促内皮化等离子体聚合薄膜的制备及生物学评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,医用不锈钢材料被广泛的应用于心血管植介入器械。然而当其与血液接触时,在界面上会形成一系列的复杂的相互作用,导致凝血反应和血栓的形成。生物材料表面覆盖内皮细胞层是改善材料血液相容性的理想方法,但直接把内皮细胞种植在医用不锈钢材料表面不仅增殖速度慢,而且内皮细胞在短的时间内就容易脱落分离。因此如何通过表面处理,在医用不锈钢表面形成一定浓度的反应性官能团,并通过官能团有效的固定促内皮化生物分子明胶来构建具有促内皮化功能的材料表面,从而提高医用不锈钢材料表面的生物相容性成为研究的重点。
     本文采用等离子体聚合沉积方法,通过调控脉冲占空比和放电功率,以烯丙胺和丙烯酸为反应单体在医用不锈钢表面合成含有伯胺基和羧基的聚合薄膜,并以伯胺基和羧基为反应的位点在聚合薄膜表面固定了明胶分子。衰减全反射傅立叶红外光谱(ATR-FTIR)和X射线光电子能谱(XPS)的分析结果表明两种聚合薄膜表面分别含有伯胺基团和羧基官能团,相对含量分别达到最大值2.16%(NH_2/C)和7.22%(COOH/C);原子力显微镜照片表明等离子体聚烯丙胺薄膜都表现为连续、无针孔的致密薄膜;等离子体聚合沉积的聚丙烯酸薄膜在水中具有较好的动态稳定性;明胶分子固定的聚烯丙胺和聚丙烯酸薄膜的ATR-FTIR图谱中出现了酰胺Ⅰ和酰胺Ⅱ峰;明胶分子固定的聚丙烯酸薄膜的XPS全谱中出现了Nls吸收峰,且明胶分子固定的聚烯丙胺和聚丙烯酸薄膜表面的Cls谱出现了酰胺键的结合能288.2eV,这表明且明胶分子有效地固定到了聚合薄膜表面,静态接触角测试结果表明固定了明胶分子的聚合薄膜表现出较好的亲水性。
     体外内皮细胞粘附实验及Alamar Blue评价结果表明固定了明胶分子的聚合薄膜均表现出良好的内皮细胞粘附性能,且内皮细胞表现出更高活性。明胶分子固定的脉冲射频等离子体聚烯丙胺薄膜表面的内皮细胞粘附率为85.73%,高于连续波射频等离子体聚烯丙胺薄膜表面皮细胞粘附率82.73%,这可能是由于脉冲射频等离子体聚合能在薄膜表面能保持更高的胺基浓度,从而使薄膜表面固定的明胶分子浓度更高。通过制备两种脉冲占空比(50%和75%)的等离子体聚丙烯酸薄膜P-PPAA-1和P-PPAA-2并分别固定明胶分子,体外体外内皮细胞粘附实验及Alamar Blue评价均表明低占空比下合成的聚丙烯酸薄膜固定明胶分子后表面内皮细胞粘附能力更强,72h在其表面粘附的细胞增长率为41.9%。这可能是由于低占空比下射频等离子体聚合薄膜表面具有更高的羧基浓度,从而具有更高浓度的明胶分子固定。
Medical stainless steel is widely used as clinical implantable and interventional devices.However,once blood contact with biomaterials, complicated interaction will happen on the interface so as to form coagulating reaction and thrombus.It is believed that the endothelialization of the blood contacting device surface may overcome the problem.Biomolecule immobilization on the material surface may be an important method to improve the endothelialization.There are few functional groups on the surface of medical stainless steels,so how to get reactive functional groups and immobilize biomolecules on the surface of medical stainless steels become challenging.
     In this paper,the polyallylamine films containing primary amine groups and polymerized acrylic acid(PPAA) films containing carboxyl groups on the surface of medical stainless steels were obtained by radio frequency(RF) plasma polymerization by controlling the duty cycle and the RF-power,and the gelatin molecule was further covalently immobilized on the surface of the polymerized films.The-NH_2 and-COOH retention of the coatings were investigated by XPS (X-ray photoelectron spectroscopy) and FTIR(Fourier transform infrared spectroscopy).The highest content of primary amine(-NH_2/C)was 2.16%and carboxyl groups(-COOH/C) was 7.22%.Atomic force microscopy(AFM) showed that the polyallylamine film is continuous and pinhole-free.The plasma polymerized acrylic acid film has the dynamic stability in water.FTIR indicated there were typical characteristic absorption peaks of amideⅠand amideⅡwhich were ascribed to the gelatin.There is new peak of N1s in the survey spectra of XPS,which is from the gelatin.The analysis of FTIR and XPS also showed that the gelatin molecules were effectively immobilized on the surface of polymerized films.Contacting angle measurement indicated the polymerized films immobilized by the gelatin molecule presented better hydrophilicity and higher surface energy.
     In vitro endothelial cell(EC) adhesion test and Alamar Blue test showed the polymerized films immobilized by the gelatin promoted ECs adhesion and had better EC activity.The cell attachment ratio of the pulsed plasma polyallylamine film(85.73%) which immobilized gelatin was the higher than that of the continuous plasma polyallylamine film(82.73%).It is because that there were more active sites(-NH_2) on the surface of the pulsed plasma polyallylamine films, so the density of the gelatin chains immobilized on the the pulsed plasma polyallylamine films than that of the continuous plasma polyallylamine films.The viability of ECs increased about 41.9%after 72h cultivation on the G-P-PPAA-1(duty cycle 50%) than the G-P-PPAA-2(duty cycle 75%).The reason may be that there was more the active sites(-COOH) on the surface of the G-P-PPAA-1 than the G-P-PPAA-2,so the density of the gelatin chains immobilized on the G-P-PPAA-1 than that of the G-P-PPAA-2.
引文
[1]任伊宾,杨柯.新型生物医用金属材料的研究和进展.材料导报.2002,2(16):12
    [2]AF.Gordon,YA Tony.The mechanisms of coronary restenosis:Insights from experim entalmodels.Journal of Experimental Pathology.2000,81:63288.
    [3]杨化娟,杨柯等.医用不锈钢的发展及展望.材料导报.2005,6(19):56
    [4]周长忍主编.生物材料学.中国医药科技出版社,2004,4
    [5]K.Nakanishi,H.Muguruma,I.Karube,A novel method of immo-bilizing antibodies on a quartz crystal microbalance using plasma-.polymerized films for immunosensors,Anal.Chem.68(1996).1695-1700
    [6]B.Gupta,C.Plummer,I.Bisson,P.Frey,J.Hilborn,Biomaterials 23(2002)863-871.
    [7]P.K.Chu,B.Y.Tang,L.P.Wang,X.F.Wang,S.Y.Wang,N.Huang,Third-generation plasma immersion ion implanter for biomedical materials and research,Rev Sci Instrum 72(3)(2001) 1660.
    [8]J.Lahann,D.Klee,H.Thelen,H.Bienert,D.Vorwerk,H.Hocker.Improvement of haemocompatibility of metallic stents by polymer coating.Journal of Material Science:Material in Medicine.1999,10:443
    [9]J.Lahann,D.Klee,W.Pluester,H.Hoecker.Bioactive immobilization of rhirudin on CVD-coated metallic implant deveices.Biomaterials.2001,22:817
    [10]I.K.Kang,O.H.Kwon,M.K.Kim,Y.M.Lee,Y.K.Sung.In vitro blood compatibility of functional group-grafted and heparinimmobilized polyurethanes prepared by plasma glow discharge.Biomaferials.1997,18:099-1107
    [11]许根慧,姜恩永,盛京等.[M].等离子体技术与应用.北京:化学工业出版社.2006:199
    [12]J.Zhang,X.F.Feng,H.K.Xie,Y.C.Shi,T.S.Pu,Y.Guo,Thin Solid Films 435(2003) 108-115
    [13]G G.Roberts.Thermal imaging using organic films.Adv Phys,1985;34(3):47
    [14]A.Kubono,O kui N.Polymer thin films prepared by vapor deposition.Prog Polym Science,1994;19(3):389
    [15]I.McCulloch,H T.Man,K.Song et al.Potential adverse effects of antioxidant vitamins on cardiovascular risk factors.J Appl Polym Science,1994;53(5):665
    [16]S T.Kowel,R.Selfridge,C.Eldering et al.Characterization of modulated spin-coated and Langmuir-Blodgett thin film etalons.Thin Solid Films,1987;152(1-2):377
    [17]A gostino R.Plasma Deposition,Treatment and Etching of Polymers.New York:A cademic Press,1990:137,221,273,305,423
    [18]V L.Gott,A.Furuse.The Marfan syndrome and the cardiovascular surgeon Fed Proc,2002;30(9)1679
    [19]D.Fakes,M.Newton,J F.Watts et al.The physical characterization of contact lens surfaces by means of surface profilomerty.Clinical Materials,1986;9(3):416
    [20]C F.Amstein,P A.Hartman.Differential success of oak and red maple regeneration in oak and pine stands on intermediate-quality sites in northern Lower Michigan J Clin Microbio,2005;2(1):46
    [21]P.Hamerli,Th.Weigel,Th.Groth,D.Paul.Surface properties of and cell adhesion onto allylamine-plasma-coated polyethylenterephtalat membranes Biomaterials 24(2003) 3989-3999
    [22]崔淑玲,刘金树.低温等离子体在材料表面改性中的应用.河北工业科技.2006(6):56-58
    [23]关林波.明胶及其在生物材料中的应用.材料导报.2006,11(20):380-384
    [24]DPB.Mansflield.Tissue Cultured Endothelium for Vascular Prosthetic Devices.Rev Surg.1970,27:291-293
    [25]MJB.Wissink,R.Beernink,NM.Scharenborg.Endothelial cell seeding of collagen matrices:effects of bFGF pre-loading on proferation(after lowdensity seeding) and pro-coagulant factors.Journal Control Release.2000;67:141.
    [26]S.Kouvroukoglou,K.Dee.Endothelial cell migration on surfaces modified with immobilized adhesive peptides.Biomaterials.2000,21:1725
    [27]T.Stefano,S.Paolo,S.Nikolaos,K.Harm-Anton.RGD-Functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cells.Biomaterials.2007,28:2536-2546
    [28]W.Zhong,Sh.Yingkang,D.Ke.Effect of RGD Peptides on Endothelial Cell adhesion on the Polyethylene Terephalate Films.China Academic Journal Electronic Publishing House.115-117
    [29]J.Huebsch,G.Fields,T.Triebes,D.Mooradian.Photoreactive analog of peptide FN-C/H-V from the carboxy-terminal heparin-binding domains of fibronectin supports endothelial cell adhesion and spreading on biomaterial surfaces.J.Biomed Mater.Res.1966,31:555
    [30]H.Kito,T.Matsuda.Biocompatible coatings for Iuminal and outer surfaces of small-caliber artificial grafts.Journal biomedecial Master.Research 1996, 30:321
    [31] DA. Puleo, RA. Kissling. A technique to immobilize bioactive proteins,including bone morphogenetic protein-4 (BMP-4), on titanium alloy.Biomaterials. 2002, 23: 2079-2087
    [32] M. Sophie, M. Andre', H. Amina, M. Camille, Kassis, MD. Joseph.Improvement of Silicone Endothelialization by Treatment with Allylamine and/or Acrylic Acid Low-Pressure Plasma. Journal of Applied Polymer Science. 2003, 87:1794-1802
    [33] P. Ranires, L. Mirenghi, A. Rmano, F. Palumbo, G. Nicolardi .Plasma-treated PET sufrace improve the biocompatibility of human endothelial cells. Journal Biomedecial. Mater. Research. 2000, 51:535
    [34] M. Herring, A. Gardner, J. Glover. A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery. 1978, 84(4): 498-504
    [35] D L. Clapper, K M. Hagen, N M. Hupfer. In vitro and in vivo evaluations of 4mm vascular grafts with covalently coupled ECM proteins. Implant Retrieval Symposium of the Society for Biomaterials. St. Charles, Illinois,USA. 1992
    
    [36] E. Ruoslahti, M D. Piersehbacher. New perspectives in cell adhesion. RGD and integrins. Science. 1987, 238(4826): 491
    
    [37] 白旭芳.冠脉内支架内皮化研究进展.心血管病学进展. 1998, 19(6):333-335
    
    [38] Yabin Zhu, Changyou Gao, Tao He, Jiacong Shen. Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelati. Biomaterials. 2004, 25: 423-433
    
    [39] C. Boura, P. Menu, E. Payan, C. Picart, JC. Voegel, S. Muller, JF. Stoltz. Endothelial cells grown on thin polyelectrolyte mutlilayered films:an evaluation of a new versatile surface modification.Biomaterials.2003,24:3521-3530
    [40]赵化侨.等离子体化学与工艺.中国科学技术大学出版社.1993
    [41]M.Lejeune.F.Br(?)tagnol.G.Ceccone,P.Colpo,F.Rossi.Microstructural evolution of allylamine polymerized plasma films.Surface & Coatings Technology.2006.200:5902-590
    [42]文美兰.X射线光电子能谱的应用介绍.化工时刊.2006,20(8):54-56
    [43]J.Kim,D.Jung,Y.Park,Y.Kim,D.W.Moon,T.G.Lee.Quantitative analysis of surface amine groups on plasma-polymerized ethylenediamine films using UV-visible spectroscopy compared to chemical derivatization with FT-IR spectroscopy,XPS and TOF-SIMS.Applied Surface Science.2007,253:4112-4118
    [44]A.Choukourov,J.Kousal,D.Slav(?)nska,H.Biederman,E.R.Fuoco,S.Tepavcevic,J.Saucedo,L.Hanley.Growth of primary and secondary amine films from polyatomic ion deposition.Vacuum.2004,75:195-205
    [45]M.Lejeune,F.Br(?)tagnol,G.Ceccone,P.Colpo,F.Rossi.Microstructural evolution of allylamine polymerized plasma films.Surface & Coatings Technology.2006,200:5902-5907
    [46]M.Lampin,R.Warocquire,C.Legris,M.Degrange,MF.Sigot-Luizard,Correlation between substratum roughness and wettability,cell adhesion,and cell migration.J.Biomed.Mater.Res.1997;36:99
    [47]T.Inoue,JE.Cox,RM.Pilliar,AH.Melcher,Journal of Biomedical Materials Research 1987;21:107
    [48]A.Barranco,M.Bielmann,R.Widmer,P.Groening.Plasma Polymerization of Rhodamine 6G Thin Films.2005,7:396-400
    [49]P.Hamerli,Th.Weigel,Th.Groth,D.Paul.Surface properties of and cell adhesion onto allylamine-plasmacoated polyethylenterephtalat membranes.Biomaterials.2003,24:3989-3999
    [50]E.Uchida,Y.Uyama,Y.Ikada,Sorption of low molecular-weight anions into thin polycation layers grafted onto a film.Langmuir 1993;9:1121-4.
    [51]F.Fally,C.Doneux,J.Riga,JJ.Verbist.Quantificat ion of the functional groups present at the surface of plasma polymers deposited from propylamine,allylamine,and propargylamine.J Appl Polym Sci 1995;56(4):567-614.
    [52]J.S.Chen,Z.Sun,S.P.Lau,B.K.Tay.Structural and tribological properties of hard carbon film synthesized by heat-treatment of a polymer on graphite substrate.Thin Solid Films.2001,389:161-166
    [53]Zh.Q.Yao,P.Yang,N.Huang,H.Sun,J.Wang.Structural,mechanical and hydrophobic properties of fluorine-doped diamond-like carbon films synthesized by plasma immersion ion implantation and deposition (PⅢ-D).Applied Surface Science.2004,230:172-178
    [54]Toshihiro Hirotsu,Chie Tagaki.Plasma copolymer membranes of acrylic acid and the adsorption of lysozyme on the surface.Thin Solid Films 457(2004)20-25
    [55]L.Martin,J.Esteve,S.Borr(?)s.Nucleation of conducting polymers thin films obtained by plasma-enhanced chemical vapor deposition.Thin Solid Films.2004,74-80
    [56]景凤娟.与血液接触的无机薄膜表面生物化改性的研究.西南交通大学博士学位论文.2007:43-10
    [57]Loredana Detomasoa,Roberto Gristinab,S.Giorgio.Senesib,Riccardo d'Agostinoa,Pietro Favia,Stable plasma-deposited acrylic acid surfaces for cell culture applications,Biomaterials 26(2005) 3831-3841
    [58]邱军,王国建,曲泽华等.[J].新型碳材料.2006,21:3
    [59]Birgit Finke,Frank Luethen,Karsten Schroeder,D.Petra.Mueller,Claudia Bergemann,Marion Frant,Andreas Ohl,Barbara J.Nebe.The effect of positively charged plasma polymerization on initialosteoblastic focal adhesion on titanium surfaces.Biomaterials 28(2007) 4521-4534
    [60]Isabelle Bisson,Marek Kosinski,Sylvie Ruault,Bhuvanesh Gupta,J.ons Hilbom,Florian Wurm,Peter Frey.Acrylic acid grafting and collagen immobilization on poly(ethyleneterephthalate) surfaces for adherence and growth of human bladder smooth muscle cells.Biomaterials.2002,23:3149-3158
    [61]Ziyuan Cheng,Swee-Hin Teoh.Surface modification of ultra thin poly (e-caprolactone) films using acrylic acid and collagen.Biomaterials 25(2004)1991-2001
    [62]A.Schreer,C.Tinson,J.P.Sherry,K.Schirmer.Application of Alamar blue/5-carboxyXuorescein diacetate acetoxymethyl ester as a noninvasive cell viability assay in primary hepatocytes from rainbow trout.Analytical Biochemistry.2005,344:76-85
    [63]S H.Hsu,W C.Chen.Improved cell adhesion by plasma-induced grafting of L-lactide onto polyurethane surface.Biomaterials.2000,21:359-367
    [64]竺亚斌.胺解改性含酯基聚合物生物材料及其细胞相容性.浙江大学博士学位论文.2003,5:69-85
    [65]J.Holland,L.Hersh et al.Culture of human vascular endothelial cells on an RGD-containing synthetic peptide attached to a starch-coated polystyrene surface:comparison with fibronectin-coated tissue grade polystyrene. Biomaterials,1996,17:2147
    [66]竺亚斌,高长有,沈家骢等.胺解改性含酯基聚合物生物材料及其细胞相容性研究[D].浙江:浙江大学,2006.
    [67]杨阳,刘宝瑞,钱晓萍.[J].现代肿瘤医学,2006,14(1):6-8
    [68]A.von Keudell,Formation of polymer-like hydrocarbon films from radical beams of methyl and atomic hydrogen,Thin Solid Films 402(2002) 1-37.