内皮祖细胞和大鼠脑创伤后损伤组织再生修复关系的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:早在1997年,Asahara等第一次报道了内皮祖细胞(EPCs)参与动物缺血组织中的血管新生;EPCs属于造血干细胞的一个亚群,可以在体内外分化为成熟的内皮细胞,并参与血管的新生,EPCs在血管新生、伤口愈合、缺血损伤、肿瘤生长等生理和病理过程中发挥关键作用。循环血EPCs归巢到血管新生部位并在原位分化为内皮细胞,这个过程称之为出生后的血管发生。骨髓起源的CD34+细胞包含内皮祖细胞(EPCs)、内皮细胞(EC)以及造血干细胞,CD34+细胞作为内皮祖细胞和内皮细胞的来源参与组织损伤的血管新生,实验证实移植CD34+细胞改善缺血性心脏病心肌功能并增加心肌血管新生,同时CD34+细胞可以归巢到卒中脑组织区域,可是关于脑创伤后CD34+细胞的变化及与创伤脑组织修复的关系却暂无报道。最近的报道提示:EPCs被移植到实验动物的下肢和心脏缺血模型后具有相应的治疗效果,这为EPCs的临床应用奠定了基础。
     目的
     1.大鼠外周血中内皮祖细胞的分离、培养、扩增和鉴定;2.观察脑创伤后大鼠外周血CD34+细胞动员与创伤区脑组织血管新生和修复的关系。3.探讨大鼠脑创伤后损伤组织中血管新生与神经新生的相关性。
     方法
     1.采集大鼠外周静脉血,采用密度梯度离心法分离外周血中的单个核细胞(MNCs),在包被人纤维连接蛋白(hFN)的培养皿内接种至EGM-2培养基,于37℃、5%CO2培养箱中进行培养;培养2天后经换液去除未贴壁细胞,以后每3天换液1次,倒置相差荧光显微镜下动态观察培养细胞的形态变化特征。借助免疫荧光技术检测培养细胞CD34、CD133、Ⅷ因子(vWF)等内皮祖细胞系列标志的表达;并通过硫氰酸荧光素标记的乙酰化低密度脂蛋白(DiI-ac-LDL)摄取试验和荆豆凝集素(FITC-UEA-1)结合实验,进行内皮祖细胞功能鉴定。体外培养至第7天,采用流式细胞仪检测CD34+CD133双荧光标记阳性细胞所占比率和CD34单荧光标记阳性细胞所占比率。2.本部分取雄性Wistar大鼠98只,随机分为创伤组和假手术组,每组49只,各组分为7个亚组(每组7只),大鼠制作液压脑创伤模型成功后,各将一个亚组分别于伤前、伤后24,48,72,120,and 168小时,取外周血测CD34+阳性细胞数。创伤组和假手术组分别于术前和术后1,3,7,14,21天处死一个亚组(7只),取脑行CD34免疫组化染色,研究血管新生,进一步探索内皮祖细胞和新生血管的关系。3.本部分取雄性Wistar大鼠42只,随机分为假手术组和创伤组各21只,创伤后3、7天14天假手术组和创伤组分别随机抽取7只大鼠,处死后取脑行脑组织切片免疫组化染色检测齿状回Brdu+细胞和Brdu/Neun+细胞数;取实验第二部分大鼠脑切片行免疫组化染色检测CD34和CD31阳性细胞数,探讨大鼠实验性脑创伤后血管新生和神经新生的相关性。
     结果
     1.内皮祖细胞经体外培养第2天细胞贴壁,第五天形成出现细胞克隆样集落,集落周围有内皮样细胞,培养细胞表达CD133、CD34、vWF等内皮祖细胞标志,表明具有内皮祖细胞特征。倒置相差荧光显微镜下观察显示胞质和胞膜呈绿色和红色双色荧光,说明内皮祖细胞能特异性吸附异DiI-ac-LDL和结合FITC-UEA-1,具有内皮细胞功能。体外培养至第7天,流式细胞仪检测CD34单荧光标记阳性细胞所占比率为85.4%,CD34+CD133双荧光标记阳性细胞所占比率为36.5%。2.与假手术组相比较,大鼠脑创伤后循环中CD34+细胞数量显著增加,大鼠脑创伤区CD34+细胞显著增加,伤后创伤区周围及伤侧海马DG各时间点CD34+数于伤后7天达到峰值,随后有所下降;创伤区血管新生显著增加,循环CD34+细胞和脑创伤后血管新生密切相关。3.与假手术组相比较,脑创伤组伤侧海马DG各时间点BrdU+细胞、Brdu/Neun+细胞较假手术组明显增加;脑创伤后创伤区及伤侧海马DG各时间点CD34+、CD31+细胞和MVD均高于假手术组。相关分析显示:血管新生和神经新生密切相关。
     结论
     1.可以从大鼠外周血中分离和培养血管内皮祖细胞,为内皮祖细胞研究提供基础。2.脑创伤后大鼠外周CD34+细胞动员,循环CD34+细胞和脑创伤后血管新生密切相关。3.脑创伤后创伤组大鼠血管新生和神经细胞新生均显著增加,血管新生和神经新生密切相关,提示二者共同参与创伤组织的修复。
Background:In 1997, Asahara et al reported for the first time about endothelial progenitor cells (EPCs) that differentiated from participated in vasculogenesis in the animal hindlimb ischemic model. Circulating blood contains a subtype of progenitor cells that have the capacity to differentiate into mature endothelial cells in vitro and in vivo. These cells have been termed endothelial progenitor cells (EPCs). The isolation of EPCs by adherence culture or magnetic microbeads has been described. CD34+-enriched mononuclear cells in peripheral blood include a hematopoietic stem cell population, and were shown to be incorporated into neovascularization. This finding, that circulating EPCs may home to sites of neovascularization and differentiate into endothelial cells in situ, is consistent with "vasculogenesis," a critical paradigm for embryonic neovascularization, and suggests that vasculogenesis and angiogenesis may constitute complementary mechanisms for postnatal neovascularization. There has been extensive research on how CD34+ cells or specifically EPCs contribute to the process of tissue repair in ischemic injury such as myocardial infarction and stroke. Previous reports demonstrating therapeutic potential of EPC transplantation in animal models of hindlimb and myocardial ischemia opened the way to the clinical application of cell therapy.
     Objective
     1. To study on the isolation, culture and identification of EPCs from rat peripheral blood, and provided basic research for neurologic research.2. The study was designed to test the hypothesis that CD34+ cells correlate with posttraumatic angiogenesis and tissue repair.3. To test the hypothesis that angiogenesis correlate with posttraumatic neurogenesis and tissue repair.
     Methods
     1.The mononuclear cells were isolated from rat peripheral blood by Ficoll density gradient centrifugation and were cultured in vitro in a special medium(EGM-2). The expression of CD133、CD34、vWF were assessed by immunofluorescent staining and flow cytometer. The biological functions of endothelial cells were examined by the adsorption of ulex-agglutinin (UEA) labeled by fluorescein isothiacyanate (FITC) and Dil-Ac-LDL internalization on 7th day.2. The rats were randomly assigned to control and TBI group (49 rats in each group), each of which further divided into 7 subgroups (7 rats in each subgroup). Fluid percussion injury was performed over the right parietal lobe in TBI groups. Blood samples (1 ml) were collected from retro-orbital venous plexus at baseline,24,48,72, 120, and 168 hrs after TBI from only one subgroup from TBI groups and control group. CD34+ cells in peripheral blood were evaluated by flow cytometry. Rats in control and TBI groups were sacrificed before and 1st,3rd,7th,14th, and 21st days after TBI (7 rats in each time point). brains were collected and processed for 5 mm coronal paraffin sections through the TBI zone and used for immunohistochemistry staining to access changing of the CD34+ cells in brain tissue, further to test the hypothesis that CD34+ cells correlate with posttraumatic angiogenesis and tissue repair.3.42 Adult male Wistar rats were divided into two groups:(1) control group (n=21); (2) TBI group (n=21), Brdu, Brdu/Neun were measured by immunohistochemistry on frozen sections and paraffin sections 3rd,7th,14th days after TBI. CD34 and CD31 were measured by immunohistochemistry on paraffin sections 0,1st,3rd,7th,14th, and 21st days after TBI in the second section. Further to test the hypothesis that angiogenesis correlate with posttraumatic neurogenesis and tissue repair.
     Results
     1. The cells attached after 2 days, exhibited the clone-like morphology after 5d cultivation and proliferated faster then. Immunofluorescent staining showed that the adherent cells were positive for CD133、CD34 and vWF. The cells could take up DiI-acLDL and bind to FITC-UEA-1, and showed double-positive fluorescence. The CD34 and CD133 double-positive ratio of cultured cells were 36.5%, and the CD34 positive ratio were 85.4% by flow cytometer analyzing.2. The number of circulating CD34+ cells and CD34 and CD133 double-positive cells (per 1×104 mononuclear cells) increased 24 hrs in rats being exposed to TBI and those underwent only surgery. The number of CD34+ cells in the injured tissue and ipsilateral hippocampus was greater than that in control group. In the TBI group, CD34+ cells increased rapidly, reaching plateau at about 1 week after TBI and then declined, whereas MVD showed a steady increase during the same period.3. The number of CD34+ cells and MVD in the injured tissue and ipsilateral hippocampus was greater than that in control group. The number of BrdU+ cells and BrdU/NeuN+ cells was greater than that in control group.
     Conclusion
     1. Relatively purified EPCs can be obtained by certain procedure of isolation and culture from rat peripheral blood, which provides the basic for clinical application of EPCs transplantations.2. CD34+ cells correlate with posttraumatic angiogenesis and tissue repair. Our data strongly indicate that angiogenesis in the TBI zone originate as the result of homing, migration, proliferation and differentiation of CD34+ cells. Circulating CD34+ cells may play an important role in regeneration of brain injury. Mobilized CD34+ cells eventually contribute to the formation of new vessel in the injured tissue, a critical event for neural recovery after traumatic injury.3. Angiogenesis correlate with posttraumatic neurogenesis and tissue repair. Angiogenesis and neurogenesis take part in the regeneration of TBI brain together.
引文
[1]Cunningham AS, Salvador R, Coles JP, et al. Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury.. Brain.2005,128:1931-42.
    [2]Stoffel M, Eriskat J, Plesnila M,et al. The penumbra zone of a traumatic cortical lesion:a microdialysis study of excitatory amino acid release[J].Acta Neurochir Suppl.1997;70:91-93
    [3]Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med,2002,8: 963—970.
    [4]Taguchi A, Soma T, Tanaka H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model[J]. J Clin Invest.2004,114:330-338.
    [5]Shen Q, Goderie SK, Jin L,et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cell[J]s. Science.2004, 304(5675):1338-1340.
    [6]Folkman J, Shing Y. Angiogenesis[J]. J Boil Chem,1992,267(16):10931-10934.
    [7]Risau W, Flamme I. Vasculogenesis[J]. Ann Rev Cell Dev Biol,1995,11(9):79-91.
    [8]Asahara,T., Murohara,T., Sullivan,A., et al. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science.1997.275:964-967.
    [9]Morgan R, Kreipke CW, Roberts G,et al.Neovascularization following traumatic brain injury:possible evidence for both angiogenesis and vasculogenesis[J]. Neurol Res.2007; 29:375-381.
    [10]Li Liu, Hui Liu,JunFeng Jiao, et al.Changes in Circulating Human Endothelial Progenitor Cells after Brain Injury[J]. J Neurotrauma,2007,24(6):936-943.
    [11]John Glod, David Kobiler, Martha Noel,et al. Monocytes form a vascular barrier and participate in vessel repair after brain injury[J].Blood,2006; 107:940-946
    [12]刘建民 毛伯镛.神经干细胞与血管内皮祖细胞共移植治疗缺血性脑卒中的研究进展.中国修复重建外科杂志,2007,2:204-207
    [13]Lo EH,Dalkara T,Moskowitz MA. Mechanisms, challenges and opportunities in stroke [J]. Nature Reviews Neuroscience,2003,4(5):399—415.
    [14]Alvarez—Buylla A,Lim DA. For the long run:maintaining germinal niches in the adult brain[J]. Neuron,2004,41(5):683—686.
    [15]Fadini GP, Agostini C, Avogaro A. Endothelial progenitor cells in cerebrovascular disease[J]. Stroke,2005,36:11122-1113.
    [16]Ward MR, Stewart DJ, Kutryk MJ. Endothelial progenitor cell therapy for the treatment of coronary disease, and pulmonary arterial hypertension:current perspectives. Catheter Cardiovasc Interv,2007,70:983-998
    [17]Kawamoto A, Losordo DW. Endothelial progenitor cells for cardiovascular regeneration. Trends Cardiovasc Med,2008,18:33-7.
    [18]XU Qing-Bo. Endothelial progenitor cells in angiogenesis. Acta Physiologica Sinica,2005,57:1-6.
    [19]Paczkowska E, Larysz B, Rzeuski R, et al. Human hematopoietic stem/progenitor-enriched CD34(+) cells are mobilized into peripheral blood during stress related to ischemic stroke or acute myocardial infarction.Eur J Haematol,2005,75:461-7.
    [20]George F,Poncelet P,Laurent JC,et al. Cytofluorometric detection of human endothelial cells in whole blood using S-Endo 1 monoclonal antibody. J Immunol Methods[J].1991,17;139(1):65-75.
    [21]Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells [J]. Blood,1998,92(2):362-367.
    [22]Griese DP, Ehsan A, Melo LG, et al.Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: Implications for cell-based vascular therapy[J].Circulation.2003,108:2710-2715.
    [23]Ingram DA, Mead LE, Moore DB, et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells[J]. Blood 2005;105:2783-2786.
    [24]Asahara T,Takahashi T,Masuda H,et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells[J]. EMBO,1999,18:39642-3972.
    [25]Perlingeiro RC, KybaM, Bodie S, et al. A role for thrombopoietin in hemangioblast development [J]. Stem Cells,2003,21:272-280.
    [26]Nagaya N, Kangawa K, KandaM, et al. Hybrid cell2gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells [J]. Circulation,2003,108:889-895.
    [27]Bulut K, Pennartz C, Felderbauer P, et al. Vascular endothelial growth factor (VEGF164) ameliorates intestinal epithelial injury in vitro in IEC-18 and Caco-2 monolayers via induction of TGF-beta release from epithelial cells [J]. Scand Gastroenterol,2006,41:687-692
    [28]CarrAN, Howard BW, Yang HT, et al. Efficacy of systemic administration of SDF-1 in a model of vascular insufficiency:support for an endothelium dependent mechanism [J]. Cardiovasc Res,2006,69:925-935.
    [29]Wang HM, Zhang GY. Indomethacin suppresses growth of colon cancer via inhibition of angiogenesis in vivo[J]. World Gastroenterol,2005,11:340-343.
    [30]Abdollahi A, Lip son KE, Sckell A, et al. Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects [J]. Cancer Res,2003,63:8890-8898.
    [31]Davidoff AM, Ng CY, Brown P, et al. Bone marrow-derived cells contributeto tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice[J]. Clin Canc Res,2001,7:2870-2879
    [34]Yue L, Wang H, Liu LH, et al. Anti2adjuvant arthritis of recombinant human endostatin in rats via inhibition of angiogenesis and proinflammatory factors [J]. Acta Phar Sin,2004,25:1182-1185.
    [35]Kim R, TangQ, Biswas PS, et al. Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes:therapeutic strategy for herpetic atromal keratitis[J]. Am Palhol,2004,165:2177-2185.
    [36]Friedrich EB, Walenta K, Scharlau J, et al. CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities[J]. Circ. Res.2006,98, e20-e25
    [37]Young PP, Vaughan DE, Hatzopoulos AK.Biologic properties of endothelial progenitor cells and their potential for cell therapy[J]. Prog Cardiovasc Dis.2007;49:421-429.
    [38]Rubio D, Garcia J, Martin MC, et al.Spontaneous human adult stem cell transformation [J].Cancer Res,2005,65:3035-3039
    [39]Shaked Y, Ciarrocch i A, F ranco M, et al. Therapy induced acute recruitment of circulat ing endothelial progenito r cells to tumo rs [J]. Science,2006,313 1785-1787.
    [40]Uckan D, Cetin M, Yigitkanli I, et al. L ife-threatening neurological complications after bone marrow transplantation in children [J]. Bone Marrow Transp lant,2005,35:71-76.
    [41]Tauchmanova L, Selleri C, DeRosa G, et al. Endocrine disorders during the first year after autologous stem cell transplant [J]. Am J M ed,2005,118:664-670.
    [42]FELMEDEN DC, BLANN AD, LIP GY. Angiogenesis:basic pathophysiology and implications for disease[J]. Eur Heart J,2003,24:586-603.
    [43]Massa M, Rosti V, Ferrario M, et al.Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction[J].Blood.2005,1; 105:199-206.
    [44]Adams V, Lenk K, Linke A,et al. Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler Thromb Vasc Biol[J].2004 Apr;24:684-690.
    [45]Laufs U, Werner N, Link A, Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation. 2004 Jan 20;109(2):220-226.
    [46]Gill M, Dias S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells[J]. Circulation Research,2001,88:167-174.
    [47]Lee DY, Cho TJ, Kim JA, et al. Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis[J]. Bone.2008;42:932-941.
    [48]Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells[J]. EMBO J.1999;18:3964-3972.
    [49]Askari AT, Unzek S, Popovic ZB, et al.Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy[J]. Lancet.2003;362:697-703.
    [50]Kalka C, Masuda H, Takahashi T, et al. Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects[J]. Circ Res.2000;86:1198-1202.
    [51]Moore MA, Hattori K, Heissig B, et al.Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, andangiopoietin-1[J]. Ann N Y Acad Sci. 2001;938:36-47.
    [52]Tei K, Matsumoto T, Mifune Y, Ishida K, Sasaki K, Shoji T, Kubo S, Kawamoto A, Asahara T, Kurosaka M, Kuroda R. Administrations of peripheral blood CD34-positive cells contribute to medial collateral ligament healing via vasculogenesis. Stem Cells,2008,26,819-30.;
    [53]Strehlow K, Werner N, Berweiler J,et al. Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation[J]. Circulation.2003,24;107:3059-3065.
    [54]Iwakura A, Luedemann C, Shastry S,et al. Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury[J]. Circulation.2003,23; 108:3115-3121.
    [55]Mambarath A. Jaleel, Amy C. Tsai, Sumita Sarkar, et al. Stromal cell-derived factor-1 (SDF-1) signalling regulates human placental trophoblast cell survival[J]. Rubin Mol. Hum. Reprod.,2004; 10:901-909.
    [56]EndoA.The origin of the statins [J].Atheroseler Suppl,2004,5:125-130.
    [57]Kumai T, Oonuma S, Matsumoto N,et al. Anti-lipid deposition effect of HMG-CoA reductase inhibitor, pitavastatin, in a rat model of hypertension and hypercholesterolemia[J]. Life Sci.2004 12;74:2129-2142.
    [58]Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med.2000.6, 389-395.;
    [59]Mlhle R, Bsutz F, Rsfii S, et al. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor 1 [J]. Blood, 1998,91(12):4523-4530.
    [60]Hiasa K, Ishibashi M, Ohtani K, et al. Gene transfer of stromal cell-derived factor-I alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovasculorization[J]. Circulation,2004,109:2454-2461.
    [61]Heissig B,Hattori K, Dias S, et al.Recruitment of stem and progenitor cells om the bone marrow niche requires MMP-9 mediated release of kit-ligand[J].Cell,2002; 109:625-637.
    [62]Hristov M, Erl W, Weber PC. Endothelial progenitor cells:mobilization, differentiation, and homing[J]. Arterioscler Thromb Vasc Biol.2003, 23:1185-1189.
    [63]Aicher A, Heeschen C, Mildner-Rihm C,et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells[J]. Nat Med. 2003;9:1370-1376.
    [63]Ii M, N ish imura H, Iw akura A, et al. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via " imported " nitric oxide synthase activity [J].Circulation, 2005,111:1114-1120.
    [64]Korbling M, Reuben JM, Gao H, et al. Recombinant human granulocyte colonyst imulating factor mobilized and aphaeresis collected endothelial progenitor cells:a novel blood cell component fo r therapeutic vasculogenesis [J]. Transfusion,2006,46:1795-1802.
    [65]Takahash i T, Kalaka C, M asuda H, et al. Ishem ia and cytokine induce mobilizat ion of bone marrow-derived endothelial progenitor cells for neovascularization [J]. Nature Med,1999,5:4342438.
    [66]Rafii S, M eeus S, Dias S, et al. Contribution of marrow-derived progenitors to vascular and cardiac regeneration [J]. Sem in Cell Dev Bio 1,2002,13:61-67.
    [67]Hamada H, Kim M K, Iw akura A, et al. Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endo thelial progenitor cells to functional recovery after myocardial infarct ion [J]. Circulation,2006,114 2261-2270.
    [68]Mohle R., Bautz F., Rafii S.,et al. The chemokine receptor CXCR-4 is expressed on hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1[J].Blood,1998;91: 4523-4530.
    [69]Urbich C, Dimmeler S. Endothelial progenitorcells:characterization and role in vascular biology [J]. Circ Res.2004;95:343-353.
    [70]Murayama T, Tepper OM, Silver M, et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo[J]. Exp Hematol,2002,30:967-972.
    [71]Maeng YS, Choi HJ, Kwon JY,et al. Endothelial progenitor cell homing: prominent role of the IGF2-IGF2R-PLCbeta2 axis[J].Blood.2009,113:233-243.
    [72]Shen F, Su H, Fan Y, et al. Adeno-associated viral-vector-mediated hypoxia-inducible vascular endothelial growth factorgene expression attenuates ischemic brain injury after focal cerebral ischemia in mice. Stroke,2006,37: 2601-2606.
    [73]Senior K. Angiogenesis and functional recovery demonstrated after minor stroke. Lancet,2001,358(9284):817.
    [74]Krupinski J, Kaluza J, Kumar P, et al. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke,1994,25:1794-1798.
    [75]Juan F, Arenillas, Tomas Sobrino, et al. The role of angiogenesis in damage and recovery from ischemic stroke. Current Treatment Options in Cardiovascular Medicine,2007,9:205-212.
    [76]Krum JM, Mani N, Rosenstein JM. Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury[J]. Exp Neurol.2008,212:108-117.
    [77]Lopez-Lopez C, LeRoith D, Torres-Aleman I. Insulin-like growth factor Ⅰ is required for vessel remodeling in the adult brain[J]. Proc Natl Acad Sci U S A. 2004,29;101:9833-9838.
    [78]Deininger MH, Meyermann R, Schluesener HJ. Endostatin/collagen ⅩⅤ Ⅲ accumulates in patients with traumatic brain injury[J]. J Neurotrauma,2006, 23:1103-1110.
    [79]Mueller CA, Schluesener HJ, Fauser U,et al. Lesional expression of the endogenous angiogenesis inhibitor endostatin/collagen ⅩⅧ following traumatic brain injury (TBI) [J]. Exp Neurol.2007,208:228-237.
    [80]Zhang ZY, Zhang Z, Fauser U,et al. Dexamethasone transiently attenuates up-regulation of endostatin/collagen ⅩⅧ following traumatic brain injury[J]. Neuroscience.2007,147:720-726.
    [81]Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis[J]. J Comp Neurol.2000,425:479-494.
    [82]Teng H, Zhang ZG, Wang L, et al.Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke [J]. Journal of Cerebral Blood Flow & Metabolism.2008,28:764-771.
    [83]Li Q, Ford MC, Lavik EB,et al. Modeling the neurovascular niche:VEGF-and BDNF-mediated cross-talk between neural stem cells and endothelial cells:an in vitro study. J Neurosci Res.2006,84:1656-1668.
    [84]Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke [J].Nat Med. 2002,8:963-970.
    [85]Nakatomi H. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors [J]. Cell. 2002,110:429-441.
    [86]Drago J, MurphyM, Carroll SM, et al. Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I[J]. Proc. Natl. Acad. Sci. U. S. A. 1991,88:2199-2203.
    [87]Jin K. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo[J]. Proc. Natl. Acad. Sci. U. S. A.2002,99:11946-11950.
    [88]lsner JM, AsaharaT. Angiogenesis and vasculogenesis as therapeutics trategiesf or postnatal neovasculairzation. J C linI nvest,1999,103:1231-1236.
    [89]Liew A, Barry F, O'Brien T. Endothelial progenitor cells:diagnostic and therapeutic considerations. Bioessays,2006,28:261-270.
    [90]Arenillas JF, Sobrino T, Castillo J, et al. The role of angiogenesis in damage and recovery from ischemic stroke. Curr Treat Options Cardiovasc Med,2007, 9:205-12.
    [91]Teng H, Zhang ZG, Wang L, et al. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab,2008,28:764-771.
    [92]Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke,2004,35:1732-1737.
    [93]Taupin P. Stroke—induced neurogenesis:physiopathology and mechanisms. Curr Neurovasc Res,2006,3(1):6772.
    [94]Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell,2002,110(4):429-441.
    [95]Kelly S, Bliss TM, Shah AK. Transplanted human fetal neura stem cells survive, migrate and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA,2004,101:11839-11844.
    [96]Abrahams JM, Gokhan S, Flamm ES, et al. Do novo neurogenesis and acute stroke:are exogenous stem cells really necessary? Neurosurgery,2004,54: 150-155.
    [97]Taupin P. Stroke-induced neurogenesis:physiopathology and mechanisms. Curr Neurovasc Res,2006,3:67-72.
    [98]Zhang P, Li J, Liu Y, et al. Transplanted human embryonic neural stem cells survive, migrate, differentiate and increase endogenous nestin expression in adult rat cortical peri-infarction zone. Neuropathology.,2009,29:410-21.
    [99]Zhu W, Mao Y, Zhao Y, et al.Transplantation of vascular endothelial growth factor-transfected neural stem cells into the rat brain provides neuroprotection after transient focal cerebral ischemia. Neurosurgery.,2005,57:325-33.
    [100]Toda H, Takahashi J, lwakami N, et al. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci I ett.2001,316: 9—12.
    [101]Hori J。Ng TF, Shatos M, et al. Neural progenitor ceils lack immunogenity and resist destruction as allografts. Stem Cells,2003,21:405—416.
    [102]Nag S, Papneja T, Venugopalan R,et al. Increased angiopoietin-2 expression is associated with endothelial apoptosis and blood-brain barrier breakdown[J]. Lab. Invest.2005,85,1189-1198.
    [103]Rodriguez-Baeza A, Reinadela Torre F, Poca A, et al. Morphological features in human cortical brain microvessels after head injury:a three-dimensional and immunocytochemical study [J]. Anat Rec A Discov Mol Cell Evol Biol.2003, 273,583-593.
    [104]Shore PM, Jackson EK, Wisniewski SR,et al. Vascular endothelial growth factor is increased in cerebrospinal fluid after traumatic brain injury in infants and children[J]. Neurosurgery.2004,54(3):605-611.
    [105]Krum JM, Mani N, Rosenstein JM. Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury[J]. Exp Neurol.2008,212(1):108-117.
    [106]Lopez-Lopez C, LeRoith D, Torres-Aleman I. Insulin-like growth factor I is required for vessel remodeling in the adult brain[J]. Proc Natl Acad Sci U S A. 2004,29;101(26):9833-9838.
    [107]Deininger MH, Meyermann R, Schluesener HJ. Endostatin/collagen ⅩⅤ Ⅲ accumulates in patients with traumatic brain injury [J]. J Neurotrauma,2006, 23(7):1103-1110.
    [108]Mueller CA, Schluesener HJ, Fauser U,et al. Lesional expression of the endogenous angiogenesis inhibitor endostatin/collagen ⅩⅧ following traumatic brain injury (TBI) [J]. Exp Neurol.2007,208:228-237.
    [109]Morgan R, Kreipke CW, Roberts G,et al.Neovascularization following traumatic brain injury:possible evidence for both angiogenesis and vasculogenesis[J]. Neurol Res.2007; 29:375-381.
    [110]Senior K. Angiogenesis and functional recovery demonstrated after minor stroke. Lancet,2001,358(9284):817.
    [111]Kazutoshi Miyashita, Hiroshi Itoh, Hiroshi Arai, et al. The neuroprotective and Vasculo-Neuro-Regenerative roles of adrenomedullin in ischemic brain and Its therapeutic potential. Endocrinology,2006,147:1642-1653.
    [112]Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis[J]. J Comp Neurol.2000,425:479-494.
    [113]Teng H, Zhang ZG, Wang L, et al.Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke[J].Journal of Cerebral Blood Flow & Metabolism.2008,28:764-771.
    [114]Drago J, MurphyM, Carroll SM, et al. Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I[J]. Proc. Natl. Acad. Sci. U. S. A. 1991,88:2199-2203.
    [1]Asahara,T., Murohara,T., Sullivan,A., et al. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science.1997,275:964-967.
    [2]Griese DP, Ehsan A, Melo LG, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts implication for cell based vascular thrapy. Circulation,2003,108:27102-715
    [3]Hilbe W, Dirnhofer S, Oberwasserlechner F, et al. CD133 positive endothelial progenitor cells contribute to the tumor vasculature in non2small cell lung cancer. J Clin Patho,2004,57:965-969.
    [4]Ingram DA, Mead LE, Moore DB, et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells[J]. Blood,2005,105:2783-2786.
    [5]Tamaki T, Akatsuka A, Ando K, et al. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle[J]. J Cell Biol,2002,157:571-577.
    [6]Friedrich EB,Walenta K,Scharlau J, et al. CD34-/CD133+/VEGFR-2+endothelial progenitor cell subpopulation with potent vasoregenerative capacities [J]. Circ. Res.2006;98:e20-e25.
    [7]Kim SY, Park SY, Kim JM, et al. Differentiation of endothelial cells from human umbilical cord blood AC133-CD14+ cells[J]. Ann. Hematol.2005;84:417-422.
    [8]Hur J,Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 2004; 24:288-93.
    [9]Urbich C, DimmelerS. Endothelial progenitor cells:characterization and role in vascular biology. Circ Res,2004; 95:343-353
    [10]Ikonimidis I, Papadimitrious C, Vamvakou G, et al. Treatment with granulocyte colony stimulating factor is associated with improvement in endothelial function. Growth Factors,2008; 26:117-124.
    [11]Doyle BJ, Sorajia P, Hynes B,et al. Progenitor cell therapy in a porcine acute myocardial infraction model induces cardiac hypertrophy, mediated by paracrine secretion of cardiotrophic factors including TGF-β. Stem Cells Dev,2008; 17: 941-951.
    [12]Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med,2001,7:430-436.
    [13]Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell,2006,124:175-189.
    [14]Kalka C MasudaH, Takahashi T,et al.Transplantation of exvivo expanded endothelial progenitorcels for therapeutic neovascularization. Proe Nail Aca Sci USA,2000,97:3422—3427.
    [15]Nagaya N, Kangawa K, Kanda M, et al. Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation,2003,108:889-895.
    [16]Nagaya N, Kangawa K, KandaM, et al. Hybrid cell gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells [J]. Circulation,2003,108:889-895.
    [17]Bulut K, Pennartz C, Felderbauer P, et al. Vascular endothelial growth factor (VEGF164) ameliorates intestinal epithelial injury in vitro in IEC-18 and Caco-2 monolayers via induction of TGF-beta release from ep ithelial cells [J]. Scand Gastroenterol2006,41:687-692.
    [18]Abdollahi A, Lip son KE, Sckell A, et al. Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects [J]. Cancer Res,2003,63:8890-8898.
    [19]Davidoff AM, Ng CY, Brown P, et al. Bone marrow derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice[J]. Clin Canc Res,2001,7:2870-2879.
    [20]Yue L, Wang H, Liu LH, et al. Anti-adjuvant arthritis of recombinant human endostatin in rats via inhibition of angiogenesis and proinflammatory factors [J]. Acta Phar Sin,2004,25:1182-1185.
    [21]Murasawa S, Kawamoto A, Horii M, et al. Niche-dependent translineage commitment of endothelial progenitor cells, not cell fusion in general, into myocardial lineage cells. Arterioscler Thromb Vasc Biol,2005,25:1388-1394.
    [22]RubinL LS taddonJ M. The celbiology of the blood-brain barrier. Annu Rev Neurosc,1999,22:11-28.
    [23]Taguchi A, Matsuyama T, Moriwaki H,et al.Circulating CD34-positive cells provide an index of cerebrovascular function[J].Circulation 2004; 109:2972-2975.
    [24]Usman Ghani, Ashfaq Shuaib, Abdul Salam, Endothelial Progenitor Cells During Cerebrovascular Disease Stroke[J].2005;36:151-153.
    [25]Tomas Sobrino,Olivia Hurtado,Maria Angeles Moro.The Increase of Circulating Endothelial Progenitor Cells After Acute Ischemic Stroke Is Associated With Good Outcome[J].Stroke 2007;38:2759-2764.
    [26]Zhang ZG, Zhang L, Jiang Q, et al. Bone marrow derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse[J].Circ Res,2002,90:284-2288.
    [27]Taguchi A, Soma T, Tanaka H, et al. Administration of CD34+ cells after st roke enhances neurogenesis via angiogenesis in a mouse model [J]. J Clin Invest,2004,114:330-338.
    [28]Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rat s[J]. St roke, 2001,32:1005-1011.
    [29]Hess DC, Hill WD. Martin-Studdard A, et al. Bone marrow as a source of endothelial cells and NeuN-expressing cells After stroke. Stroke,2002, 33: 1362-1368.
    [30]Greenberg DA, Kunlin J. From angiogenesis to neuropathology[J]. Nature,2005, 438:954-959.
    [31]R Morgan, CW Kreipke, G Roberts,et al.Neovascularization following traumatic brain injury:possible evidence for both angiogenesis and vasculogenesis[J]. Neurol Res 2007,29:375-381.
    [32]L Liu, H Liu, J Jiao, et al.Changes in circulating human endothelial progenitor cells after brain injury[J]. J Neurotrauma 2007,24:936-43.
    [33]John Glod, David Kobiler, Martha Noel,et al. Monocytes form a vascular barrier and participate in vessel repair after brain injury[J]. Blood.2006,107:940-946.
    [34]Ferrari N, Glod J, Lee J, et al.. Bone marrow-derived endothelial progenitor-like cells as angiogenesis-selective gene targeting vectors[J]. Gene Ther.2003,10: 647-656.
    [35]XL Moore, J Lu, L Sun, et al.Endothelial progenitor cells' "homing" specificity to brain tumors[J]. Gene Ther 2004,11:811-818.
    [36]PP Zheng, WC Hop, TM Luider, et al.Increased levels of circulating endothelial progenitor cells and circulating endothelial nitric oxide synthase in patients with gliomas[J]. Ann Neurol,2007,62:40-48.
    [37]Liew A, Barry F, O'Brien T. Endothelial progenitor cells:diagnostic and therapeutic considerations. Bioessays,2006,28(3):261-270.
    [38]Arenillas JF, Sobrino T, Castillo J, et al. The role of angiogenesis in damage and recovery from ischemic stroke. Curr Treat Options Cardiovasc Med,2007, 9(3):205-12.
    [39]Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke,2004,35(7):1732-1737.
    [40]Akihiko Taguchi, Toshihiro Soma, Hidekazu Tanaka, et al. Administration of CD34 cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J. Clin. Invest,2004,114(3):330-338.
    [40]Nishino H, Hida H, Takei N, et al. Mesencephalic neural stem (progenitor)cells develop to dopaminegic neurons more strongly in dopamine—depleted striatum than in intact striatum. EXP Neurol.2000,164(1): 209-14.
    [41]Nonaka M, Yoshimura M, Nishimura F, et nl. Intraventricular transplantation of embryonic stem cell—derived neural cells in intracerebral hemorrhage rats. Neural Res,2004,26(3):265-272.
    [42]Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell,2002,110(4):429-441.
    [43]Kelly S, Bliss TM, Shah AK. Transplanted human fetal neura stem cells survive, migrate and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA,2004,101(32):11839-11844.
    [44]Part KI,Ourednik V. Global gene and cell replacement strategies via stem cell. Gene Ther,2002,9:615.
    [45]Cameron HA, McKay RD. Restoring production of hippocampal neurons in old age [J]. Nat Neurosci,1999,2 (10):894-897.
    [46]Taupin P. Stroke-induced neurogenesis:physiopathology and mechanisms. Curr Neurovasc Res,2006,3(1):67-72.
    [47]Okano H,Momma S,Blaise D,et al. Transplantation of in vitro expanded neural stem cells results in neurogenesis and recovery of motor function fater spinal cord contusion injury in rats. Soc Neurosci,2000,26 (4):863.
    [48]朱巍,毛颖,周良辅,等.转基因神经干细胞移植在缓解脑缺血性神经血管损害中的作用.中华实验外科杂志,2005,22(2):198—199.
    [49]Toda H, TakahashiJ, lwakami N, et al. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett.2001,316(1): 9-12
    [50]Hori J, Ng TF, Shatos M, et al. Neural progenitor ceils lack immunogenity and resist destruction as allografts. Stem Cells,2003,21(4):405-416.
    [51]AI Nimer F, Wennersten A, Holmin S, et al. MHC expression after human neural stem cell transplantation to brain contused rats. Neuroreport,2004, 15(12):1871-1875.
    [52]Auerbach JM, Eiden MV, McKay RD. Transplanted CNS stem ceils from functional synapses in vivo. Eur J Neurosci,2002,12(5):1696-1704.
    [53]Li B, Sharpe EE. VEGF and FGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization[J]. FASEB J 2006; 20;1495-1497.
    [54]George F,Poncelet P,Laurent JC,et al. Cytofluorometric detection of human endothelial cells inwhole blood using S-Endo 1 monoclonal antibody [J]. J Immunol Methods.1991,17;139(1):65-75.
    [55]Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells [J]. Blood,1998,92(2):362-367.
    [56]Grant MB, May WS, Caballero S, et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization[J]. Nat Med,2002,8,607-12.
    [57]Heissig B, Hattori K, Dias S, et al.Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand[J].Cell,2002; 109:625-637.
    [58]Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone m arrow derived angioblasts p revents cardiomyocyte apoptosis, reduces remodeling, and improves cardiac function [J]. Nat M ed,2001,7:4302436.
    [59]Rehman J, L i J, O rschell C, et al. Peripheral blood endothelial p rogenitor cells are derived from monocyte/m acrophages and secrete angiogenic grow th factors[J]. Circulation,2003,107:1164-1169.
    [60]Van Royen N, Hoefer I, Buschmann I, et al.Exogenous application of transforming growth factor betal stimulates arteriogenesis in the peripheral circulation[J]. FASEB J,2000,16:432-434
    [61]Gale NW, Yancopoulos GD. Growth factors acting via endothelial cell specific receptor tyrosine kinases:VEGF's, angiopoietins, and ephrins in vascular develpment[J]. Genes Dev,1999,13 (78):105521066.
    [62]Bacic M, Edwards NA, Merrill MJ.Differential expression of vascular endothelial growth factor (vascular permeability factor) forms in rat tissues [J]. Growth Factors,1995,12:11-15。
    [63]Nourhaghighi N,Kuliszewska K, Davis J, et al.Altered exp ression of angiopoietins during blood brain barrier breakdown and angiogenesis[J].Lab Invest,2003,83 (8):1211-1222.
    [64]Skovseth DK,Veuger MJ,Sorensen DR,et al.Endostatin dramatically inhibits endothelial cell m igration, vascular morphogenesis, and perivascular cell recruitment in vivo[J]. Blood,2005,105(3):1044-1051.
    [65]Deininger MH, Meyermann R, Schluesener HJ. Endostatin/collagen ⅩⅤ Ⅲ accumulates in patients with traumatic brain injury[J]. J Neurotrauma, 2006,23(7):1103-1110.
    [66]Isner J,Asahara T. Angiogenesis and vasculogenesis as t herapeutic strategies for postnatal neovascularization [J]. J Clin Invest,1999,103 (10):1231-1236.
    [67]Zhang ZG, Zhang L, Jiang Q,et al. Bone Marrow-Derived Endothelial Progenitor Cells Participate in Cerebral Neovascularization After Focal Cerebral Ischemia in the Adult Mouse[J]. Circ Res.2002,22;90(3):284-288.
    [68]Li L, Hui L,JF Jiao, et al. Changes in Circulating Human Endothelial Progenitor Cells after Brain Injury [J]. J Neurotrauma,2007,24(6):936
    [69]Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis[J]. J Comp'Neurol.2000,2;425(4):479-94.
    [70]Urbich C, D immeler S. Endothelial progenitor cells characterization and role in vascular biology[J]. Circ Res,2004,95:3432358.
    [71]Shen Q, Goderie SK, Jin L,et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells[J]. Science.2004 May 28;304(5675):1338-40.
    [72]Teng.Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke[J].Journal of Cerebral Blood Flow & Metabolism 2007,18(3):1-8.
    [73]Thored P, Wood J, Arvidsson A,et al.Long-Term Neuroblast Migration Along Blood Vessels in an Area With TransientAngiogenesis and Increased Vascularization After Stroke [J]. Stroke,2007;,38:3032-3039.
    [75]Arvidsson, A., Collin, T., Kirik, D.,et al. Neuronal replacement from endogenous precursors in the adult brain after stroke [J]. Nat. Med.2002,.8:963-970.
    [76]Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rat s[J]. St roke 2001,32:1005-1011.
    [77]Kazutoshi Miyashita, Hiroshi Itoh, Hiroshi Arai, et al. The neuroprotective and Vasculo-Neuro-Regenerative roles of adrenomedullin in ischemic brain and Its therapeutic potential. Endocrinology,2006,147(4):1642-1653.
    [78]Yamashima T,Tonchev AB,Vachkov IH,et al. Vascular adventitia generates neuronal progenitors in the monkey hippocampus after ischemia[J]. Hippocampus,2004,14(7):861—875.
    [79]Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke [J]. Nature Reviews Neuroscience,2003,4(5):399—415.
    [80]Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol,2000,425(4):479-494.
    [81]Alvarez—Buylla A,Lim DA. For the long run:maintaining germinal niches in the adult brain[J]. Neuron,2004,41(5):683—686.
    [82]Ostenfeld T, Caldwell M A, Prowse KR, et al. Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Exp Neurol,2000, 164(1):215-226.