锥形波纹小口径人造血管的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在血管搭桥和置换手术中,小口径人造血管由于易产生血栓而导致植入早期失败。为了解决小血管的栓塞问题,人们在高分子材料的选择和加工工艺的改进等方面做了大量工作,效果不甚明显,本文针对这一问题的进一步改进做了相关的研究与探索。
     本课题将纳米技术、静电纺丝技术、生物医用材料(降解材料和非降解材料)相结合,制备具有自主知识产权、生物相容性好、更接近宿主血管需求的小直径人造血管,用以克服其在移植后易产生血管栓塞的问题。
     本课题的研究内容包括对人造小血管制备材料的选择;静电纺装置两方面的改进,一方面对收集滚轴添加波纹化处理装置,另一方面喷丝装置采用双头纺丝;进而进行锥形波纹血管的纺制,选择合理的锥形波纹参数,最后对已选择的人造小血管样品进行生物力学性能测试和细胞培养测试,测试其新型血管的各项性能指标及生物相容性。
     采用静电纺丝工艺制备纳米人造小血管,通过双头喷丝装置,制备出直径为5mm的PET/PLLA混纺和在此基础上进行载药的人造小血管。溶剂分别选用氯仿与丙酮(体积比为2:1),三氟乙酸与二氯甲烷(体积比为4:1)的混合溶剂,光敏剂载药量分别为1%,2%,通过性能测试分析得到PET/PLLA的最优参数为:PET的质量分数为10%,PLLA质量分数5%,PET:PLLA=5:5,通过红外分析,PET和PLLA以及二者混纺和光敏剂之间在纳米级条件下,不会发生反应,维持各自的化学物理特性。
     通过改造的锥形波纹收集装置制备出锥度和波纹参数不同的锥形波纹人造小血管,可以得出,采用锥形收集滚轴和螺旋波纹处理装置,可使静电纺小口径人造血管在膜剥取过程中容易剥离。可以调节螺旋波纹的螺旋头数和螺旋升角,从而降低血栓形成几率。所制得的人造血管波纹状态连续均匀,且内壁光滑,无阻塞。
     最后对之前选出的样品,进行生物力学性能测试和细胞培养测试,可以得出,小直径人造血管的表面螺旋波纹化可以使其弯折性能得到明显改善。锥形波纹人造小血管的弯折性能随着锥角和螺旋头数的增加,而减小。当螺旋头数为4时,可以较好的满足血液稳定流动以及弯折性能的要求。静电纺人造小血管的顺应性还有待进一步的改善。光照和载药量对人造小血管上的细胞生长情况有显著差异。小血管的表面波纹状态对细胞增长有一定的影响,还需进一步探索,以求改善。
     利用有限元软件初步模拟血管内血液流动情况,模拟结果显示,锥度角与波纹隔距对血液的速度矢量和压力分布有影响,随着锥度角的增大和波纹隔距的增大,二者指标也越大,为后期动态模拟实验提供了初步方向。
     综上所述,本课题成功制备了锥形波纹人造小血管,并通过相关测试对生物相容性和生物力学性能进行检验,为提高小直径人造血管移植通畅率提供了新的方法。
During the surgery of bypass and replacement in vascular, because of thrombosis in small-diameter artificial vascular, which lead to implant failure early. In order to solve the problems of small blood vessels, people do a lot of work in the choice of the polymer materials and the improvement of processing technology, but the effect is not very obvious, therefore, the related research and exploration about the improvement of these problems were done in this paper further.
     This subject combines with nanotechnology, electrostatic spinning technology, and biomedical material (degradation of materials and biodegradable materials). Small diameter artificial vascular were prepared with independent intellectual property rights, good biocompatibility and being closer to a host of blood vessel to overcome the restenosis in the blood vessels caused by the transplantation.
     This paper refers to the choice of materials of artificial small blood vessel, and the improvement of electrostatic spinning device in two aspects, on the one hand, changing the collection into corrugated and tapered, on the other hand spinning with double injection pumps in the opposite directions and then choose reasonable tapered and corrugated parameters to produce artificial vascular graft,finally to do Biomechanical testing and culture cell on artificial small blood vessel samples, analysing its biocompatibility and various performance indicators of blood vessels.
     Using double injection pumps in the opposite directions to spin nanofibers, Produce vascular graft 5mm in diameter with mixed PET and PLLA,drug-loading on which,solvent are chosen with chloroform acetone (volume ratio 2:1), trifluoro ethyl and methylene chloride (volume ratio 4:1) mixed solvents. Through the test analysis of PET/PLLA get the optimal parameters for PET mass ratio is 10%, PLLA mass ratio is 5%, PET:PLLA=5:5, and the analysis of the infrared shows, in the nanoscale conditions, PET,PLLA and drug can not produce chemical reaction, maintaining their characteristics.
     Prepare the tapered corrugated artificial small blood vessels with different parameters by the created tapered corrugated collection devices, the conclusion is that the process of taking off the film form the device become easyer than before by the improved collection, which can adjust the helix number and helix angle,so as to reduce the chance thrombosis, besides,the inner surface is smooth and spiral grooves are continuous, which will help blood flow smoothly.
     Finally, do biomechanical testing and culture cell on artificial small diameter blood vessel samples,and the conclusion is that the helical corrugation can improve the bending behavior of the vascular graft obviously.With the thread number and taper angle increasing,the bending behavior of the vascular graft get worse.when the thread number is 4,the vascular graft can meet the requirement of which the state of the blood flow can remain stable and the bending behavior of the vascular graft is good, but the compliance small blood vessel compliance remains to be improved.The uviolizing and quantity of drug have a big influnce on the the state of cell growth on the samples. The corrugated state on the surface of the small blood vessel will effect the growth of cells in some extend, which still need to explore further.
     Simulate intravascular blood flow situation with the finite element software preliminarily,the simulation results show that the taper Angle and the isolation of blood will influnce corrugated velocity vector and pressure distributionl, with the increase of taper Angle and the increase of the ripples from, the two index become larger,which provides an initial direction for dynamic simulation experiment later.
     In summary, the small-diameter tapered and corrugated artificial blood vessel was prepared successfully. And the biomechanical property and the biocompatibility were verified through the relevent experiments. A new approach to improve the patency of small-diameter artificial blood vessel was provided.
引文
[1]段志泉,张强.实用血管外科[M].沈阳:辽宁科学技术出版社
    [2]贾立霞.人造血管的发展历程和方向[J].上海纺织科技.2003;31(3)
    [3]王继亮,王国斌.人工血管基因修饰的研究进展[J].国外医学生物医学工程分册.2001;24(4)
    [4]秦禅,衰支润,吴付祥等.阅锥形血管模拟脉动速度的测定[J].暨南大学学报自然科学与医学版.1997;18(12):6-9
    [5]潘治,饶天健,筒菊生等.机织涤纶毛型人造血管的研究[J].中华科杂志.1982;20(4):209-211
    [6]B Pourdehimi. Vascular Grafts:Textile Structures and Their perfomance[M]. Engli sh,1986
    [7]岑人经,秦婵,梁敏.大血管中的血液流动:(三)锥形管情况[J].华南理工大学学报(自然科学版).1991,19(1)
    [8]柳兆荣,徐刚,陈泳等.动脉中血液脉动流的一种分析方法[J].应用数学和力学2003;24[2]:205-214
    [9]Oka, S. The steady slow motion of a viscous fluid through a tapered tube[J]. J Physical Society Japan,1964,19 (8):321
    [10]邓子辰,尤莹.三维锥形动脉中脉动流的数值模拟研究[J].郑州大学学报(工学版).2006:27[3]:71-76
    [11]王贵学,张鹤,危当恒等.一种人造血管:中国,200610054134.7,2006年8月16日
    [12]Brossollet L J. Mechanical issues in vascular grafting:a review. Int J Artif Organs,1992,15:579-584
    [13]Salacinski H J, Goldner S, Giudiceandrea A. The mechanical behavior of vascular grafts:a review. J Biomater Appl,2001,15:241-278
    [14]Zidi M, Cheref M. Mechanical analysis of a prototype of small diameter vascular prosthesis:numerical simulations. Comput Biol Med,2003,33:65-75
    [15]Rhee K, Tarbell J M. A study of the wall shear rate distribution near the end-to-end anastomosis of a rigid graft and a compliant artery. J Biomech,1994, 27:329-338
    [16]Stonebridge P A, Brophy C M. Spiral laminar flow in arteries Lancet,1991,338: 1360-1361
    [17]Fung Y C. Biodynamics Circulation. New York:Springer-Verlag,1984 [18]Segadal L, Matre K. Blood velocity distribution in the human ascending aorta. Circulation,1987,76:90-100
    [19]Karino T, Goldsmith H L, Motomiya M. Flow patterns in vessels of simple and complex geometries. New York:Academy Press,1987.516:422-441
    [20]Frazin L. Lanza G, Mehlman D. Rotational blood flow in the thoracic aorta. Clin Res,1990,38:331A
    [21]Hung T H. Pulsating spiral blood flow in curved arteries. In:Cardiovascular science and technology, basic and applied. Louisville Kentucky:Oxymomn Press,1989.124-126
    [22]Uchida Y, Tomaru T, Nakamura F. Percutaneous coronary angioscopy in patients with ischemic heart disease. Am Heart J,1987,114:1216-1222
    [23]张治国,樊瑜波,邓小燕.一种带有旋动流引导器的新型小口径人造血管流场的数值模拟[J].中国科学.2008;38(9):807-815
    [24]凌凯,王璐,贾立霞.人造血管的纺织设计与加工技术[J].上海生物医学工程.2003;24(2)
    [25]董晓英,董鑫.静电纺丝纳米技术的制备工艺及其应用.合成纤维工业[J].2009;32(4):48-51
    [26]田鹏,陈剑秋.小口径人造血管的材料研究进展[J].透析与人工器官.2004;15(3):32-36
    [27]吴长福,王文祖.人造血管的发展与应用[J].产业用纺织品.2003;(8)
    [28]王璐,丁辛.人造血管的生物力学性能表征[J].纺织学报.2003;24(1)
    [29]刘建伟,赵强,万昌秀.医用聚乳酸体内降解机理及应用研究进展.航天医学及医学工程[J].2001;14(4)
    [30]Wen-Da Li, Jian-Bing Zeng, Yi-Dong Li. Synthesis of high-molecular-weight Aliphatic-aromatic copolyesters from poly(ethylene-co-1,6-hexeneterephthalate) and poly(L-lactic acid) by chain extension.Polymer Chemistry.2009;11(1):5898-5907
    [31]董莎.载光动力药纳米纤维小直径人造血管的研制[D].东华大学.2011
    [32]任景润.医用涤纶材料抗凝及促内皮化表面改性研究[D].西南交通大学.2008
    [33]彭朝荣,林义,邓华川等.气流一静电纺丝法制备聚对苯二甲酸乙二酯纳米纤维[J].合成纤维.2008,37(8):18-20
    [34]何莉,王立新,张幼株.静电纺PLA药物纳米纤维膜的制备及释药性能研究[J].第七届功能性纺织品及纳米技术研讨会论文集.2007;4:26-29
    [35]陈俊,陈剑玲,刘正英等.PET结晶行为研究进展[J].高分子通报.2005;2:20-24
    [36]McGonigle E-A,Daly J H,Gallagher S.Polym,1999,40:4977-4982
    [37]Harget P. J., Siegmann A. J Appl Phys,1972,43:4357-4362
    [38]Vittoria V,Petrillo E,Russo R I.J Macromol ScIPhys,1996,B35:147-155.
    [39]Vaz CM, van Tuijl S, Bouten CV,et al.Design of scaffoldsfor blood vessel tissue engineering using a multi-layering elect rospinning technique. Acta Biomaterialia.2005,1(5):575-582
    [40]王璐,丁辛,Durand Bernard人造血管的生物力学性能表征[J].纺织学报,2003,24(1):7-9
    [41]凌凯,王璐,贾立霞.人造血管轴向拉伸性能测试装置的实验研究[J].上海生物医学工程,2004,25(1):29-31.
    [42]贾立霞,王璐,凌凯.纺织基人造血管管壁水渗透性和孔径分布研究[J].棉纺织技术,2009,39(9):520-522.
    [43]张军,李文刚,宋月华等PEN/PET共混纤维的红外光谱表征[J].高科技纤维与应用,2010,35(6):30-34.
    [44]Fujii S,Okada M,Sawa H,et al. Hydroxyapatite nanoparticles as particulate emulsifier:fabrication of hydroxyapatite-coated biodegradable microspheres. Langmuir.2009; 25 (17):9759-9766.
    [45]Benhamida A,Kaci M,Cimmino S,et al.Melt Mixing of Ethylene/Butyl Acrylate/Glycidyl Methacrylate Terpolymers with LDPE and PET.Macro Mat Eng.2009;294(2):122-129.
    [46]张治国,樊瑜波,邓小燕.一种带有旋动流引导器的新型小口径人造血管流场的数值模拟[J].中国科学.2008;38(9):807-815
    [47]程浩.等节距圆锥螺旋压缩弹簧计算机辅助设计[J].计算机应用技术,2009;5(36):44-45
    [48]邹菲,王璐.高分子材料人造血管顺应性的研究[J].医用生物力学,2004;19(3):188-192
    [49]姜华.人造血管体外顺应性仿真测试仪器的设计及其过程顺应性的实验研究[D].东华大学.2009
    [50]Cyrille Norotte, Francois S. Marga, Laura E. Niklason,etal. Scaffold-free vascular tissue engineering usingbioprinting. Biomaterials.2009;30(30):5910-5 917
    [51]蔡开勇,林松柏,姚康德等.组织工程相关生物材料表面工程的研究进展.化学进展[J].2001;13(1):56-64
    [52]Raechelle A. D'Sa, George A. Burke,Brian J. Meenan. Protein adhesion and cell response on atmospheric pressure dielectric barrier discharge-modified polymer surfaces.Acta Biomaterialia.2010;6(7):2609-2620
    [53]Zuwei Ma,Masaya Kotaki,Thomas. Surface engineering of electrospun polyethylene terephthalate (PET)nanofibers towards development of a new material for blood vessel engineering.Biomaterials.2004; 7(26):2527-2536
    [54]嘉木工作室ANSYS5.7有限元实例分析教程[M].机械工业出版社.2002
    [55]洪庆章等. ANSYS7.0教学范例[M].北京.中国铁道出版社.2003.219-318
    [56]刘涛,杨凤鹏.精通ANSYS[M]北京.清华大学出版社.2002
    [57]郭兴玲.S型弯曲动脉中非线性脉动流的数值分析[D].北京工业大学硕士论文.2002
    [58]章本照,印建安.流体力学数值方法[M].机械工业出版社.2003
    [59]刘晓慈.流体力学Navier-Stokes方程的矩阵变换[J].海南大学学报自然科学版.1995.13.2
    [60]C.G卡罗,T.J.佩德利,R.C.施罗德等.血液循环力学[M].科学出版社.1986
    [61]祝家麟.定常Stokes问题的边界积分方程法[J].计算数学.1986;8(3):281-289
    [62]祝家麟.用边界积分方程法通过流函数解二维Stokes方程问题[J].重庆建筑工程学院特刊.1982;(S1):182-189
    [63]ANSYS, Inc.ANSYS 8.0 Mutiphysics联机帮助文档.2003
    [64]李万平.计算流体力学[M].华中理工大学出版社.2004
    [65]刘赵淼,马瑞艳,叶红玲等.弯曲动脉血管中血液流动对血栓形成的影响[J].科技导报2009,27(1):50-55
    [66]岑人经,周静,吴源青.动脉中的发展流动与其锥度角的关系[J].中国医学物理学杂志.2002,19(3):157-158
    [67]贾琳.静电纺PVA纳米纤维射流的拉伸研究与模拟初探[D].东华大学.2009