422-1428.
    135.张晴雯,杜春祥,李晓伟,等.控释肥条件沿南四湖农田水稻吸氮特征[j].2011,32(7):1908-1915.
    136.谢芳,韩晓日,杨劲峰,等.不同施氮处理对水稻氮索吸收及产量的影响[J].中国土壤与肥料,2010(4):24-26.
    137. Li Di-Qin. LI Di-qin, TANG Qi-yuan, et al. Effect of Nitrogen Regimes on Grain Yield, Nitrogen Utilization, Radiation Use Efficiency, and Sheath Blight Disease Intensity in Super Hybrid Rice [J]. Joural of Integrative Agriculture.2012,11(1):134-143.
    138.何高,周大川,孙长锋,等.水稻精确施氮量验证与氮素利用效率研究[J].江苏农业科学,2004(5):17-19.
    139.殷春渊,张庆,魏海燕,等.氮肥水平对不同育种时代粳稻产量、氮素吸收利用差异的影响[J].华北农学报,2009,24(5):123-129.
    140.臧波,张功亚.施氮量对杂交水稻“两优培九”产量、品质的影响研究[J].江汉石油科技,2005,15(2):68-72.
    141.韩宝吉,曾祥明,卓光毅,等.氮肥施用措施对湖北中稻产量、品质和氮肥利用率的影响[J].中国农业科学,2011,44(4):842-850.
    142.李德全,崔月峰,卢铁钢,等.氮肥对超级稻沈农265产量及氮肥利用率的影响[J].北方水稻,2011,41(3):12-14.
    143.李景波,付立东.氮肥运筹对超级稻产量及氮肥利用率的影响[J].现代农业科技,2011(8):46-47.
    144.丁艳锋,刘胜环,王绍华,等.氮素基、蘖肥用量对水稻氮素吸收与利用的影响[J].作物学报,2004,30(8):739-744.
    145.戴平安,郑圣先,李学斌,等.穗肥氮施用比例对两系杂交水稻氮素吸收、籽粒氨基酸含量和产量的影响[J].中国水稻科学,2006,20(1):79-83.
    146.王学红,黄国兵,高云,等.黄淮地区超高产水稻实地氮肥管理技术研究[J].中国稻米,2011,17(2):36-39.
    147.林忠成,李土明,吴福观,等.基蘖肥与穗肥氮比例对双季稻产量和碳氮比的影响[J].植物营养与肥料学报,2011,17(2):269-275.
    148.田卡,钟旭华,黄农荣.“三控”施肥技术对水稻生长发育和氮素吸收利用的影响[J].中国农学通报,2010,26(16):150-157.
    149.龚金龙,张洪程,李杰,等.超级稻生态育种及超高产栽培特征与途径的研究进展[J].中国农业科技导报,2011,13(1):25-33.
    150. A. Tirol-Padre, Jk Ladha, U. Singh, et al. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency [J]. Field Crops Research,1996,46(1-3):127-143.
    151. Y.H. Zhang, J.B. Fan, Y.L. Zhang, et al. N accumulation and translocation in four Japonica rice cultivars at different N rates[J]. Pedosphere,2007,17(6):792-800.
    152.凌启鸿,苏祖芳,张海泉.水稻成穗率与群体质量的关系及其影响因素的研究[J].作物学报,1995,21(4):463-469.
    153. Sm Haefele, Sma Jabbar, J. Siopongco, et al. Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels[J]. Field Crops Research,2008,107(2):137-146.
    154.董桂春,李进前,田昊,等.大穗型籼稻品种根系性状的基本特点[J].作物学报,2009,35(7):1357-1363.
    155.朱庆森,张祖建,杨建昌,等.亚种间杂交稻产量源库特征[J].中国农业科学,1997,30(3):52-59.
    156.李季航,向殉朝,何立斌,等.水稻亚种间杂种一代的源库特性[J].中国水稻科学,2006,20(3):301-305.
    157.冯跃华,潘剑,何腾兵,等.不同施氮水平对超级稻源库特性的影响[J].中国农学通报,2010,26(15):252-256.
    158.李木英,石庆华,黄才立,等.穗肥运筹对超级杂交稻淦鑫688源库特征和氮肥效益的影响[J].杂交水稻,2010(2):63-72.
    159.石丽红,纪雄辉,朱校奇,等.提高超级杂交稻库容量的施氮数量和时期运筹[J].中国农业科学,2010,43(6):1274-1281.
    160.史春余,徐永武.水稻中国91氮素营养特性的研究[J].山东农业大学学报:自然科学版,1994,25(3):267-271.
    161.王丰,张国平,白朴.水稻源库关系评价体系研究进展与展望[J].中国水稻科学,2005,19(6):556-560.
    162.吴文革,张洪程,钱银飞,等.超级杂交中籼水稻物质生产特性分析[J].中国水稻科学,2007,21(3):287-293.
    163.杨惠杰,李义珍,杨仁崔,等.超高产水稻的于物质生产特性研究[J].国民之水稻科学,2001,15(4):265-270.
    164.张水清,钟旭华,黄农荣,等.稻草蕧盖还田对华南双季晚稻物质生产和产量的影响[J].中国水稻科学,2011,25(3):284-290.
    165. Gz Jiang, Y. Kato, T. Sugiyama, et al. Role of CD86 (B7-2) in triggering of antigen-specific IgE antibody response by lipopolysaccharide[J]. FEMS Immunology & Medical Microbiology,1998,21 (4):303-311.
    166.凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467.
    167. J. Ying, S. Peng, Q. He, et al. Comparison of high-yield rice in tropical and subtropical environments:I. Determinants of grain and dry matter yields[J]. Field Crops Research, 1998,57(1):71-84.
    168.潘兴书,冯跃华,赵田径,等.不同施氮条件下2个超级杂交稻干物质生产特性[J].江苏农业学报,2009,25(4):726-730.
    169.李殉,付立东,齐春华.氮磷钾不同施入量对水稻产量的影响[J].北方水稻,2010,40(4):19-21.
    170.崔月峰,卢铁钢,孙国才,等.不同氮素水平对北方超级稻物质生产及氮素利用率的影响[J].沈阳农业大学学报,2011,41(5):550-554.
    171.童依平,李继云,李振声.农作物N素利用效率基因型差异及其机理[J].中国农业生态学报,1999,7(2):23-27.
    172.方萍,陶勤南,吴平.水稻吸氮能力与氮素利用率的QTLs及其基因效应分析[J].植物营养与肥料学报,2001,7(2):159-165.
    173.杨益花,许乃霞,苏祖芳.不同施氮量对水稻品种植株氮素吸收利用的影响[J].江苏农业科学,2010(2):71-74.
    174.石庆华,李木英.杂交水稻根系N素营养效率及其生理因素研究[J].杂交水稻,2002,17(4):45-48.
    175.黄见良,李合松,李建辉,等.不同杂交水稻吸氮特性与物质生产的关系[J].核农学报,1998,12(2):89-94.
    176.陈爱忠,潘晓华,吴建富,等.氮肥运筹对不同生育期晚稻品种产量及氮素吸收利用的影响[J].作物研究,2011,25(1):4-6.
    177.阮新民,施伏芝,罗志祥.施氮对高产杂交水稻生育后期叶碳氮比与氮素吸收利用的影响[J].中国土壤与肥料,2011(2):35-38.
    178.都兴林,方秀琴,王亚娟.氮肥不同施肥方法对超高产水稻品种“沈农265"生理特性的影响[J].北方水稻,2008,38(3):39-42.
    179.王维金.关于不同籼稻品种和施肥时期稻株15N的吸收及其分配的研究[J].作物学报,1994,20(4):476-480.
    180.晏娟.太湖地区稻麦轮作体系氮肥适宜用量及提高其利用效率的研究[D].南京:南京 农业大学,2009.
    181.陈健.籼粳稻及其杂交育成种根系的比较研究[J].沈阳农业大学学报,1991,22:99-105.
    182.董桂春,董燕萍,张彪,等.不同库容量类型籼稻品种根系性状的差异[J].中国农业科学,2009,42(9):3058-3066.
    183.张宪政.作物生理研究法[M].北京:农业出版社,1992:139-142.
    184.樊剑波,张亚丽,万小羽,等.水稻根系与氮素吸收利用之研究进展[J].中国农学通报,2007,23(2):236-240.
    185.赵学强,施卫明.水稻根系生长对不同氮形态响应的动态变化[J].土壤,2008(5):766-771.
    186. T. Kubo, Y. Aida, K. Nakamura, et al. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.)[J]. Breeding Science,2002, 52(4):319-325.
    187. Jianjun Xu, Qiang Zhao,Peina Du, et al. Developing high-throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice(Oryza sativa L.)[J]. BMC Genomics,2010,11(1):656-669.
    188.徐建军,赵强,汤在祥,等.利用重测序的染色体片段代换系群体定位水稻粒型QTL[J].中国水稻科学,2011,25(4):365-369.
    189.徐建军,赵强,赵元凤,等.利用重测序的水稻染色体片段代换系群体定位剑叶形态QTL[J].中国水稻科学,2011,25(5):483-487.
    190.曾建敏.水稻氮效率评价系统的建立与氮高效形成机理的研究[D].武汉:华中农业大学,2006.