超声微泡联合Ad-EGFP/HIF-1α介导EPCs移植治疗大鼠心肌梗死的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冠心病是影响人类生命健康的主要疾病之一,虽然传统的药物治疗、冠状动脉介入治疗以及冠脉旁路移植等技术的广泛应用,使冠心病患者的病死率呈下降趋势,但相当一部分冠心病患者仍不适宜上述治疗方法。心肌血管新生是当前缺血性心脏病研究的重点和难点。近年来,国内外学者利用干细胞移植,通过血管及其心肌细胞的再生来治疗缺血性心脏病(Ischemic heart disease,IHD),目前研究较多的是单个核细胞(Mononuclear cells,MNCs)和间充质干细胞(Mesenchymal stem cells,MSCs),但是由于移植成分较复杂,随着临床应用例数的增多,不良反应的报告也日趋增多。
     内皮祖细胞(Endothelial progenitor cells,EPCs)是一类能循环、增殖并分化为血管内皮细胞(Endothelial cells,ECs)的前体细胞,但尚未表达成熟血管ECs表型,也未形成血管。它包括从血液母细胞到成熟ECs之间多个阶段的细胞。EPCs有促进组织器官,尤其是缺血组织器官ECs修复,建立侧支循环和恢复血供的作用,它不仅参与胚胎时期的血管形成,而且在出生后成体的血管生成中也起重要作用。
     干细胞移植主要有经冠状动脉内注射、经心内膜下注射、开胸心内注射及经静脉移植等几种方式。研究表明,采用上述方式进行细胞移植均可不同程度的改善缺血性心脏病患者的心功能,但是需要高浓度的干细胞,而且前三种移植方式必须在介入操作情况下才能完成;经静脉干细胞移植途径接近于无创,但大量细胞可随血流迁移至其他组织、器官,引起不必要的血管新生。因此,很有必要寻找一种既能通过静脉途径输入又能在靶组织内定向转移的细胞移植方法。
     近年来研究发现,超声微泡作为增强组织灰阶显像的造影剂,也可用于药物或基因传递。将特定的药物或基因与微泡结合在一起,通过外周血管注射,经体表超声定位辐照破坏微泡,可使药物或基因在特定组织内定位释放。微泡破裂后产生的生物学效应可使靶组织微环境改变,如毛细血管内皮间隙增宽,细胞膜通透性增高,从而使药物或基因进入特定的组织内。
     另外,超声辐照微泡可以引起局部组织的炎症反应,引起炎细胞聚集,炎性因子的释放,从而产生一些潜在的生物学效应。有研究证实,超声破坏微泡可增加局部组织血管内皮细胞粘附分子1 (Vascular cell adhere molecular-1,VCAM-1)的表达,从而促进骨髓MNCs粘附于内皮上,增加MNCs的归巢数量。
     在诸多用于治疗IHD的基因选择上,缺氧诱导因子1α(Hy- poxia inducible factor-1α,HIF-1α)作为机体氧稳态调节的重要转录因子日渐引起人们的关注, HIF广泛存在于人和哺乳动物的体内,可以上调多达150种细胞因子的表达,是组织、细胞在缺氧应答反应中最重要的调节因子。此外有研究证实,HIF-1α可以促进基质细胞衍生因子(Str- omal cell-derived factor-1,SDF-1)的表达,而SDF-1作为一种趋化因子,在干细胞的流动及迁移中起非常重要的作用,可增加干细胞对缺血组织粘附及归巢。
     基于上述理论基础,超声破坏微泡能否作为一种新型的促进EPCs定向移植的有效方法有待进一步探讨,因此本课题利用超声破坏微泡联合载HIF-1α及增强型绿色荧光蛋白(Enhanced green flucorescent protein,EGFP)的重组腺病毒Ad-EGFP/HIF-1α介导EPCs移植,观察其对大鼠心肌梗死(Myocardial infarction,MI)的治疗效果,为IHD的治疗提供一种新的途径和方法。
     综上,本?课题研究主要包括以下三个部分:
     第一部分大鼠骨髓源性EPCs的分离、培养及鉴定
     目的研究大鼠骨髓来源的EPCs的分离、培养、鉴定方法以及向ECs分化的诱导条件。方法Percoll密度梯度离心法分离SD大鼠股骨及胫骨骨髓MNCs,经差速贴壁后取2次贴壁细胞置于纤维连接蛋白铺被的培养板中,血管内皮细胞生长因子(Vascular endothelial growth factor,VEGF)、碱性成纤维细胞生长因子(Basic fibroblast growthfactor,bFGF)及表皮细胞生长因子(Epidermal growth factor,EGF)诱导下培养2w,观察其形态学改变,对其进行免疫细胞化学染色以及Dil标记的乙酰化低密度脂蛋白(Acetyl low density lipoprotein,acLDL)、FITC标记的荆豆凝集素1 (Ulex europaeus agglutinin,UEA-1)双荧光染色对其进行鉴定。结果普通光学显微镜观察:贴壁细胞呈铺路石、团簇样生长,梭形、线样排列等特殊形态;免疫细胞化学染色:贴壁细胞CD133、CD34、Flk-1(VEGFR)、vWF (Ⅷ因子)在不同时段呈阳性表达;激光共聚焦显微镜观察:EPCs吞噬Dil-acLDL及结合FITC-UEA-1呈双染色。结论采用Percoll密度梯度离心法,在VEGF、bFGF及EGF培养体系下,可以获得较高纯度的EPCs,该细胞具有ECs的特性,经体外诱导可以分化为ECs。
     第二部分Ad-EGFP/HIF-1α感染大鼠EPCs的实验
     目的研究含HIF-1α及EGFP的Ad-EGFP/HIF-1α感染大鼠EPCs的可行性。方法采用Percoll密度梯度离心法分离SD大鼠骨髓MNCs,VEGF、bFGF及EGF诱导培养,观察其形态学变化,对其进行免疫学及功能学鉴定;Ad-EGFP/HIF-1α在HNK293细胞中进行扩增,之后感染体外培养的EPCs,分别于24,48,72,96 h采用倒置荧光显微镜观察细胞表达EGFP的情况;MTT法检测细胞生长活性;流式细胞仪检测转染率;RT-PCR法测定HIF-1α在EPCs中的表达。结果倒置荧光显微镜下可观察到EPCs内EGFP的表达,随时间延长,表达EGFP细胞数逐渐增多;MTT检测EPCs在24,48,72,96 h存活率分别为99.83%,99.70%,99.32%,99.57%;流式细胞仪计数显示,EPCs在24,48,72,96 h的转染率分别为23.05%,45.94%,78.91%,85.64%;通过RT-PCR法检测到EPCs内HIF-1α的表达。结论重组腺病毒Ad-EGFP/HIF-1α能够有效地感染EPCs,感染后在mRNA水平可检测到HIF-1α的表达,并对EPCs活性无明显影响,为进一步研究转基因的EPCs移植促进血管新生奠定了基础。
     第三部分超声微泡联合Ad-EGFP/HIF-1α介导EPCs移植治疗大鼠心肌梗死的实验研究
     第一节超声微泡联合Ad-EGFP/HIF-1α介导EPCs归巢大鼠缺血心肌
     目的研究超声破坏微泡联合Ad-EGFP/HIF-1α介导EPCs移植归巢大鼠缺血心肌的可行性及有效性。方法采用Percoll密度梯度离心法分离SD大鼠骨髓MNCs,VEGF、bFGF及EGF诱导培养,观察其形态学改变,对其进行免疫学及功能学鉴定;Ad-EGFP/HIF-1α在HNK293细胞中进行扩增,之后感染体外培养的EPCs。将30只SD大鼠建立MI模型后随机分为5组:①空白对照组(C),②超声+微泡组(US+MB),③内皮祖细胞组(EPCs),④超声+内皮祖细胞组(US+EPCs),⑤超声+微泡+内皮祖细胞组(US+MB+EPCs)。建模成功后第3天,经尾静脉注入超声微泡,同时超声基因转染治疗仪辐照大鼠心前区,辐照条件:300KHz、2W/cm2,辐照10s,间隔5s,共5min。建模成功后第5天、第7天行同样处理,之后通过尾静脉注射感染Ad-EGFP/HIF-1α的EPCs。EPCs移植后48h将大鼠处死,激光共聚焦显微镜观察大鼠心肌组织内EPCs的分布; Western blot检测HIF-1α的表达。结果US+MB+EPCs组绿色荧光强度高于其他各组,Western blot显示,US+MB+EPCs组HIF-1α蛋白表达高于其他组(P<0.05)。结论超声破坏微泡联合Ad-EGFP/HIF-1α介导EPCs移植可有效促进EPCs归巢,为干细胞移植治疗IHD提供了一种新的途径。
     第二节超声微泡联合Ad-EGFP/HIF-1α介导EPCs移植治疗大鼠心肌梗死的研究
     目的研究超声破坏微泡联合Ad-EGFP/HIF-1α介导EPCs移植治疗大鼠MI的可行性。方法采用Percoll密度梯度离心法分离SD大鼠骨髓MNCs,VEGF、bFGF及EGF诱导培养,观察其形态学改变,对其进行免疫学及功能学鉴定;Ad-EGFP/HIF-1α在HNK293细胞中进行扩增,之后感染体外培养的EPCs。将30只SD大鼠建立MI模型后随机分为5组:①空白对照组(C),②超声+微泡组(US+MB),③内皮祖细胞组(EPCs),④超声+内皮祖细胞组(US+EPCs),⑤超声+微泡+内皮祖细胞组(US+MB+EPCs)。建模成功后第3天,经尾静脉注入超声微泡,同时超声基因转染治疗仪辐照大鼠心前区,辐照条件:300KHz、2W/cm2,辐照10s,间隔5s,共5min。建模成功后第5天、第7天行同样处理,之后通过尾静脉注射感染Ad-EGFP/HIF-1α的EPCs。EPCs移植后4w,超声心动图检测大鼠左室收缩功能,HE染色检测心肌梗死边缘区新生血管情况,免疫组织化学(Immunohis-tochemistry,IHC)染色法检测CD34的表达及微血管密度(Microvessel density,MVD);Western blot检测VEGF蛋白的表达。结果超声心动图检测左室收缩功能显示,US+MB+EPCs组射血分数(Ejection fraction,EF)、短轴缩短率(Fractional shortening,FS)较其他各组测值高,差异有统计学意义(P<0.05);HE染色显示,US+MB+EPCs组有较多的新生血管;IHC染色显示,新生血管被染成棕黄色,US+MB+EPCs组表达最多,MVD计数与其他各组相比,差异有统计学意义(P<0.05);Western blot显示,US+MB+EPCs组的VEGF蛋白表达高于其他各组(P<0.05)。结论超声破坏微泡联合Ad-EGFP/ HIF-1α介导EPCs移植可通过促进VEGF的高效表达、刺激MI区血管生成等途径改善心功能,为IHD的治疗提供了一种新的途径和方法。
Ischemic heart disease (IHD) is one of the major serious global health problems. Although coronary heart disease (CHD) mortality has decreased with the extensive application of drugs,percutaneous coronary intervention and coronary artery bypass graft, a number of patients are still not suitable for those treatments. Myocardial angiogenesis is the focal and difficult point of the current studies of ischemic heart disease. In recent years, researchers treated ischemic heart disease by using stem cells transplantation, which become a hot spot direction. The current studies most focus on mononuclear cells (MNCs) and mesenchymal stem cells (MSCs). But with the increased number of cases in clinical application, reports of adverse reaction are also increased, especially arrhythmias, etc.
     Endothelial progenitor cells (EPCs) can proliferate and differentiate into vascular endothelial cells (ECs) without expressing phenotype of mature ECs and forming vascular precursors. It includes multiple stages of cells from the mother cells to mature blood vessel ECs. EPCs can promote repairment of ECs, establishment of collateral circulation and restoration of blood supply particularly in ischemic tissues and organs. It can not only involved blood vessel formation in embryonic, but also play an important role in angiogenesis after birth.
     The main ways of stem cells transplantation are focus on coronary artery injection, endometrial injection, open-chest cardiac injection and autologous transplantation, et al. Studies have shown that adopted those approaches above could improve cardiac function in patients with ischemic heart disease, but those approaches need a high concentration of cells and also involved interventional operation. Transplantation from intravenous injection is a noninvasive way, but a large number of blood cells may migrate to other tissues and organs which may cause unexpected angiogenesis. Therefore, it is necessary to find a way to transplant stem cells by intravenous injection and the cells can shift into targeted tissue.
     Recent studies have found that as an ultrasound contrast agent, micro- bubbles were not only enhance the gray-scale ultrasound imaging, but also can be used as a new drug or gene delivery vehicles. After ultrasound Irridiation, cavitation and mechanical effects produced by microbubbles destruction could increase permeability of cells membrane, make rupture of microvessel, broaden the endothelial cell gap, so that the target gene could reach the tissue and cells from the broken capillaries and endothelial cell gap, which enhanced the targeted therapy and efficacy of gene. Meanwhile, ultrasound targeted microbubbles distruction (UTMD) can cause local tissue inflammation and accumulation of inflammatory cells, release of inflammatory factors, which can induced some potential biological effects. Researches has shown that ultrasound microbubbles destruction could increase the expression of local vascular cell adhere molecular 1 (VECM- 1), there by, promot MNCs adhere on the endothelium.
     HIF-1αas an important regulator of oxygen homeostasis transcription factor caused more concern. HIF exist widly in human and mammals, it can promote the expression of more than150 cytokines. It is the most important regulator in the hypoxic response reactions.
     Based on the theories above, whether Ultrasound microbubbles destruction could be used as a new effective way of stem cells transplantion need to be further explored. Therefore, this subject was to transplant EPCs used ultrasound microbubbles combined with recombinant adenovirus (Ad- EGFP/HIF-1α), then observed the effect of the therapeutic of myocardial infarction, so as to offer a new approach and methods to treat ischemic heart disease.
     Overall,The study was composed of the following three parts.
     PARTⅠIsolation, Cultivation and Identification of Endothelial Progenitor Cells from Rat Bone Marrow
     Objective To investigate the methods of isolating and culturing endothelial progenitor cells (EPCs) from rat bone marrow,as well as their differentiating into endothelial cells. Methods The mononuclear cells were isolated from rat bone marrow using percoll density gradient centrifugation, then plated on dishes coated with fibronectin and induced with VEGF, bFGF and EGF for two weeks. The expression of cell markers was assessed by immunocytochemistry, and the attached cells were stained with Dil-ac-LDL and FITC-UEA-1. Results The attached EPCs were able to line up in the typical cord-like structure and formed clusters and cobblestone. Adherent cells showed CD34,CD133,Flk-1 andⅧ/vWF positive in different time and took up Dil-acLDL,bound FITC-UEA-1 double positive fluorescence by laser confocal microscopy. Conclusions The mononuclear cells can be isolated from rat bone marrow using percoll density gradient centrifugation,and after induction using VEGF, bFGF and EGF, we can get high purified EPCs with the same characteristics as the endothelial cells,and EPCs can be differentiated into endothelial cells in vitro.
     PARTⅡInfection of Recombinant Adenovirus Ad-EGFP/ HIF-1αto Rat Endothelial Progenitor Cells in Vitro
     Objective To investigate the feasibility of infection of recombinant adenovirus Ad-EGFP/HIF-1αto rat EPCs. Methods The mononuclear cells were isolated from rat bone marrow using percoll density gradient centrifugation and induced with VEGF, bFGF and EGF. The expression of cell markers was assessed by immunocytochemistry. Ad-EGFP/HIF-1αwas amplified in HNK293 cells, and then transfected EPCs in vitro. Expression of EGFP in infected EPCs was observed by fluorescence microscope, cell growth activity was detected by MTT, infection efficiency was detected by flow cytometry, and expression of HIF-1αin EPCs was verified by RT-PCR analysis. Results After EPCs were infected with recombinant adenovirus, green fluorescence was found and increased gradually with the time in EPCs.The survival rates of EPCs had no significant change after infection, and the infection rate increased gradually with the time. HIF-1αwas detected in infected cells by RT-PCR. Conclnsions The recombinant adenovirus Ad-EGFP/HIF-1αcan infect EPCs effectively, without significant effect on activity of EPCs.
     PART III Combination of Ultrasound Microbubbles and Recombinant Adenovirus Ad-EGFP/ HIF-1αMediate EPCs to Rat Myocadial Infarction SECTIONⅠStudy on Myocardium-Targeted Homing of
     Intravenously Implantated EPCs by Ultrasound Microbubbles and Ad-EGFP/ HIF-1α
     Objective To explore the feasibility of Myocardium-targeted homing of intravenously implantated EPCs by Ultrasound Microbubbles and Ad-EGFP/ HIF-1α. Methods The mononuclear cells were isolated from rat bone marrow using percoll density gradient centrifugation and induced with VEGF, bFGF and EGF. The expression of cell markers was assessed by immunocytochemistry. Ad-EGFP/HIF-1αwas amplified in HNK293 cells, and then transfected EPCs in vitro. Thrity Sprague Dawley rats were randomly divided into 5 groups after the models of myocardial infarction were prepared.①Blank control group(C),②Ultrasound+Microbubbles group(US+MB),③Endothelial progenitor cells group (EPCs),④Ultra- sound+Endothelial progenitor cells group (US+EPCs) and⑤Ultrasound+ Microbubbles+Endothelial progenitor cells group (US+MB+EPCs). All the rats were sacrificed 48h after EPCs implantation. The intensity of EGFP in the rat myocardium was observed using laser confocal microscopy. The expression of HIF-1αwas respectively detected by Western blot. Results The EGFP intensity in US+MB+EPCs group was the highest among all the groups,and its expression of HIF-1αwas higher than those of other groups. Conclusions Intravenously implantated EPCs by ultrasound microbubbles and Ad-EGFP/ HIF-1αcould augment the homing ability of EPCs to the infracted myocardium, which providing a novel strategy for EPCs implantation of ischemic heart disease.
     SECTIONⅡCombination of Ultrasound Microbubbles and Recombinant Adenovirus Ad-EGFP/ HIF-1αMediate EPCs to Rat Myocadial Infarction
     Objective To explore the feasibility of mediated EPCs treating acute myocardial infarction by ultrasound microbubbles and Ad-EGFP/ HIF-1α. Methods The mononuclear cells were isolated from rat bone marrow using percoll density gradient centrifugation and induced with VEGF, bFGF and EGF. The expression of cell markers was assessed by immunocyto- chemistry. Ad-EGFP/HIF-1αwas amplified in HNK293 cells, and then transfected EPCs in vitro. Thrity Sprague-Dawley rats were randomly divided into 5 groups after the models of myocardial infarction were prepared.①Blank control group(C),②Ultrasound+Microbubbles group (US+MB),③Endothelial progenitor cells group (EPCs),④Ultrasound+ Endothelial progenitor cells group (US+EPCs) and⑤Ultrasound+Micro- bubbles+Endothelial progenitor cells group (US+MB+EPCs). All the rats were sacrificed 4w after EPCs implantation. The CD34 expression was detected by IHC, and Microvessel density (MVD) was deternined. The expression of VEGF was respectively detected by Western blot. Results IHC showed that CD of US+MB+EPCs group was the highest among all the groups (84.24±3.80/HP vs 17.50±2.28/HP, 27.69±6.42/HP, 54.42±3.54/HP, 67.80±5.72/HP). The expression of VEGF of US+MB+EPCs group was higher than those of other groups. Conclusions Combination of ultrasound microbubbles and recombinant adenovirus Ad-EGFP/ HIF-1αcould mediate EPCs effectively and noninvasively to the ischemic myocardium, and promote the expression of VEGF and angiogenesis, which providing a novel strategy for gene therapy of ischemic heart disease.
引文
[1] Annex BH, Simons M. Growth factor-induced therapeutic angiogenesis in the heart: protein therapy [J]. Cardiovasc Res, 2005, 65(3):649-655.
    [2] Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis [J]. Science, 1997, 275(5302): 964-967.
    [3] Gehling UM, Ergun S, Schumacher U,et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells[J]. Blood, 2000, 95(10): 3106-3112.
    [4] Strauer BE, Brehm M, Zeus T, et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chroniccoronary artery disease: the IACT Study [J]. J Am Coll Cardiol. 2005, 46(9):1651 -1658.
    [5] Kendziorra K, Barthel H, Erbs S, et al. Effect of progenitor cells on myocardial perfusion and metabolism in patients after recanalization of a chronically occluded coronary artery [J]. Nucl Med. 2008, 49(4):557-563.
    [6] Erbs S, Linke A, Adams V, et al. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study [J]. Circ Res. 2005, 97(8):756-762.
    [7] Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiateto a cardiomyocyte phenotype in the adult murine heart [J]. Circula- tion. 2005, 105(1):93-98.
    [8] Siminiak T, Czepcczynski R, Grygieska B, et al. Evidence for extravasation of intracoronary administered bone-marrow derived CD34+ stem cells in patients with acute myocardial infarction [J]. Circulation. 2004, 110:Ш-51.
    [9] Bekeredjian R, Chen S, Grayburn PA, et al. Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction [J]. Ultrasound Med Biol, 2005, 31(5):687-691.
    [10] Korpanty G, Chen S, Shohet RV, et al. Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles [J].Gene Ther, 2005, 12(17):1305-1312.
    [11] Vancraeynest D, Havaux X, Pouleur AC, et al. Myocardial delivery of colloid nanoparticles using ultrasound-targeted microbubble destruction [J]. Eur Heart, 2006, 27(2):237-245.
    [12] Wang Zhigang, Ling Zhiyu, Ran Haitao, et al. Ultrasound-mediated micro- bubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats[J]. Clinical Imaging. 2004, 28(6):395-398.
    [13] Zhang Q, Wang Z, Ran H, et al. Enhanced gene delivery into skeletal muscles with ultrasound and microbubble techniques [J]. Acad Radiol. 2006,13(3):363- 367.
    [14] Ren JL, Wang ZG, Zhang Y, et al. Transfection efficiency of TDL compound in HUVEC enhanced by ultrasound-targeted microbubble destruction [J]. Ultrasound Med Biol. 2008, 34(11):1857-1867.
    [15]王志刚.超声分子影像学研究进展[J].中国医学影像技术.2009,25(6):921- 924.
    [16]徐亚丽.诊断超声联合微泡促进MSCs归巢缺血心肌及改善心功能的实验研究[D].重庆.大三军医大学,2009.
    [17] Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines [J]. Circulation, 2004, 109(21): 2487- 2491.
    [18] Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1 [J]. Nat Med. 2004,10(8):858-864.
    [19] Cho KA, Ju SY, Ryu KH, et al. Hypoxia affected SDF-1alpha-CXCR4 interaction between bone marrow stem cells and osteoblasts via osteoclast modulation [J]. Acta Haematol. 2010; 123(1):43-47.
    [20] Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy [J]. Lancet. 2003, 362(9385):697-703.
    [1] Masuda H, Asahara T. Post-natal endothelial progenitor cells for neovascular- ization in tissue regeneration [J]. Cardiovase Res, 2003, 58 (2):390-398.
    [2]余跃主编.干细胞基础与临床[M].中国科学技术大学出版社.2008, p102-104.
    [3] Hristov M, Erl M, Weber PC. Endothelial progenitor cells: mobilization. Different- iation and homing [J]. Arterioscler Thromb Vasc Biol, 2003, 23(7): l185-1189.
    [4] Od?rfer KI, Walter I, Kleiter M, et a1.Role of endogenous bone marrow cells in long-term repair mechanisms after myocardial infarction [J].Cell Mol Med.2008, 12(6):2867-2874.
    [5] Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothe- lial cells for angiogenesis [J]. Science, 1997, 275(5302): 964-967.
    [6]崔磊,于海莹,尹烁,等.体外诱导大鼠骨髓内皮祖细胞(EPCs)成内皮细胞的实验研究[J].中华创伤骨科杂志.2007, 6(10):1154-1159.
    [7]胡月明,金晓明,李红霞.大鼠骨髓EPCs的体外培养和生物学特性鉴定[J].哈尔滨医科大学学报.2007, 41(3):211-213.
    [8] Kaushal S, Amiel G E, Gulesevian kj, et a1. Fuctional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo [J]. Nat Med, 2001, 7(9): 1035-1040.
    [9] Thomas RA, Pietrzak DC, Scicchitano MS, et al. Detection and characterization of circulating endothelial progenitor cells in normal rat blood[J]. Pharmacol Toxicol Methods. 2009, 60(3):263-274.
    [10] Olofsson B, Jeltsch M, Eriksson U, et al.Current biology of VEGF-B and VEGF-C [J]. Curr Opin Biotechnol, 1999,10(6):528-535.
    [11]周泉.血管内皮生长因子的生物学特性及临床研究进展[J].实用心脑肺血管病杂志,2001,9(1):51-54.
    [12]刘李登,向军俭.碱性成纤维细胞生长因子(bFGF)抗体研究进展[J].细胞与分子免疫学杂志.2009,25(4):379-381.
    [13]张会峰,赵志刚.内皮祖细胞及治疗下肢缺血疾病的研究进展[J].使用治疗与诊断杂志. 2005, 19(4):270-272.
    [14]席全胜,钱欣国. EGF家族研究进展[J].生命的化学.1999,19(3):135-137.
    [15]冯玉梅,冯怡,马清钧.内皮抑素在新生血管形成相关疾病中的作用机制研究进展[J].生物通讯技术. 2005, 16(3):323-325.
    [16]赵洪雯,余荣杰,李敛,等.大鼠内皮祖细胞的分离培养与鉴定[J].重庆医学. 2007, 36(18):1836-1839.
    [17] Peichev M,Naiyer AJ,Pereira D,et a1.Expression of VEGFR-2 and CD133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors [J].Blood. 2000, 95(3):952-958.
    [18] zyqcath.干细胞特性标记以及追踪标记技术经验交流[EB/OL]. http://meeting. dxy.cn/stem-cell-technique/article/i8585.html.
    [19] Gehing UM, Ergun S, Schumacher U, et al. In vitro differentiation of Endothelial cells from AC133-positive progenitor cells[J].Blood,2000,95 (10):3106-3112.
    [20] Werner N, Junk S, Laufs U, et al. Intra Venous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury [J].Circ Res, 2003, 93(2):el7-e24.
    [21] Griese D P, Ehsan A, Melo LG, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy[J]. Circulation. 2003, 108(21):2710- 2715.
    [1] Masuda H, Asahara T.Post-natal endothelial progenitor cells for neovascul- arization in tissue regeneration [J]. Cardiovase Res, 2003, 58(2):390-398.
    [2]杨亚荣,曾秋棠,朗明健,等.内皮祖细胞移植对大鼠心肌梗死后缺血心肌血管再生及心功能的影响[J].中国组织工程研究与临床康复.2008, 12(25):4815 -4818.
    [3] Tomanin R, Scarpa M. Why do we need new gene therapy viral vectors Characteris- tics, limitations and future perspectives of viral vector transduction [J]. Curr Gene Ther, 2004, 4(4):357-372.
    [4]王彤主编.骨髓间充质干细胞临床研究进展[M].人民卫生出版社.2008, p56.
    [5]金旭红,杨柳.骨髓间充质干细胞标记及活体示踪技术研究进展[J].中华创伤杂志.2007, 23(4):311-313.
    [6] Wang JS, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellular cardiomyoplasty: Feasibility and potential clinical advantages [J]. Thorac Cardio- vasc Surg. 2000, 120(5):999-1005.
    [7]徐亚丽.诊断超声联合微泡促进MSCs归巢缺血心肌及改善心功能的实验研究[D].重庆.大三军医大学,2009.
    [8] Kruyt MC, De Bruijn J, Veenhof M, et al. Application and limitations of chloro- methylbenzamidodialkylcarbocyanine for tracing cells used in bone Tissue engineer- ing [J]. Tissue Eng. 2003, 9(1):105-115.
    [9] Ding W, Bai J, Zhang J, et al. In vivo tracking of implanted stem cells using radio-labeled transferrin scintigraphy [J]. Nucl Med Biol. 2004, 31(6):719-725.
    [10] Zhao DC, Lei JX, Chen R, et al. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats [J]. World J Gastroenterol. 2005,11 (22):3431-3440.
    [11]段小军,杨柳,周跃,等.兔骨髓间充质干细胞同种异体皮下移植研究[J].中华创伤医学杂志.2005, 21(7):512-516.
    [12] Bulte JW, Kraitchman DL. Monitoring cell therapy using iron oxide MR contrast agents [J]. Curr Pharm Biotechnol. 2004, 5(6):567-584.
    [13] Ntziachristos V, Ripoll J, Wang LV, et al. Looking and listening to light: the evolution of whole-body photonic imaging [J].Nat Biotechnol. 2005, 23(3):313-320.
    [14] Wang X, Rosol M, Ge S, Peterson D, et al. Dynamic tracking of human hemato- poietic stem cell engraftment using in vivo bioluminescence imaging [J].Blood. 2003, 102(10):3478-3482.
    [15] Lindemann D, Schnittler H.Genetic manipulation of endothelial cells by viral vectors [J]. Thromb Haemost. 2009, 102(6):1135-1143.
    [16] Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors [J]. Gene Ther. 2010, 17(3):295-304.
    [17]祁丽,顾铭,从威.重组腺病毒生产技术研究进展[J].过程工程学报. 2004, 4(5): 475-479.
    [18] Leopold PL, Ferris B, Grinberg I,et a1. Fluorescent Virions: Dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells [J]. Hum Gene Ther. 1998, 9(3):367-378.
    [19] Shi YH, Wang YX, Bingle L, et a1. In vitro study of HIF-1 activation and VEGF release by bFGF in the T47D breast cancer cell line under normoxic conditions: involvement of PI-3K/Akt and MEK1/ERK pathways[J]. Pathol. 2005, 205(4):530- 536.
    [20] Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1 [J]. Nat Med. 2004,10(8):858-864.
    [21]余跃主编.干细胞基础与临床[M].中国科学技术大学出版社.2008, p102.
    [22] Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy[J]. Lancet. 2003, 362(9385):697-703.
    [23]李云霞,詹青,丁素菊,等.不同缺氧方法诱导皮质神经元表达缺氧诱导因子1α及促红素的实验方法比较[J].中风与神经疾病杂志, 2008, 25(6):655-657.
    [24] Li YX, Ding SJ, Xiao L, et a1. Desferoxamine preconditioning protects against cerebral ischemia in rats by inducing expressions of hypoxia inducible factor 1 alpha and erythropoietin [J]. Neurosci Bull, 2008, 24(2):89-95.
    [25]蒋捷,高炜,周爱儒.冠心病的基因治疗[J].基础医学与临床,2002,22(6):488- 492.
    [26] Hare JM, Chaparro SV. Cardiac regeneration and stem cell therapy [J]. Curr Opin Organ Transplant, 2008, 13(5):536-542.
    [27] Losordo DW,Dimmeler S.Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines [J]. Circulation, 2004, 109(21): 2487- 2491.
    [1] Denning-Kendall P, Singha S, Bradley B, et al. Cobblestone area-forming cells in human cord blood are heterogeneous and differ from long-term culture-initiating cells[J]. Stem Cells. 2003,21(6):694-701.
    [2] Denning-Kendall P, Singha S, Bradley B, et al. Cytokine expansion culture of cord blood CD34+ cells induces marked and sustained changes in adhesion receptor and CXCR4 expressions[J].Stem Cells. 2003, 21(1):61-70.
    [3]庄瑜,陈鑫,石开虎,等.基质细胞衍生因子1在骨髓间质干细胞归巢到急性梗死心肌中的作用[J].江苏医药.2007, 33(6):579-582.
    [4] Oostendorp RA, Ghaffari S, Eaves CJ. et al. Kinetics of in vivo homing and recruitment into cycle of hematopoietic cells are organ-specific but CD44 indepen- dent[J]. Bone Marrow Transplant. 2000, 26(5):559-566.
    [5] Balabanian K, Couderc J, Bouchet-Delbos L, et al. Role of the chemokine stromal cell-derived factor 1 in autoantibody production and nephritis in murine lupus[J]. Immunol. 2003, 170(6):3392-3400.
    [6]徐亚丽.诊断超声联合微泡促进MSCs归巢缺血心肌及改善心功能的实验研究[D].重庆.大三军医大学,2009.
    [7] Zen K, Okigaki M, Hosokawa Y, et al. Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response [J]. Mol Cell Cardiol. 2006, 40(6):799-809.
    [8]庄瑜.大鼠心肌梗死模型制作图解[EB/OL].http://www.dr-cn.net/ziliao/upload3 /I21.000H42C047.pdf
    [9]黄逝勇,葛均波.骨髓干细胞归巢研究进展[J].中华内科杂志.2007, 46(6):515-517.
    [10] Ho,A.D.(德)主编,吴际译.干细胞移植-机理与临床[M].科学出版社.2008, p173- 175.
    [11] Vandervelde S, van Luyn MJ, Tio RA, et al. Signaling factors in stem cell-mediated repair of infarcted myocardium[J]. Mol Cell Cardiol. 2005, 39(2):363-376.
    [12] Shyu KG, Wang MT, Wang BW, et al. Intramyocardial injection of naked DNAencoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat[J]. Cardiovasc Res. 2002,54(3):576-583.
    [13] Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1 [J]. Nat Med. 2004,10(8):858-864.
    [14] Zaruba MM, Franz WM. Role of the SDF-1-CXCR4 axis in stem cell-based thera- pies for ischemic cardiomyopathy [J]. Expert Opin Biol Ther. 2010,10(3):321-335.
    [15] Tang J, Wang J, Yang J. et al.Mesenchymal stem cells over-expressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats[J]. Eur J Cardiothorac Surg. 2009, 36(4):644-650.
    [16] Tang J, Wang J, Yang J, Kong X.et al. Adenovirus-mediated stromal cell-derived- factor-1alpha gene transfer induces cardiac preservation after infarction via angiogenesis of CD133+ stem cells and anti-apoptosis[J]. Interact Cardiovasc Thorac Surg. 2008, 7(5):767-770.
    [17] Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1alpha plays a criti- cal role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury[J]. Circulation. 2004, 110(21): 3300-3305.
    [18] Spevack DM, Cavaleri S, Zolotarev A. et al. Increase in circulating bone marrow progenitor cells after myocardial infarction [J]. Coron Artery Dis. 2006, 17(4):345- 349.
    [19] Bekeredjian R, Chen S, Grayburn PA, et al. Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction [J]. Ultrasound Med Biol, 2005, 31(5):687-691.
    [20] Korpanty G, Chen S, Shohet RV, et al. Targeting of VEGF-mediated angiogenesis to rat myocardium using ultrasonic destruction of microbubbles [J].Gene Ther, 2005, 12(17):1305-1312.
    [21] Vancraeynest D, Havaux X, Pouleur AC, et al. Myocardial delivery of colloid nanoparticles using ultrasound-targeted microbubble destruction [J]. Eur Heart,2006, 27(2):237-245.
    [22]钟世根,王志刚,凌智瑜,等.不同强度超声破坏微泡对犬心肌组织的生物学效应[J].中国医学影像技术. 2009, 25(10) :1738-1740.
    [23]凌智瑜,王志刚,冉海涛,等.超声微泡造影剂对心肌组织毛细血管通透性的影响实验研究[J].中国超声医学杂志, 2004, 20(5): 327-330.
    [24] Yoshida J,Ohmori K,Takeuchi H,et al.Treatment of ischemic limbsbased on localrecruitment of vascular endothelial growth factor-producinginflammatory cells with ultrasonic microbubble destruction[J].Am Coll Cardiol,2005,46(5):899- 905.
    [25] Imada T,Tatsumi T,Mori Y,et al.Targeted delivery of bone marrow mononuclear cells by ultrasound destruction of microbubbles induces both angiogenesis and arteriogenesis response[J].Arterioscler Thromb Vasc Biol,2005,25(10):2128-2134.
    [26] Wang Zhigang, Ling Zhiyu, Ran Haitao, et al. Ultrasound-mediated micro- bubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats[J]. Clinical Imaging. 2004, 28(6):395-398.
    [27] Zhang Q, Wang Z, Ran H, et al. Enhanced gene delivery into skeletal muscles with ultrasound and microbubble techniques [J]. Acad Radiol. 2006,13(3):363- 367.
    [28] Ren JL, Wang ZG, Zhang Y, et al. Transfection efficiency of TDL compound in HUVEC enhanced by ultrasound-targeted microbubble destruction [J]. Ultrasound Med Biol. 2008, 34(11):1857-1867.
    [29] Behm CZ, Kaufmann BA, Carr C,et al. Molecular imaging of endothelial vascular cell adhesion molecule-1 expression and inflammatory cell recruitment during vasculogenesis and ischemia-mediated arteriogenesis[J].Circulation. 2008, 117(22): 2902-2911.
    [1] Behm CZ, Kaufmann BA, Carr C,et al. Molecular imaging of endothelial vascular cell adhesion molecule-1 expression and inflammatory cell recruitment during vasculogenesis and ischemia-mediated arteriogenesis[J].Circulation. 2008, 117(22): 2902-2911.
    [2] Zen K, Okigaki M, Hosokawa Y, et al. Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response [J]. Mol Cell Cardiol. 2006,40(6):799-809.
    [3]杨亚荣,曾秋棠,朗明健,等.内皮祖细胞移植对大鼠心肌梗死后缺血心肌血管再生及心功能的影响[J].中国组织工程研究与临床康复.2008, 12(25):4815 -4818.
    [4] Pelliccia F, Cianfrocca C, Rosano G, et al. Role of endothelial progenitor cells in restenosis and progression of coronary atherosclerosis after percutaneous coronary intervention: a prospective study [J]. JACC Cardiovasc Interv. 2010, 3(1):78-86.
    [5] Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis andmetastasis: correla- tion in invasive breast carcinoma [J]. New Eng J Med, 1991, 324(1):1-8.
    [6]余跃主编.干细胞基础与临床[M].中国科学技术大学出版社.2008, p110.
    [7] Verloop RE, Koolwijk P, Zonneveld AJ, et al. Proteases and receptors in the recruitment of endothelial progenitor cells in neovascularization[J]. Eur Cytokine Netw. 2009, 20(4):207-219.
    [8] Foresta C, De Toni L, Ferlin A, et al. Clinical implication of endothelial progenitor cells[J]. Expert Rev Mol Diagn. 2010, 10(1):89-105.
    [9] António N, Fernandes R, Rodriguez-Losada N, et al. Stimulation of endothelial progenitor cells: a new putative effect of several cardiovascular drugs[J]. Eur J Clin Pharmacol. 2010,66(3):219-230.
    [10] Losordo DW,Dimmeler S.Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines [J]. Circulation, 2004, 109(21):2487- 2491.
    [11] Shyu KG, Wang MT, Wang BW, et al. Intramyocardial injection of naked DNAencoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat[J]. Cardiovasc Res. 2002,54(3):576-583.
    [12]吕菁君,林国生,李庚山,等.骨髓单个核细胞自体移植促进心脏血管再生[J].中华胸心血管外科杂志.2004.20(2):102-104.
    [13]吕菁君徐红新魏捷,等.骨髓单个核细胞自体移植治疗不同时期心肌梗死的研究[J].中华急诊医学杂志.2005.14(8):624-628.
    [14] Lin GS, LüJJ, Jiang XJ, et al. Autologous transplantation of bone marrow mono- nuclear cells improved heart function after myocardial infarction[J]. Acta Pharmacol Sin. 2004, 25(7):876-886.
    [15]凌智瑜,王志刚,冉海涛,等.超声微泡造影剂对心肌组织毛细血管通透性的影响实验研究[J].中国超声医学杂志, 2004, 20(5): 327-330.
    [16]李雪霖,王志刚,凌智瑜,等.超声破坏外跑造影剂促进大鼠心肌血管新生的实验研究[J].中国超声医学杂志,2007,23(1)6-8.
    [17] Wang Zhigang, Ling Zhiyu, Ran Haitao, et al. Ultrasound-mediated micro- bubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats[J]. Clinical Imaging. 2004, 28(6):395-398.
    [18] Zhang Q, Wang Z, Ran H, et al. Enhanced gene delivery into skeletal muscles with ultrasound and microbubble techniques [J]. Acad Radiol. 2006,13(3):363- 367.
    [19] Ren JL, Wang ZG, Zhang Y, et al. Transfection efficiency of TDL compound in HUVEC enhanced by ultrasound-targeted microbubble destruction [J]. Ultrasound Med Biol. 2008, 34(11):1857-1867.
    [20] XingSheng Li, ZhiGang Wang, Hai Tao Ran, et al. Experimental research on therapeutic angiogenesis induced by Hepatocyte Growth Factor directed by ultrasound-targeted microbubble destruction in rats [J]. J Ultrasound Med 2008, 27(3):439-446.
    [1] Cedar SH. The function of stem cells and their future roles in healthcare[J]. Br J Nurs.2006,15(2):104-107.
    [2] Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis [J]. Science, 1997, 275(5302): 964-967.
    [3] Masuda H, Asahara T. Post-natal endothelial progenitor cells for neovascular- ization in tissue regeneration [J]. Cardiovase Res, 2003, 58 (2):390-398.
    [4]余跃主编.干细胞基础与临床[M].中国科学技术大学出版社.2008, p102-104.
    [5] Od?rfer KI, Walter I, Kleiter M, et a1.Role of endogenous bone marrow cells in long-term repair mechanisms after myocardial infarction [J].Cell Mol Med.2008, 12(6):2867-2874.
    [6] Yamamoto H, Kato H, Uruma M, et al. Identification of two distinct populations of endothelial progenitor cells differing in size and antigen expression from human umbilical cord blood. Ann Hematol [J].2008,87(2):87-95.
    [7] Schmeisser A, Garlichs CD, Zhang H, et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions[J]. Cardiovasc Res. 2001, 49(3):671-80.
    [8] Mori L, Bellini A, Stacey MA, et al. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow[J]. Exp Cell Res. 2005,304(1):81-90.
    [9]王晓华,吴中海,唐力军.人骨髓多潜能成体祖细胞分化后细胞移植治疗兔心肌梗死[J].第二军医大学学报,2006,27(8):853-857.
    [10] Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contribution to neovasculogenesis[J]. Arterioscler Thromb Vasc Biol, 2004,24(2):288-293
    [11] Han JK, Lee HS, Yang HM, et al. Peroxisome proliferator-activated receptor- delta agonist enhances vasculogenesis by regulating endothelial progenitor cells through genomic and nongenomic activations of the phosphatidylinositol 3-kinase/Akt pathway.Circulation [J]. 2008,118(10):1021-33.
    [12]温昱,李彬,党瑞山,等.犬骨髓内皮祖细胞生物学特性及诱导分化[J].解剖学杂志.2008, 31(3):316-321.
    [13] Hur J, Yang HM, Yoon CH, et al. Identification of a novel role of T cells in postnatal vasculogenesis: characterization of endothelial progenitor cell colonies [J]. Circulation. 2007,116(15):1671-82.
    [14]黄逝勇,葛均波.骨髓干细胞归巢研究进展[J].中华内科杂志.2007, 46(6):515- 517.
    [15] Denning-Kendall P, Singha S, Bradley B, et al. Cobblestone area-forming cells in human cord blood are heterogeneous and differ from long-term culture-initiating cells[J]. Stem Cells. 2003,21(6):694-701.
    [16] Denning-Kendall P, Singha S, Bradley B, et al. Cytokine expansion culture of cord blood CD34+ cells induces marked and sustained changes in adhesion receptor and CXCR4 expressions[J].Stem Cells. 2003, 21(1):61-70.
    [17]庄瑜,陈鑫,石开虎,等.基质细胞衍生因子1在骨髓间质干细胞归巢到急性梗死心肌中的作用[J].江苏医药.2007, 33(6):579-582.
    [18] Oostendorp RA, Ghaffari S, Eaves CJ. et al. Kinetics of in vivo homing and recruitment into cycle of hematopoietic cells are organ-specific but CD44 indepen- dent[J]. Bone Marrow Transplant. 2000, 26(5):559-566.
    [19] Balabanian K, Couderc J, Bouchet-Delbos L, et al. Role of the chemokine stromal cell-derived factor 1 in autoantibody production and nephritis in murine lupus[J].Immunol. 2003, 170(6):3392-3400.
    [20] Ho,A.D.(德)主编,吴际译.干细胞移植-机理与临床[M].科学出版社.2008, p173- 175.
    [21] Vandervelde S, van Luyn MJ, Tio RA, et al. Signaling factors in stem cell-mediated repair of infarcted myocardium[J]. Mol Cell Cardiol. 2005, 39(2):363-376.
    [22] Verloop RE, Koolwijk P, Zonneveld AJ, et al. Proteases and receptors in the recruitment of endothelial progenitor cells in neovascularization[J]. Eur Cytokine Netw. 2009, 20(4):207-219.
    [23] Foresta C, De Toni L, Ferlin A, et al. Clinical implication of endothelial progenitor cells[J]. Expert Rev Mol Diagn. 2010, 10(1):89-105.
    [24] António N, Fernandes R, Rodriguez-Losada N, et al. Stimulation of endothelial progenitor cells: a new putative effect of several cardiovascular drugs[J]. Eur J Clin Pharmacol. 2010,66(3):219-230.
    [25]吕菁君,林国生,李庚山,等.骨髓单个核细胞自体移植促进心脏血管再生[J].中华胸心血管外科杂志.2004.20(2):102-104.
    [26]吕菁君徐红新魏捷,等.骨髓单个核细胞自体移植治疗不同时期心肌梗死的研究[J].中华急诊医学杂志.2005.14(8):624-628.
    [27] Lin GS, LüJJ, Jiang XJ, et al. Autologous transplantation of bone marrow mono- nuclear cells improved heart function after myocardial infarction[J]. Acta Pharmacol Sin. 2004, 25(7):876-886.