内皮祖细胞在慢性阻塞性肺疾病中的变化和作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察慢性阻塞性肺疾病(COPD)患者外周血内皮祖细胞(EPCs)数量和功能的变化。
     方法:共收集2008年9月-2009年4月随访的稳定期COPD患者20例,诊断标准符合2007年《慢性阻塞性肺疾病(COPD)诊治指南》,同时选择20例非COPD者为对照,均无长期吸烟及被动吸烟史,近2月无呼吸系统疾病史,经病史询问、体格检查、胸部X线摄片、肺通气功能测定(包括乙酰甲胆碱激发试验)均未发现肺部异常。密度梯度法分离外周血的单个核细胞,流式细胞仪计数EPCs (CD34+/CD133+/VEGFR-2+细胞为EPCs),并用添加了生长因子的特异性内皮细胞培养基诱导单个核细胞向内皮细胞分化、增殖,以细胞呈“铺路石”样形态,结合FITC-UEA-I并摄取DiI-acLDL双染色阳性,内皮型一氧化氮合酶(eNOS)、血管性血友病因子(vWF)表达阳性,鉴定为EPCs。通过计数贴壁细胞数目测定EPCs的黏附能力,噻唑蓝比色法(MTT法)测定EPCs的增殖能力,硝酸还原法测定EPCs分泌NO的能力,免疫印迹法测定EPCs的内皮型一氧化氮合酶(eNOS)及磷酸化内皮型一氧化氮合酶(P-eNOS)蛋白表达。
     结果:[1].外周血EPCs量少,COPD组外周血分离的单个核细胞中EPCs比例低于对照组[(0.54±0.16)%vs(1.15±0.57)%,P<0.05]。[2].COPD病人外周血单个核细胞培养、诱导分化后EPCs数量增加,培养第7天EPCs比例为(3.18±0.80)%,第10天为(9.41±2.25)%。[3].COPD组EPCs黏附数低于对照组[(18.7±4.8)个/视野vs(45.0±5.9)个/视野,P<0.05];COPD组EPCs增殖能力(A490nm值)低于对照组[(0.135±0.038)vs(0.224±0.042), P<0.05]; COPD组EPCs培养液NO浓度低于对照组[(25.11±5.27)μmol/L vs(37.72±7.10)μmol/L, P<0.05]。[4]. COPD组EPCs eNOS、P-eNOS蛋白表达OD值均低于对照组[(112.06±10.00)vs(135.41±5.38), (88.89±4.98)vs(117.98±16.49),P均<0.05]。
     结论:[1].外周血来源的EPCs可以成功体外扩增。[2]. COPD病人外周血EPCs数量减少,黏附、增殖及分泌NO功能下降。[3]. COPD病人eNOS表达下降。
     目的:经气管移植同种异体小鼠骨髓来源的EPCs,观察EPCs在小鼠体内的定位及移植的EPCs对COPD小鼠肺功能、气道炎症、肺泡和肺血管结构改变及肺组织eNOS、P-eNOS蛋白表达的影响。
     方法:分离C57BL/6J小鼠骨髓来源的单个核细胞,予特异性内皮培养基和细胞因子诱导分化、培养,经细胞“铺路石”样形态及结合FITC-UEA-I并摄取DiI-acLDL双染色阳性、vWF表达阳性鉴定为EPCs。烟雾暴露法建立COPD小鼠模型,小鼠随机数字表法分为5组:对照组、COPD组、早期干预组、晚期干预组、PBS假干预组,每组8只,假干预组又随机分为早期假干预组、晚期假干预组,每组4只。COPD组小鼠放入自制熏烟箱中,每次予6支烟燃烧,15分钟,每天4次烟雾暴露,共90天。对照组在箱中同样时间,呼吸空气。在烟雾暴露1个月、3个月时分别进行早期、晚期干预,即CM-DiI标记EPCs后,经气管途径进行同种异体EPCs移植。早期假干预组、晚期假干预组在烟雾暴露1个月、3个月时分别气管内注入PBS。停止烟雾暴露1月后收集标本,小动物肺功能仪测肺功能;肺病理切片苏木素-伊红(HE)染色后测定平均肺泡隔厚度(MAST)、平均内衬间隔(MLI)和肺泡破坏指数(DI)评估肺气肿程度;LOGENE-I病理图像分析仪进行肺血管形态学定量指标观察:测量与呼吸性细支气管伴行的肺小动脉外径、管壁厚度、管腔面积和血管总面积,然后分别计算血管壁厚度与血管外径比值(WT%)和管腔面积与血管总面积比值(VA%);支气管肺泡灌洗液(BALF)细胞总数计数,Wright染色后细胞分类计数并计算比例;硝酸还原法测定BALF中NO含量;免疫印迹法测定肺组织内皮型一氧化氮合酶(eNOS)及磷酸化内皮型一氧化氮合酶(P-eNOS)的蛋白表达。
     结果:[1].小鼠骨髓来源的单个核细胞在添加了生长因子的特异性内皮培养基中呈梭形、多边形、铺路石样形态,结合FITC-UEA-I并摄取DiI-acLDL双染色阳性,vWF表达阳性,鉴定为EPCs。[2]. CM-DiI标记的EPCs经气管移植后在小鼠肺血管、气道可见荧光表达。[3].经烟雾暴露3个月,COPD组小鼠肺病理切片示肺气肿改变。[4].在对照组、COPD组、早期干预组、晚期干预组、早期假干预组、晚期假干预组平均肺泡隔厚度(MAST)分别为(8.09±1.02)μm、(4.32±0.62)μm、(6.29±1.01)μm、(5.48±0.65)μm、(4.51±0.61)μm、(4.44±0.63)μm;平均内衬间隔(MLI)分别为(33.26±3.22)μm、(51.79±7.25)μm、(40.25±2.65)μm、(45.21±2.25)μm、(50.98±7.68)μm、(51.05±7.43)μm;破坏指数(DI)分别为(12.85±3.22)%、(38.86±4.32)%、(20.37±3.43)%、(28.17±3.56)%、(37.47±4.76)%、(38.46±4.50)%。CODP组MAST小于对照组,差异有统计学意义(P<0.05);MAST在CODP组、早期假干预组、晚期假干预组之间差异无统计学意义(P均>0.05);早期干预组MAST小于对照组,大于COPD组和早期假干预组,差异均有统计学意义(P均<0.05);晚期干预组MAST小于对照组,大于COPD组和晚期假干预组,差异均有统计学意义(P均<0.05);早期干预组和晚期干预组MAST数值差异无统计学意义(P>0.05)。CODP组MLI、DI大于对照组,差异均有统计学意义(P均<0.05);MLI、DI在CODP组、早期假干预组、晚期假干预组之间比较差异均无统计学意义(P均>0.05);早期干预组MLI、DI均大于对照组,小于COPD组和早期假干预组,差异均有统计学意义(P均<0.05);晚期干预组MLI、DI均大于对照组,也均大于早期干预组,但小于COPD组和晚期假干预组,差异均有统计学意义(P均<0.05)。[5].在对照组、COPD组、早期干预组、晚期干预组、早期假干预组、晚期假干预组血管壁/血管外径(WT%)分别为(7.96±2.66)%、(26.66±2.57)%、(13.10±2.07)%、(17.67±1.44)%、(26.45±2.14)%、(26.33±2.26)%;管腔面积/血管面积(VA%)分别为(78.44±9.77)%、(54.88±4.80)%、(67.88±4.91)%、(63.66±7.89)%、(52.34±5.98)%、(53.46±5.04)%。COPD组WT%大于对照组,差异有统计学意义(P<0.05);WT%在COPD组、早期假干预组、晚期假干预组之间比较差异无统计学意义(P均>0.05);早期干预组WT%大于对照组,但小于COPD组和早期假干预组,差异均有统计学意义(P均<0.05);晚期干预组WT%大于对照组,也大于早期干预组,但小于COPD组和晚期假干预组,差异均有统计学意义(P均<0.05)。COPD组VA%小于对照组,差异有统计学意义(P<0.05);VA%在COPD组、早期假干预组、晚期假干预组之间比较差异无统计学意义(P均>0.05)。早期干预组VA%小于对照组,但大于COPD组和早期假干预组,差异均有统计学意义(P均<0.05);晚期干预组VA%小于对照组,差异有统计学意义(P<0.05),VA%在晚期干预组与COPD组之间及晚期干预组和晚期假干预组之间比较差异无统计学意义(P均>0.05)。[6].在对照组、COPD组、早期干预组、晚期干预组、早期假干预组、晚期假干预组气道阻力(Raw)分别为(0.0365±0.0196)Kps/L/s、(0.3179±0.0969)Kpa/L/s、(0.1029±0.0460)Kpa/L/s、(0.1999±0.0113) Kpa/L/s、(0.2893±0.0624)Kpa/L/s、(0.3188±0.0889)Kpa/L/s;肺顺应性(CL)分别为(0.3100±0.1067)L/Kpa、(0.1019±0.0004)L/Kpa、(0.2942±0.0228)L/Kpa、(0.2078±0.0823)L/Kpa、(0.1208±0.0186) L/Kpa、(0.1213±0.0216)L/Kpa;呼气峰流速(PEF)分别为(8.38±1.08)L/S、(7.20±0.97)L/S、(7.95±0.95)L/S、(8.10±0.96)L/S、(7.45±1.05)L/S、(7.75±0.83)L/S。COPD组Raw高于对照组,差异有统计学意义(P<0.05);Raw在COPD组、早期假干预组、晚期假干预组之间比较差异无统计学意义(P均>0.05);早期干预组Raw低于COPD组和早期假干预组,差异均有统计学意义(P均<0.05),与对照组比较差异无统计学意义(P>0.05);晚期干预组Raw高于对照组,也高于早期干预组,但低于COPD组和晚期假干预组,差异均有统计学意义(P均<0.05)。COPD组CL低于对照组,差异有统计学意义(P<0.05);CL在COPD组、早期假干预组、晚期假干预组之间比较差异无统计学意义(P均>0.05);早期干预组CL高于COPD组和早期假干预组,差异均有统计学意义(P均<0.05),与对照组比较差异无统计学意义(P>0.05);晚期干预组CL低于对照组,也低于早期干预组,但高于COPD组和晚期假干预组,差异均有统计学意义(P均<0.05)。PEF在各组之间比较差异无统计学意义(P>0.05)。[7].在对照组、COPD组、早期干预组、晚期干预组、早期假干预组、晚期假干预组BALF中NO浓度分别为(15.55±8.74)μmol/L、(52.65±12.16)μmol/L、(36.10±10.95)μmol/L、(43.76±13.19)μmol/L.(50.56±10.64)μmol/L、(53.37±12.83)μmol/L。COPD组BALF中NO浓度高于对照组,差异有统计学意义(P<0.05);BALF中NO浓度在COPD组、早期假干预组、晚期假干预组之间比较差异无统计学意义(P均>0.05);早期干预组BALF中NO浓度高于对照组,但低于COPD组和早期假干预组,差异均有统计学意义(P均<0.05);晚期干预组BALF中NO浓度高于对照组,差异有统计学意义(P<0.05),BALF中NO浓度在晚期干预组与COPD组之间及晚期干预组与晚期假干预组之间比较差异无统计学意义(P均>0.05)。[8].在对照组、COPD组、早期干预组、晚期干预组、早期假干预组、晚期假干预组BALF细胞总数分别为(1.47±0.24)×108/L、(5.85±0.67)×108/L、(3.61±0.38)×108/L、(5.47±0.71)×108/L、(5.67±0.75)×108/L、(5.87±0.72)×108/L;巨噬细胞(AM)分别为(1.34±0.14)×108/L、(4.45±0.63)×108/L、(2.86±0.34)×108/L、(4.11±0.69)×108/L、(4.32±0.73)×108/L、(4.54±0.65)×108/L;中性粒细胞(N)分别为(0.77±0.09)×107/L、(7.76±0.92)×107/L、(5.01±0.78)×107/L、(7.58±0.96)×107/L、(7.62±0.89)×107/L、(7.87±0.81)×107/L;巨噬细胞比例(AM%)分别为(86.55±8.90)%、(76.28±8.25)%、(78.81±7.96)%、(75.42±7.68)%、(76.36±8.03)%、(76.11±8.42)%;中性粒细胞比例(N%)分别为(8.68±0.97)%、(13.71±2.42)%、(12.31±1.98)%、(13.51±2.09)%、(13.01±2.13)%、(13.81±2.39)%。COPD组BALF细胞总数、AM、N、N%高于对照组,差异均有统计学意义(P均<0.05);BALF细胞总数、AM、N、AM%、N%在COPD组、早期假干预组、晚期假干预组之间比较差异无统计学意义(P均>0.05);早期干预组BALF细胞总数、AM、N高于对照组,但低于COPD组和早期假干预组,差异均有统计学意义(P均<0.05),N%高于对照组(P<0.05),与COPD组和早期假干预组比较差异均无统计学意义(P均>0.05);晚期干预组BALF细胞总数、AM、N高于对照组,也高于早期干预组,差异均有统计学意义(P均<0.05),BALF细胞总数、AM、N、AM%、N%在晚期干预组与COPD组之间及晚期干预组与晚期假干预组之间比较差异无统计学意义(P均>0.05)。[9].在对照组、COPD组、早期干预组、晚期干预组、早期假干预组、晚期假干预组肺组织eNOS、P-eNOS的蛋白表达OD值分别为[(253.89±18.69),(193.98±17.56)]、[(142.53±10.27),(140.08±8.43)]、[(162.66±13.61),(156.20±10.09)]、[(168.28±13.65),(152.81±10.43)]、[(150.43±10.71),(141.88±10.54)]、[(148.57±11.16),(140.12±8.92)]。COPD组肺组织eNOS. P-eNOS的蛋白表达均低于对照组,差异均有统计学意义(P均<0.05);肺组织eNOS、P-eNOS的蛋白表达在COPD组、早期假干预组、晚期假干预组之间比较差异无统计学意义(P均>0.05);早期干预组肺组织eNOS、P-eNOS的蛋白表达均低于对照组,但高于COPD组和早期假干预组,差异均有统计学意义(P均<0.05);晚期干预组肺组织eNOS、P-eNOS的蛋白表达均低于对照组,但高于COPD组和晚期假干预组,差异均有统计学意义(P均<0.05);肺组织eNOS、P-eNOS的蛋白表达在早期干预组和晚期干预组之间差异无统计学意义(P>0.05)。
     结论:[1].小鼠骨髓来源的EPCs可在体外成功扩增。[2]. EPCs移植可减轻COPD小鼠肺组织破坏和血管增生,早期移植较晚期移植作用明显。[3].EPCs移植可使COPD小鼠气道阻力下降,肺顺应性改善,早期移植较晚期移植作用明显。[4].早期EPCs移植可减轻COPD小鼠气道炎症。
Objective:To observe the number and function of circulating endothelial progenitor cells(EPCs) in the patients with chronic obstructive pulmonary disease (COPD).
     Methods:The total study population included 20 COPD patients and 20 control subjects. Mononuclear cells were isolated from human peripheral blood by density gradient centrifugation, the number of EPCs (CD34+/CD133+/VEGFR-2+cells) was calculated by flow cytometer. Mononuclear cells were cultured in endothelial growth medium-2 (EGM-2), cells with following characteristic were identified as EPCs: cells with "slabstone"-like appearance, expression of von Willebrand factor(vWF) and endothelial nitric oxide synthase (eNOS), taking up DiI-acLDL and combining with FITC-UEA-I. The adherent activity was assessed by the number of EPCs adhering to the culture bottle, the proliferative activity was detected by MTT method, the concentration of NO in EPCs culture solution was determined indirectly by measuring the concentration of total nitrite and nitrate to reflect EPCs'secretory activity, protein expression of eNOS and phosphorated eNOS (P-eNOS) were evaluated by western blotting.
     Results:[1]. There were few EPCs in circulation. Circulating EPCs in COPD groop was lower than the control with the percentage of (0.54±0.16)% versus (1.15±0.57)% (P<0.05). [2]. EPCs from COPD patients'peripheral blood were increased after induction and culture.The percentage of EPCs was (3.18±0.80)% after 7 days'culture, and (9.41±2.25%) after 10 days'culture. [3]. The number of adhering EPCs in COPD groop was lower than the control[(18.7±4.8)/field vs (45.0±5.9)/field, P<0.05]. EPCs'proliferative activity in COPD groop was poorer than the control, A490nm in COPD groop was lower than the control[(0.135±0.038) vs (0.224±0.042), P<0.05]. The concentration of NO in the EPCs culture solution in COPD groop was lower than the control[(25.11±5.27)μmol/L vs (37.72±7.10)μmol/L, P<0.05]. [4]. ENOS and P-eNOS protein expression in EPCs in COPD groop were lower than the control[(112.06±10.00) vs (135.41±5.38), (88.89±4.98) vs (117.98±16.49), all P<0.05].
     Conclusion:[1]. Human peripheral blood-derived EPCs can increase successfully in vitro. [2]. The number and adherent, proliferative, secretory activity of circulating EPCs in COPD patients are decreased when compared with the control. [3]. ENOS protein expression is decreased in COPD patients.
     Objective:To observe the EPCs'location, the change of lung function, pulmonary alveoli and pulmonary blood vessels, airway inflammation, eNOS and P-eNOS protein expression in lung tissue in COPD model mice after EPCs'transplantation.
     Methods:Bone marrow-derived mononuclear cells (BMMNCs) were gained by density gradient centrifugation from male C57BL/6J mice cavitas medullaris washing solution, and then cultured in EGM-2. Cells with following characteristic were identified as EPCs:cells with "slabstone"-like appearance, expression of von Willebrand factor(vWF) and endothelial nitric oxide synthase (eNOS), taking up DiI-acLDL and combining with FITC-UEA-I. The COPD mice model was established by exposure the mice to the tobacco smoke (6 cigarettes for 15 minutes,4 times a day, for 90 days). There were six groups in this study:the control group:mice exposed to air, COPD group:mice exposed to smoke for 90 days, early-intervention group and late-intervention group:mice were transplanted with CM-DiI labeled EPCs through trachea after 1 month's and 3 months'smoke exposure respectively, early-pseudo-intervention group and late-pseudo-intervention group:in which mice were transplanted with PBS after 1 month's and 3 months'smoke exposure respectively. One month after the last smoke exposure, mice were anesthetized to measure lung function, the right lung were washed with PBS and BALF was collected, total cell number was countered and the differential cell number were calculated after hematoxylin and eosin(HE) staining. The concentration of NO in BALF was determined indirectly by measuring total nitrite and nitrate. After fixed with 4% paraformaldehyde through the tracheal cannula, the left lower lung was removed and stained with HE. The degree of emphysema was evaluated by mean alveolar septal thickness (MAST), mean linear intercept (MLI) and destructive index (DI). The pulmonary vascular characteristic was evaluated by external diameter of pulmonary arteries, thickness of vascular wall, lumen area and vessel area, the ratio of thickness of vascular wall to external diameter of vascular(WT%) and the ratio of lumen area to vessel area(VA%) by LOGENE-Ⅰimage analysis software.The protein expression of endothelial NOS (eNOS) and phosphorated eNOS (P-eNOS) in left upper lungs were evaluated by western blotting.
     Results:[1]. Mice BMMNCs could differentiate to endothelial cells and increased in the specific endothelial culture medium. [2]. EPCs could immigrate to the airway and pulmonary blood vessels after being transplanted to trachea. [3]. The COPD mice model could be established after 3 months'smoke exposure and it was confirmed by lung function and pathological change. [4]. Mean alveolar septal thickness(MAST) in the control、COPD group、early-intervention group、late-intervention group、early-pseudo-intervention group and late-pseudo-intervention group were (8.09±1.02)μm、(4.32±0.62)μm、(6.29±1.01)μm、(5.48±0.65)μm、(4.51±0.61)μm、(4.44±0.63)μm, respectively. Mean linear intercept (MLI) in the control、COPD group、early-intervention group、late-intervention group、early-pseudo-intervention group and late-pseudo-intervention group were (33.26±3.22)μm、(51.79±7.25)μm、(40.25±2.65)μm、(45.21±2.25)μm、(50.98±7.68)μm、(51.05±7.43)μm, respectively. Destructive index(DI) in the control、COPD group、early-intervention group、late-intervention group、early-pseudo-intervention group and late-pseudo-intervention group were (12.85±3.22)%、(38.86±4.32)%、(20.37±3.43)%、(28.17±3.56)%、(37.47±4.76)%、(38.46±4.50)%, respectively.MAST in COPD group was thinner than the control(P<0.05), There were no statistical difference in MAST among COPD group、early-pseudo-intervention group and late-pseudo-intervention group(all P>0.05). MAST in early-intervention group was thinner than the control, but thicker than COPD group and early-pseudo-intervention group (all P<0.05). MAST in late-intervention group was thinner than the control, but thicker than COPD group and late-pseudo-intervention group (all P<0.05). There was no statistical difference in MAST between early-intervention group and late-intervention group (P>0.05). MLI and DI in COPD group were higher than the control(all P<0.05). There were no statistical difference in MLI and DI among COPD group. early-pseudo-intervention group and late-pseudo-intervention group(all P>0.05).MLI and DI in early-intervention group were higher than the control, but lower than COPD group and early-pseudo-intervention group (all P<0.05). MLI and DI in late-intervention group were higher than the control, also higher than early-intervention group, but lower than COPD group and late-pseudo-intervention group(all P<0.05). [5]. WT% in the control. COPD group. early-intervention group、late-intervention group、early-pseudo-intervention group and late-pseudo-intervention group were (7.96±2.66)%、(26.66±2.57)%、(13.10±2.07)%、(17.67±1.44)%、(26.45±2.14)%、(26.33±2.26)%, respectively. VA% in the control. COPD group、early-intervention group、late-intervention group. early-pseudo-intervention group and late-pseudo-intervention group were (78.44±9.77)%、(54.88±4.80)%、(67.88±4.91)%、(63.66±7.89)%、(52.34±5.98)、(53.46±5.04)%, respectively. WT% in COPD group was higher than the control(P<0.05). There were no statistical difference in WT% among COPD group. early-pseudo-intervention group and late-pseudo-intervention group(all P>0.05).WT% in early-intervention group was higher than the control, but lower than the COPD group and early-pseudo-intervention group(all P<0.05).WT% in late-intervention group was higher than the control, and also higher than early-intervention group, but lower than the COPD group and late-pseudo-intervention group(all P<0.05).VA% in COPD group was lower than the control(P<0.05). There were no statistical difference in VA% among COPD group. early-pseudo-intervention group and late-pseudo-intervention group(all P>0.05).VA% in early-intervention group was lower than the control, but higher than COPD group and early-pseudo- intervention group (all P<0.05). VA% in late-intervention group was lower than the control(P<0.05), there were no statistical difference in VA% among late-intervention group、COPD group and late-pseudo-intervention group(all P>0.05). [6]. Airway resistance(Raw) in the control、COPD group、early-intervention group、late-intervention group、early-pseudo-intervention group and late-pseudo-intervention group were (0.0365±0.0196)Kpa/L/s、(0.3179±0.0969) Kpa/L/s、(0.1029±0.0460) Kpa/L/s、(0.1999±0.0113) Kpa/L/s、(0.2893±0.0624) Kpa/L/s、(0.3188±0.0889)Kpa/L/s, respectively. Lung compliance(CL) in the control、COPD group、early-intervention group、late-intervention group、early-pseudo-intervention group and late-pseudo-intervention group were (0.3100±0.1067)L/Kpa、(0.1019±0.0004) L/Kpa、(0.2942±0.0228) L/Kpa、(0.2078±0.0823) L/Kpa、(0.1208±0.0186) L/Kpa, (0.1213±0.0216) L/Kpa,respectively.Peak expiratory flow(PEF) in the control、COPD group、early-intervention group、late-intervention group、early-pseudo-intervention group and late-pseudo-intervention group were (8.38±1.08)L/S、(7.20±0.97) L/S、(7.95±0.95) L/S、(8.10±0.96) L/S、(7.45±1.05) L/S、(7.75±0.83) L/S,respectively. Raw in COPD group was higher than the control. There were no statistical difference in Raw among COPD group、early-pseudo-intervention group and late-pseudo-intervention group (all P>0.05).Raw in early-intervention group was lower than COPD group and early-pseudo-intervention group(all P<0.05), there was no statistical difference in Raw between early-intervention group and the control(P>0.05). Raw in late-intervention group was higher than the control,and also higher than early-intervention group, but lower than COPD group and late-pseudo-intervention group (all P<0.05). CL in COPD group was lower than the control(P<0.05). There were no statistical difference in CL among COPD group、early-pseudo-intervention group and late-pseudo-intervention group(all P>0.05).CL in early-intervention group was higher than COPD group and early-pseudo-intervention group (all P<0.05), there was no statistical difference in CL between early-intervention group and the control(P>0.05). CL in late-intervention group was lower than the control,and also lower than early-intervention group,but higher than COPD group and late-pseudo-intervention group (all P<0.05). There were no statistical difference in PEF among the groups(P>0.05). [7]. The concentration of NO in BALF in the control、COPD group、early-intervention group、late-intervention group、early-pseudo-intervention group and late-pseudo-intervention group were (15.55±8.74)μmol/L、(52.65±12.16)μmol/L、(36.10±10.95)μmol/L、(43.76±13.19)μmol/L、(50.56±10.64)μmol/L、(53.37±12.83)μmol/L, respectively. The concentration of NO in BALF in COPD group was higher than the control(P<0.05). There were no statistical difference in the concentration of NO in BALF among COPD group、early-pseudo-intervention group and late-pseudo-intervention group(all P>0.05).The concentration of NO in BALF in early-intervention group was higher than the control, but lower than COPD group and early-pseudo-intervention group (all P<0.05). The concentration of NO in BALF in late-intervention group was higher than the control(P<0.05), there were no significant difference in the concentration of NO in BALF among late-intervention group、late-pseudo-intervention group and COPD group(P>0.05). [8]. The number of totel cells in BALF in the control、COPD group、early-intervention group、late-intervention group、early-pseudo-intervention group and late-pseudo-intervention group were (1.47±0.24) ×108/L、(5.85±0.67)×108/L、(3.61±0.38)×108/L、(5.47±0.71)×108/L、(5.67±0.75)×108/L、(5.87±0.72)×108/L,respectively.The number of macrophage in BALF in the control.COPD group、early-intervention group、late-intervention group、early-pseudo-intervention group and late-pseudo-intervention group were(1.34±0.14)×108/L、(4.45±0.63)×108/L、(2.86±0.34)×108/L、(4.11±0.69)×108/L、(4.32±0.73)×108/L、(4.54±0.65)×108/L,respectively.The number of neutrophil in BALF in the control.COPD group.early-intervention group、late-intervention group、early-pseudo-intervention group and late-pseudo-intervention group were(0.77±0.09)×107/L、(7.76±0.92)×107/L、(5.01±0.78)×107/L、(7.58±0.96)×107/L、(7.62±0.89)×107/L、(7.87±0.81)×107/L, respectively.The percentage of macrophage in the control. COPD group.early-intervention group.late-intervention group.early-pseudo-intervention group and late-pseudo-intervention group were(86.55±8.90)%.(76.28±8.25)%.(78.81±7.96)%.(75.42±7.68)%.(76.36±8.03)%.(76.11±8.42)%,respectively.The percentage of neutrophil in the control.COPD group.early-intervention group、late-intervention group、early-pseudo-intervention group and late-pseudo-intervention group were(8.68±0.97)%、(13.71±2.42)%、(12.31±1.98)%、(13.51±2.09)%、(13.01±2.13)%、(13.81±2.39)%,respectively.The number of totel cells and macrophage(M)、neutrophil(N)、the percentage of neutrophil(N%)in BALF in COPD group were all larger than those in the control(all P<0.05).There were no statistical difference in the number of totel cells and M、N、N% in BALF among COPD group、early-pseudo-intervention group and late-pseudo-intervention group(all P>0.05).The number of totel cells and M.N in BALF in early-intervention group were highr than those in the control, but lower than those in COPD group and early-pseudo-intervention group (all P<0.05), N% in early-intervention group was higher than the control(P<0.05), there were not statistical difference in N% among early-intervention group、early-pseudo-intervention group and COPD group(P>0.05). The number of totel cells and M、N in BALF in late-intervention group were highr than those in the control, also highr than those in early-intervention group(all P<0.05), there were no statistical difference in the number of totel cells、M、N in BALF among late-intervention group、late-pseudo-intervention group and COPD group(all P>0.05). [9]. OD value of eNOS and P-eNOS protein expression in lung tissue in the control、COPD group、early-intervention group、late-intervention group、early-pseudo-intervention group and late-pseudo-intervention group were [(253.89±18.69), (193.98±17.56)]、[(142.53±10.27), (140.08±8.43)]、[(162.66±13.61), (156.20±10.09)]、[(168.28±13.65), (152.81±10.43)]、[(150.43±10.71), (141.88±10.54)]、[(148.57±11.16), (140.12±8.92)],respectively. ENOS and P-eNOS protein expression in lung tissue in COPD group were lower than those in the control(all P<0.05). There were no statistical difference in eNOS and P-eNOS protein expression in lung tissue among COPD group、early-pseudo-intervention group and late-pseudo-intervention group(all P>0.05).ENOS and P-eNOS protein expression in lung tissue in early-intervention group were lower than the control, but higher than COPD group and early-pseudo-intervention group(all P<0.05).ENOS and P-eNOS protein expression in lung tissue in late-intervention group were lower than the control, but higher than COPD group and late-pseudo-intervention group(all P<0.05).There were no significant difference in eNOS and P-eNOS protein expression in lung tissue between early-intervention group and late-intervention group(all P>0.05).
     Conclusion:[1]. Mice bone marrow-derived mononuclear cells (BMMNCs) can differentiate to endothelial cells and increase successfully in vitro. [2]. EPCs transplantation can alleviate lung impairment and pulmonary blood vessel hyperplasia in COPD model mice,early-transplantation is better than late-transplantation. [3]. EPCs transplantation can alleviate airway resistance and increase lung compliance in COPD model mice, early-transplantation is better than late-transplantation. [4]. Early-transplantation with EPCs can alleviate airway inflammation in COPD model mice.
引文
[1]Segura-Valdez L, Pardo A, Gaxiola M, et al. Upregulation of gelatinases A and B, collagenases 1, and 2, and increased parenchymal cell death in COPD. Chest, 2000,117(3):684-94.
    [2]Kasahara Y, Tuder RM, Cool CD, et al. Endothlial cell death and decreased expression of vasclular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med,2001,163(3):737.
    [3]Kasahara Y, Tuder RM, Taraseviciene-Stewart L, et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest,2000,106 (11):1311-9.
    [4]Murohara T. Therapeutic vasculogenesis using human cord blood-derived endothelial progenitors. Trends Cardiovasc Med,2001,11(8):303-7.
    [5]Kawamoto A, Losordo DW. Endothelial progenitor cells for cardiovascular regeneration. Trends Cardiovasc Med,2008,18(1):33-7.
    [6]Tateishi-Yuyama E, MatsubaraH, Murohara T, et al. Therapeutic angiogenesis for patientswith limb ischaemia by autologous transplantation of bone-marrow cells:A pilot study and a randomised controlled trial. Lancet,2002,360 (9331): 427-35.
    [7]Assmus B, SchachingerV, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation,2002,106(24):3009-17.
    [8]Palange P, Testa U, Huertas A, et al. Circulating haemopoietic and endothelial progenitor cells are decreased in COPD. Eur Respir J,2006,27(3):529-41.
    [9]Fadini GP, Schiavon M, Cantini M, et al. Circulating progenitor cells are reduced in patients with severe lung disease. Stem Cells,2006,24(7):1806-13.
    [10]中华医学会呼吸病学分会慢性阻塞性肺疾病学组.慢性阻塞性肺疾病诊治指南(2007年修订版).中华结核和呼吸杂志,2007,1(30):8-17.
    [11]Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res,2001,89(1):E1-7.
    [12]Yang Q, Underwood MJ, Hsin MK, et al. Dysfunction of pulmonary vascular endothelium in chronic obstructive pulmonary disease:basic considerations for future drug development. Curr Drug Metab,2008,9(7):661-7.
    [13]Humbert M, Montani D, Perros F,et al. Endothelial cell dysfunction and cross talk between endothelium and smooth muscle cells in pulmonary arterial hypertension.Vascul Pharmacol,2008,49(4-6):113-8.
    [14]Zhang Chen, Cai Shan, Chen Ping, et al. Inhibition of TNF-α reduces alveolar septal cell apoptosis in passive smoking rats. Chinese Medical Journal,2008, 121(7):597-601.
    [15]Cai Shan, Chen Ping, Zhang Chen, et al. Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats. Respirology,2009,14(3):354-9.
    [16]刘绍坤,陈平,陈剑波,等.慢性阻塞性肺疾病肺血管内皮细胞和肺泡上皮细胞凋亡的实验研究.中华结核和呼吸杂志,2008,31(8):581-5.
    [17]裴艳芳,陈平,李军利,等.环氧合酶2在香烟提取物诱导内皮细胞凋亡中的作用.中华结核和呼吸杂志,2009,32(2):128-32.
    [18]曹蔚,陈平,蔡珊,等.腺病毒介导MnSOD基因转染对香烟烟雾提取物致内皮细胞氧化损伤及凋亡的影响.中国呼吸与危重监护杂志,2007,11(6):436-9.
    [19]谢丽华,陈平,陈芳,等.香烟提取物对人内皮细胞基质金属蛋白酶和组织金属蛋白酶抑制剂分泌的影响.中华结核和呼吸杂志,2006,29(10):715-6.
    [20]Asahara T, Marohara T, Sullivan A, et al. Isolation of putative progenitor endo-thelial cells for angiogenesis. Science,1977,275 (5302):964-7.
    [21]Murohara T, Ikeda H, Duan J. Transplanted cord blood-derived endothelial progenitor cells augment postnatal neovascularization. J Clin Invest,2000, 105(11):1527-36.
    [22]Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res,1999,85(3):221-8.
    [23]Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC 133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood,2000,95(3):952-8.
    [24]Shmelkov SV, St Clair R, Lyden D,et al. AC133/CD133/Prominin-1.Int J Biochem Cell Biol,2005,37(4):715-9.
    [25]Hristov M, Erl W, Weber PC. Endothelial progenitor cells:isolation and characterization. Trend Cardiovasc Med,2003,13(5):201-6.
    [26]Kalka C, Masuda H, Takahashi T, et al.Vascular endothelial growth factor(165) gene transfer augment circulating endothelial progenitor cells in human subjects. Circ Res,2000,86(12):1198-202.
    [27]Murohara T, Ikeda H, Duan J, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest,2000,105 (11):1527-36.
    [28]Shimpo M, Ik eda U, Maeda Y, et al. AAV-mediumted VEGF gene transfer in to skeletal muscle stimulates angiogenesisand improves blood flow in a rat hindlimb ischemia model. Cardiovasc Res,2002,53(4):993-1001.
    [29]Romano Di, Peppe S, Mangoni A, et al. Adenovirus-mediated VEGF (165) gene transfer enhances wound healing by promoting angiogenesis In CD1 diabetic mice. Gene Ther,2002,9(19):1271-7.
    [30]Yamada M, kubo M, kobayashi S, et al. Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. J Immunol, 2004,172(2):1266-72.
    [31]Burnham E, Moss M. Progenitor cells in acute lung injury. Minerva Anestesiol, 2006,72(6):369-74.
    [32]Yamada M, Kubo H, Ishizawa K, et al. Increased circulating endothelial progenitor cells in patients with bacterial pneumonia:evidence that bone marrow derived cells contribute to lung repair. Thorax,2005,60(5):410-3.
    [33]Heiss C, Amabile N, Lee AC, et al. Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function:sustained vascular injury and blunted nitric oxide production. J Am Coll Cardiol,2008,51(18): 1760-71.
    [34]Kondo T, Hayashi M, Takeshida K, et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol,2004,24(8):1-6.
    [35]HristowM, Erl W &Weber PC. Endothelial progenitor cells:Mobilization, Differentiation, and Homing. Arterioscler Thromb Vasc Biol,2003,23(7):1185.
    [36]Aicher A, Heeschen C, Mildner-Rihm C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med,2003, 9(11):1370-6.
    [37]Guthrie SM, Curtis LM, Mames RN, et al. The nitric oxide pathway modulates hemangioblast activity of adult hematopoietic stem cells. Blood,2005,105(5): 1916-22.
    [38]Hoetzer GL, Irmiger HM, Keit h RS, et al. Endothelial nitric oxide synthase inhibition does not alter endothelial progenitor cell colony forming capacity or migratory activity. J Cardiovasc Pharmacol,2005,46(3):387-9.
    [39]Lamping K. Endothelial progenitor cells:sowing t he seeds for vascular repair. Circ Res,2007,100 (9):1243-5.
    [40]Young PP, Vaughan DE, Hatzopoulos A K. Biologic properties of endot helial progenitor cells and their potential for cell therapy. Prog Cardiovasc Dis,2007, 49(6):421-9.
    [41]Smart EJ, Robinson LJ, German Z, et al. Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem,1996,271(11): 6518-22.
    [42]Lane P, Gross SS. Autoinhibitory Control Element in Endothelial nitric-oxide Synthase by Phosphorylation Provides a Molecular Explanation of Activation of Vascular NO Synthesis by Diverse Physiological stimuli. J Biol Chem,2002, 277(21):19087-94.
    [43]McCabe TJ, Fulton D, Roman LJ, et al. Enhanced electron flux and reduced calmodulin dissociation may explain "calcium-independent" eNOS activation by phosphorylation. J Biol Chem,2000,275(9):6123-8.
    [44]Haynes MP, Sinha D, Russell KS, et al. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res,2000,87(8):677-82.
    [45]Wu KK. Regulation of endothelial nitric oxide synthase activity and gene expression. Ann N Y Acad Sci,2002,962:122-30.
    [46]Michaud SE, Dussault S, Groleau J, et al. Cigarette smoke exposure impairs VEGF-induced endothelial cell migration:role of NO and reactive oxygen species. J Mol Cell Cardiol,2006,41(2):275-84.
    [47]Priscilla C, Jmanfillo M, Cecilia M, et al. Endothelial nitric oxide synthase G894T gene polymor phism in Chilean subjects with coronary artery disease and controls. Clin Chim Acta,2006,371(21):102-6.
    [48]Berdeli A, Sekuri C, Cam S, et al. Association between the Enos (GIu298Asp) and the RAS genes polymorphisms and premature coronary artery disease in a
    Turkish population. Clin Chim Acta,2005,351(1-2):87-94.
    [49]黄旭梅,徐耕,全国栋,等.吸烟者内皮型一氧化氮合酶基因G894T多态性与冠心病的相关性研究.全科医学临床与教育,2008,6(3):207-10.
    [50]Kanazawa H. Role of vascular endothelial growth factor in the pathogenesis of chronic obstructive pulmonary disease. Med Sci Monit,2007,13(11):RA189-95.
    [1]Murohara T. Therapeutic vasculogenesis using human cord blood-derived endothelial progenitors.Trends Cardiovasc Med,2001,11(8):303-7.
    [2]Kawamoto A, Losordo DW. Endothelial progenitor cells for cardiovascular regeneration. Trends Cardiovasc Med,2008,18(1):33-7.
    [3]Tateishi-Yuyama E, MatsubaraH, Murohara T, et al. Therapeutic angiogenesis for patientswith limb ischaemia by autologous transplantation of bone-marrow cells:A pilot study and a randomised controlled trial. Lancet,2002,360(9331): 427-35.
    [4]Assmus B, SchachingerV, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation,2002,106(24):3009-17.
    [5]Zhao YD, Courtman DW, Deng Y, et al. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells:efficacy of combined cell and eNOS gene therapy in established disease. Circ Res,2005,96(4):442-50.
    [6]Yip HK, Chang LT, Sun CK, et al. Autologous transplantation of bone marrow-derived endothelial progenitor cells attenuates monocrotaline-induced pulmonary arterial hypertension in rats. Crit Care Med,2008,36(3):873-80.
    [7]Balasubramaniam V, Le Cras TD, Ivy DD, et al. Role of platelet-derived growth factor in vascular remodeling during pulmonary hypertension in the ovine fetus. Am J Physiol Lung Cell Mol Physiol,2003,284(5):826-33.
    [8]庞宝森,李远红,张洪玉.慢性阻塞性肺疾病动物模型的研究进展.心肺血管病杂志,2005,24(1):45.
    [9]Castro P, Legora-Machado A, CarDiIo-Reis L, et al. Inhibition of interleukin-1 beta reduces mouse lung inflammation induced by exposure to cigarette smoke. Eur J Pharmacol,2004,498(1-3):279-86.
    [10]Smits PA, Kleppe LS, Witt TA, et al. Distribution of circulation-derived endothelial progenitors following systemic delivery. Endothelium,2007,14(1): 1-5.
    [11]Yamada M, Kubo H, Kobayashi S, et al. Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide induced lung injury. J Imunol,2004,172(2):1266-72.
    [12]Kanki-Horimoto S, Horimoto H, Mieno S, et al. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation,2006, 114(1 Suppl):1181-5.
    [13]Nagaya N, Kangawa K, Kanda M, et al. Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation,2003,108(7):889-95.
    [14]Baber SR, Deng W, Master RG, et al. Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction.Am J Physiol Heart Circ Physiol,2007,292(2): H1120-8.
    [15]Takahashi M, Nakamura T, Toba T, et al. Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Engineering,2004,10(56):771-9.
    [16]倪玉霞,刘小青,李连达.CM-Dil标记大鼠骨髓间充质干细胞的体外体内的示踪观察.临床和实验医学杂志,2008,7(12):1-2.
    [17]Rehman J, Li J, Orschell CM, et al. Peripheral blood "Endothelial Progenitor Cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation,2003,107(8):1164-9.
    [18]Agusti AG. Systemic effects of chronic obstructive pulmonary disease. Proc Am Thorac Soc,2005,2(4):367-70.
    [19]Thebaud B, Ladha F, Michelakis ED, et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury:evidence that angiogenesis participates in alveolarization. Circulation,2005,112(16):2477-86.
    [20]Wright JL, Churg A. Short-term exposure to cigarette smoke induces endothelial dysfunction in small intrapulmonary arteries:analysis using guinea pig precision cut lung slices. J Appl Physiol,2008,104(5):1462-9.
    [21]Moncada S, Higgs EA. Nitric oxide and the vascular endothelium. Handb Exp Pharmacol,2006, (176 Pt 1):213-54.
    [22]杨丹蕾,徐永健,张珍祥,等.吸烟大鼠一氧化氮合酶和一氧化氮的变化.中国病理生理杂志,2003,19(9):1185-8.
    [23]MacNee W. Pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc,2005,2(4):258-66.
    [1]Liebow AA. Pulmonary emphysema with special reference to vasular changes. Am Rev Respir Dis,1959,80(1,Part 2):67-93.
    [2]Thebaud B, Abman SH. Bronchopulmonary dysplasia:where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med,2007,175 (10):978-85.
    [3]Abman SH. Bronchopulmonary dysplasia:"a vascular hypothesis". Am J Respir Crit Care Med,2001,164(10 Ptl):1755-6.
    [4]Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature,1996,380 (6573): 439-42.
    [5]Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature,1996,380 (6573): 435-9.
    [6]Fong GH, Rossant J, Gertsenstein M, et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature,1995,376 (6535):66-70.
    [7]Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature,1995,376(6535):62-6.
    [8]Jakkula M, Le Cras TD, Gebb S, et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol, 2000,279(3):L600-7.
    [9]Asikainen TM, Waleh NS, Schneider BK, et al. Enhancement of angiogenic effectors through hypoxia-inducible factor in preterm primate lung in vivo. Am J Physiol Lung Cell Mol Physiol,2006,291(4):L588-95.
    [10]Thebaud B, Ladha F, Michelakis ED, et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury:evidence that angiogenesis participates in alveolarization. Circulation,2005,112(16):2477-86.
    [11]Kasahara Y, Tuder RM, Taraseviciene-Stewart L, et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest,2000,106 (11):1311-9.
    [12]Kasahara Y, Tuder RM, Cool CD, et al. Endothlial cell death and decreased expression of vasclular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med,2001,163(3):737.
    [13]Kanazawa H, Asai K, Hirata K, et al. Possible effects of vascular endothelial growth factor in the pathogenesis of chronic obstructive pulmonary disease. Am J Med,2003,114(5):354.
    [14]Yang Q, Underwood MJ, Hsin MK, et al. Dysfunction of pulmonary vascular endothelium in chronic obstructive pulmonary disease:basic considerations for future drug development. Curr Drug Metab,2008,9(7):661-7.
    [15]Humbert M, Montani D, Perros F, et al. Endothelial cell dysfunction and cross talk between endothelium and smooth muscle cells in pulmonary arterial hypertension. Vascul Pharmacol,2008,49(4-6):113-8.
    [16]Asahara T, Murohara T, Sullivan A, et al. Isolation of putatitve progenitor endo-thelial cells for angiogenesis. Science,1997,275(5302):964-7.
    [17]Verghese GM, McCormick-Shannon K, Mason RJ, et al. Hepatocyte growth factor and keratinocyte growth factor in the pulmonary edema fluid of patients with acute lung injury:biologic and clinical significance. Am J Respir Crit Care Med,1998,158(2):386-94.
    [18]Thickett DR, Armstrong L, Christie SJ, et al. Vascular endothelial growth factor may contribute to increased vascular permeability in acute respiratory distress syndrome. Am J Respir Crit Care Med,2001,164(9):1601-5.
    [19]Rojas M, Woods CR, Mora AL, et al. Endotoxin-induced lung injury in mice: structural, functional, and biochemical responses. Am J Physiol Lung Cell Mol Physiol,2005,288(2):L333-41.
    [20]Laufs U, Werner N, Link A, et al. physical training increases endothelial progenitor cells, inhibits formation and enhances angiogenesis. Circulation,2004, 109(2):220-6.
    [21]Murohara T. Therapeutic vasculogenesis using human cord blood-derived endothelial progenitors. Trends Cardiovasc Med,2001,11(8):303-7.
    [22]Kawamoto A, Losordo DW. Endothelial progenitor cells for cardiovascular regeneration. Trends Cardiovasc Med,2008,18(1):33-7.
    [23]Tateishi-Yuyama E, MatsubaraH, Murohara T, et al. Therapeutic angiogenesis for patientswith limb ischaemia by autologous transplantation of bone-marrow cells:A pilot study and a randomised controlled trial. Lancet,2002,360 (9331): 427-35.
    [24]Assmus B, SchachingerV, Teupe C, et al. Transplantation of progenitor cells and
    regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation,2002,106(24):3009-17.
    [25]Jackson KA, Majka SM, Wang H,et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest,2001,107(11):1395-402.
    [26]Crosby JR, Kaminski WE, Schatteman G, et al. Endothelial cells of hematopo-ietic origin make a significant contribution to adult blood vessel formation. Circ Res,2000,87(9):728-30.
    [27]Llevadot J, Murasawa S, Kureishi Y, et al. HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest,2001, 108(3):399-405.
    [28]Rehman J, Li J, Orschell CM, et al. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation,2003,107(8):1164-9.
    [29]Burnham EL, Taylor WR, Quyyumi AA, et al. Increased circulating endothelial progenitor cells are associated with survival in acute lung injury.Am J Respir Crit Care Med,2005,172(7):854-60.
    [30]Yamada M, Kubo H, Ishizawa K, et al. Increased circulating endothelial progenitor cells in patients with bacterial pneumonia:evidence that bone marrow derived cells contribute to lung repair. Thorax,2005,60(5):410-3.
    [31]Kondo T, Hayashi M, Takeshida K, et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol,2004,24(8):1-6.
    [32]Palange P, Testa U, Huertas A, et al. Circulating haemopoietic and endothelial progenitor cells are decreased in COPD. Eur Respir J,2006,27(3):529-41.
    [33]Fadini GP, Schiavon M, Cantini M, et al.Circulating progenitor cells are reduced in patients with severe lung disease. Stem Cells,2006,24(7):1806-13.
    [34]Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med,2005,353(10):999-1007.
    [35]张新红,王海龙.血管内皮生长因子及其受体在肺损伤中作用的研究进展.中国急救医学,2008,28(12):1135-8.
    [36]Banai S, Jaklitsch MT, Shou M, et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation,1994,89(5):2183-9.
    [37]Gille H, Kowalski J, L i B, et al. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J Biol Chem,2001, 276(5):3222-30.
    [38]Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol,2001,280 (6):C1358-66.
    [39]Santos S, Peinado VI, Ramirez J, et al. Enhanced expression of vascular endothelial growth factor in pulmonary arteries of smokers and patientswith moderate chronic obstructive pulmonary disease. Am J Respir CritCare Med, 2003,167(9):1250-6.
    [40]Peinado VI, Ramirez J, Roca J, et al. Identification of vascular progenitor cells in pulmonary arteries of patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol,2006,34(3):257-63.
    [41]Clarkson AN, L iu H, Schiborra F, et al. Angiogenesis as a predictive marker of neurological outcome following hypoxia-ischemia. Brain Res,2007,26(1171): 111-21.
    [42]Qiu MH, Zhang R, Sun FY. Enhancement of ischemia-induced tyrosine phosphorylation of Kvl.2 by vascular endothelial growth factor via activation of phosphatidylinositol 3-kinase. J Neurochem,2003,87(6):1509-17.
    [43]Chen C, Hu Q, Yan J, et al. Multiple effects of 2ME2 and D609 on the cortical expression of HIF-1 alpha and apoptotic genes in a middle cerebral artery occlusion-induced focal ischemia rat model. J Neurochem,2007,102(6): 1831-41.
    [44]Zhang R, Wang L, Zhang L, et al. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ Res,2003,92(3):308-13.
    [45]Kilic E, Kilic U, Wang Y, et al. The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF's neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. FASEB J,2006,20(8):1185-7.
    [46]Edirisinghe I, Yang SR, Yao H, et al. VEGFR-2 inhibition augments cigarette smoke-induced oxidative stress and inflammatory responses leading to endothelial dysfunction. FASEB J,2008,22(7):2297-310.
    [47]Aicher A, Heeschen C, Mildner-Rihm C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med,2003,9 (11):1370-6.
    [48]Michaud SE, Dussault S, Groleau J, et al. Cigarette smoke exposure impairs VEGF-induced endothelial cell migration:role of NO and reactive oxygen species. J Mol Cell Cardiol,2006,41(2):275-84.
    [49]黄旭梅,徐耕,全国栋,等.吸烟者内皮型一氧化氮合酶基因G894T多态性与冠心病的相关性研究.全科医学临床与教育,2008,(3):207-10.
    [50]Ishizawa K, Kubo H, Yamada M, et al. Hepatocyte growth factor induces angiogenesis in injured lungs through mobilizing endothelial progenitor cells. Biochem Biophys Res Commun,2004b,324(1):276-80.
    [51]Shigemura N, Sawa Y, Mizuno S, et al. Amelioration of pulmonary emphysema by in vivo gene transfection with hepatocyte growth factor in rats. Circulation, 2005,111(11):1407-14.
    [52]Morino S, Nakamura T, Toba T, et al. Fibroblast growth factor-2 induces recovery of pulmonary blood flow in canine emphysema models. Chest,2005,128(2): 920-6.
    [53]Yamada M, kubo M, kobayashi S, et al. Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. J Immunol,2004,172(2):1266-72.
    [54]Hashimoto N, Jin H, Liu T, et al. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest,2004,113(2):243-52.
    [55]Kahler CM, Wechselberger J, Hilbe W, et al. Peripheral infusion of rat bone marrow derived endothelial progenitor cells leads to homing in acute lung injury.Respir Res,2007,8(1):50.
    [56]Lam CF, Liu YC, Hsu JK, et al. Autologous transplantation of endothelial progenitor cells attenuates acute lung injury in rabbits. Anesthesiology,2008, 108(3):392-401.
    [57]Nagaya N, Kangawa K, Kanda M, et al. Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation,2003,108(7):889-95.
    [58]Takahashi M, Nakamura T, Toba T, et al. Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Eng,2004,10(5-6):771-9.
    (59] Zhao YD, Courtman DW, Deng Y, et al. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells:efficacy of combined cell and eNOS gene therapy in established disease. Circ Res,2005,96(4):442-50.
    [60]Xia L, Fu GS, Yang JX, et al. Endothelial progenitor cells may inhibit apoptosis of pulmonary microvascular endothelial cells:new insights into cell therapy for pulmonary arterial hypertension. Cytotherapy,2009,11(4):492-502.