丁草胺降解菌株的分离、降解特性及其生物修复效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯代乙酰胺类除草剂是一类高效、高选择性的触杀性除草剂,对禾本科杂草具有非常显著的杀除效果,其主要代表品种乙草胺和丁草胺是我国使用最多的三种除草剂中的两种,年使用量分别超过1万吨和5千吨。氯代乙酰胺类除草剂对鱼类有较强的毒性,乙草胺和丁草胺被美国环保局定为B-2类致癌物,它们还有不易挥发、不易光解、土壤残留期长的特点,对生态环境和人体健康有着巨大威胁。另外,氯代乙酰胺类除草剂对作物存在隐性药害,对农业造成严重的损失。因此,该类除草剂在环境中的吸附、迁移、转化和降解等生态行为越来越受到关注。氯代乙酰胺类除草剂在土壤中主要是通过微生物的降解作用而消失,国内外报道了多株该类除草剂降解菌株,但能降解多种氯代乙胺类除草剂并以其为碳源生长的菌株的分离筛选、降解特性和代谢途径方面的研究还不多,其分子结构对其微生物可降解性的影响的研究还未见报道。
     本文以氯代乙酰胺类除草剂的常用品种丁草胺为降解对象,从长期施用丁草胺的稻田表层土壤及生产丁草胺的农药厂污水处理车间的生化污泥中分离到丁草胺降解菌株14株,其中10株只能以共代谢的方式降解丁草胺,另外4株能以丁草胺作为唯一碳源生长,菌株DCA-1和FLY-8对丁草胺的降解率最高,在无机盐培养基中,DCA-1和FLY-8在5d内对100mg·L-1的丁草胺的降解率为80.3%和68.5%。14株丁草胺降解菌分属于9个不同的属,这一结果显示自然环境中能降解该类除草剂的微生物种类具有丰富的多样性。
     本文对菌株DCA-1和FLY-8的生物学特性和分类地位进行了详细研究。菌株DCA-1不产芽孢、不运动、严格好氧,革兰氏染色阴性,短杆状不产水溶性色素,未发现内膜结构及光能生长。LB平板上菌落显淡黄色,呈圆形,中间凸起,边缘整齐,不透明。接触酶和氧化酶阳性硝酸盐还原、脲酶、吲哚、产H2S反应显阴性。主要呼吸醌为泛醌10,主要细胞脂肪酸为C18:1ω7c and 11-methyl C18:1ω7c,DNA G+C含量为62.5 mol%。16S rRNA基因同源性及系统发育分析结果表明菌株DCA-1为红球菌科成员,且和Catellibacterium aquatile同源性最近(96.5%),在系统发育树上能很好地聚类成一个分支。根据表型特征、生理生化特性和16S rRNA基因序列系统发育分析,将其鉴定为Catellibacterium属的一个新种,命名为Catellibacterium caeni sp. nov..
     菌株FLY-8为不产芽孢、革兰氏染色阴性及不运动的杆菌。最适生长温度为25-30℃,最适pH值为7.0-7.5,最适盐浓度(NaCl)为0.5%。氧化酶、接触酶和硝酸盐还原阳性,脲酶阴性。对庆大霉素和壮观霉素有抗性。DNA G+C含量为62.5 mol%。16S rRNA基因同源性及系统发育分析结果表明菌株FLY-8为副球菌属成员,且和Paracoccus kocurii JCM 7684T (similarity 99.4%)同源性最近,在系统发育树上能很好地聚类成一个分支,将其鉴定为Paracoccus sp.。
     降解菌株DCA-1能快速降解甲草胺、乙草胺和丁草胺,5d降解率分别达到89.6%、83.2%、75.9%,对异丙草胺也有一定的降解能力,5d降解率为36.4%,并且降解菌株DCA-1能以这四种氯代乙酰胺类除草剂为碳源生长。降解菌株DCA-1不能降解异丙甲草胺和丙草胺。降解菌株FLY-8降解谱要比降解菌株DCA-1的降解谱广,对甲草胺、乙草胺、异丙草胺、丁草胺、丙草胺和异丙甲草胺,5d降解率分别达到98.7%、88.2%、78.3%、65.2%、35.9%和21.4%,并且菌株FLY-8能以这六种氯代乙酰胺类除草剂为碳源生长。
     菌株DCA-1和FLY-8在温度为20-35℃,pH值为6-9时对丁草胺的降解效果最好。菌株DCA-1和FLY-8对低于100mg·L-1的丁草胺有较好的降解效果;丁草胺浓度超过200mmg·L-1时会对菌株DCA-1和FLY-8产生毒害作用。接种量越大降解效果越好。通气量试验结果表明,在一定转速范围内菌株DCA-1和FLY-8对丁草胺的降解效果随着摇床转速的增加而增加。
     探讨了氯代乙酰胺类除草剂分子结构对其生物可降解性的影响。结果表明不同烷氧烷基取代对氯代乙酰胺类除草剂的微生物可降解性有非常显著的影响,烷氧甲基取代要比烷氧乙基取代更容易降解;氯代乙酰胺类除草剂分子中的烷氧甲基中烷基的长度对氯代乙酰胺类除草剂的微生物可降解性有明显的影响,烷基链长度越长,降解速率越慢;烷氧甲基中烷基分支结构也影响到其生物可降解性;而氯代乙酰胺类除草剂中苯环上的烷基取代对除草剂的微生物可降解性似乎没有显著影响。
     通过HPLC和GC-MS技术鉴定了降解菌株DCA-1和FLY-8对丁草胺降解过程中产生的中间代谢产物并对推测了可能的降解代谢途径。推测菌株DCA-1降解丁草胺的代谢途径为:首先丁草胺通过脱去丁氧甲基支链中的丁基,转化为N-hydroxymethyl-2-chloro-N(2,6-diethyl-phenyl)-acctamide (A),然后物质A可以通过脱掉N上的-hydroxymethyl(羟甲基)转化为2,6-二乙基氯代乙酰替苯胺(B),或者A通过脱去氯原子转化为N-(2,6-Diethyl-pheny)-N-hydroxymethyl-acetamide (D);物质D还可以脱掉一个甲基生成N-(2,6-Diethyl-pheny)-N-hydroxymethyl-formamide (E)。丁草胺还可能通过脱氯和脱乙基被直接转化成(2,6-Diethyl-phenyl)-ethoxymethyl-carbamic acid (C).推测菌株FLY-8降解丁草胺的代谢途径为:首先丁草胺脱丙烷基转化为2-chloro-N-(2,6-dimethylphenyl)-N-(methoxymethyl) acetamide (甲草胺),甲草胺进而N原子上脱烷基转化为2-chloro-N-(2,6-dimethylphenyl) acetamide,接着2-chloro-N-(2,6-dimethylphenyl) acetamid又被转化成2,6-diethylaniline,2,6-diethylaniline经过一些列未知方式的降解进一步被转化成了苯胺,苯胺在苯胺双加氧酶的作用下生成邻苯二酚,再在邻苯二酚双加氧酶的作用下开环,最终被完全矿化为二氧化碳和水。
     通过土壤试验证实微生物降解作用是土壤环境中丁草胺残留降解的主要动力。外源添加丁草胺降解菌株DCA-1能显著促进各类土壤中丁草胺残留的降解,但降解效果受到土壤性质的影响,其中pH值、有机质含量和粘粒含量是相对重要的影响因素,偏中性的pH值,较高的有机质和粘粒含量有利于菌株DCA-1对丁草胺的降解,而淹水状态不利于菌株DCA-1对土壤中丁草胺残留的降解。
Chloroacetamide herbicides are among the most important class of pre-emergence herbicides used for the control of annual grass and broadleaf weeds. The most commonly used chloroacetamide herbicides in the world were acetochlor and butachlor. Chloroacetamide herbicides persist for a long time in soil, and the residues consistently injure subsequent rotation crops, especially in sandy soils with low organic matter. Several studies have demonstrated that these herbicides were highly toxic to some aquatic organisms and were carcinogenic in mammal:acetochlor and alachlor caused tumors in the nasal turbinates, butachlor caused stomach tumors, and metolachlor caused liver tumors. Thus, great concerns have been raised about the behavior and fate of chloroacetamide herbicides and their degradation metabolites in the environment.
     Studies have demonstrated that biodegradation was the most important factor in the dissipation of chloroacetamide herbicides in environment. Many microorganisms capable of degrading chloroacetamide herbicides have been isolated and the metabolic metabolites were also identified. However, up to now, most reported pure microbial strains co-metabolized chloroacetamide herbicides and only a partial biodegradation was achieved, resulting in the accumulation of their metabolites, which contaminated the soil, surface and ground water. Moreover, up to now, the influence of the molecular structure of chloroacetanilide herbicides on their biodegradability has not been studied extensively.
     In this study,14 butachlor-degrading strains were isolated form rice field soil and activated sludge. Among these strains,10 of the 14 strains could only grow and degrade butachlor in LB medium, indicating that these strains co-metabolized butachlor. Four strains were able to utilize butachlor as the sole carbon source for growth. All of these strains distributed in nine of bacteria genus, which imply the diversity of the butachlor-degradating bacteria. Two strains, designated DCA-1 and FLY-8, were selected for further study due to their high degradation efficiencies. Strain DCA-1 and FLY-8 were able to degrade about 80.3% and 68.5% of the initially added 100 mg L-1 butachlor in MSM medium within 5 d at 30℃.
     The taxonomic position of strain DCA-1 was determined using a polyphasic taxonomic approach. Cells of strain DCA-1 are non-sporulating, non-motile, strictly aerobic and Gram-negative. No diffusible pigments are produced. Vesicular internal membrane structures and photoheterotrophic growth were not observed. The major respiratory quinone was ubiquinone-10 and the major cellular fatty acids were C18:1ω7c and 11-methyl C18:1ω7c. The genomic DNA G + C content of strain DCA-1 was 62.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences comparison revealed that strain DCA-1 was a member of the family Rhodobacteraceae and was related most closely to the type strain of Catellibacterium aquatile (sequence similarity 96.5%). The combination of phylogenetic analysis, phenotypic characteristics and chemotaxonomic data supports the suggestion that strain DCA-1 represents a novel species of the genus Catellibacterium, for which the name Catellibacterium caeni sp. nov. is proposed.
     Strain FLY-8 is a non-spore-forming, gram-negative, nonmotile and rod-shaped bacterium. The DNA G+C content is 69.5 mol%. Phylogenetic analysis of the 16S rRNA gene sequences revealed that strain FLY-8 groupes among Paracoccus species and forms a subclade with Paracoccus kocurii JCM 7684T (similarity 99.4%) with a high bootstrap value of 100%. Thus, based on the results of phenotypic, genotypic and phylogenetic properties, strain FLY-8 was identified as Paracoccus sp.
     Strain DCA-1 was able to degrade alachlor, acetochlor, propisochlor and butachlor and utilized these herbicides as carbon source for growth. When the initial concentration of different chloroacetamide herbicides were 100 mg L-1,89.6% of alachlor,83.2% of acetochlor,36.4% of propisochlor and 75.9% of butachlor were degraded by strain FLY-8, respectively, after 5 d incubation at 30℃. Strain FLY-8 was able to degrade the six chloroacetamide herbicides used in study and utilized these herbicides as carbon source for growth; and the order of degradation rates was:alachlor> acetochlor> propisochlor> butachlor> pretilachlor> metolachlor. When the initial concentration of different chloroacetamide herbicides were 100 mg L-1,98.7% of alachlor,88.2% of acetochlor,78.3 % of propisochlor,65.2% of butachlor,35.9% of pretilachlor and 24.1% of metolachlor were degraded by strain FLY-8, respectively, after 5 d incubation at 30℃.
     The influence of the molecular structure of chloroacetanilide herbicides on their biodegradability was studied. The results indicated that the substitutions of alkoxymethyl side chains with alkoxyethyl side chain greatly reduced the degradation efficiencies; the length of amide nitrogen's alkoxymethyl significantly affected the biodegradability of these herbicides, the longer the alkyl was, the slower the degradation efficiencies occurred; the phenyl alkyl substituents have no obviously influence on the degradation efficiency.
     The optimal pH and temperature for the butachlor degradation by the two strains were 6-9 and 20-35℃, respectively. The degradation efficiency was related positively to initial inoculum size and ventilation. Low concentrations of butachlor did not inhibit the butachlor degradation. However, high concentrations of butachlor (above 200 mg L-1) reduced the degradation rate.
     The pathway of butachlor degradation by strain DCA-1 and strain FLY-8 were studied by metabolite identification and enzymatic studies. In strain DCA-1, butachlor was degraded to N-hydroxymethyl-2-chloro-N(2,6-diethyl-phenyl)-acctamide, which then converted to 2-chloro-N-(2,6-diethyl-phenyl)-acetamide,2,6-diethyl-phenyl)-ethoxymethyl-carbamic acid or to N-(2,6-diethyl-pheny)-N-hydroxymethyl-acetamide. N-(2,6-diethyl-pheny)-N-hydroxymethyl-acetamide was transformed to N-(2,6-diethyl-pheny)-N-hydroxymethyl-formamide. In strain FLY-8, butachlor was degraded to alachlor by the partial C-dealkylation and then converted to 2-chloro-N-(2,6-dimethylphenyl) acetamide by N-dealkylation, which subsequently transformed to 2,6-diethylaniline,2,6-diethylaniline was further degraded via the metabolite aniline and catechol, and catechol was oxidized through an ortho-cleavage pathway.
     Inoculation of strain DCA-1 into soils was found to significantly promote the removal of butachlor residue in soil. The moderate pH, high concentration of organic matter and clay could promote the degradation efficiencies of DCA-1. The degradation of butachlor in the soils need an appropriate soil moisture, high content of soil water would inhibit the degradation efficiencies.
引文
Abrahams P W. Soils:their implications to human health [J]. Sci. Total. Environ.,2002,291:1-32.
    Aislabie J M, Richardsnk B. Microbial degradation of DDT and its residues-a review [J]. New Zealand Journal of Agricultural Research,1997,40:269-282.
    Akiko T, Hideko M, Kuniaki K. Monitoring of herbicides in river water by gas chromatographymass spectrometry and solid-phase extraction [J]. Journal of Chromatography A,1996,754:159-168.
    Amal C D, Anjan D. Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal [J]. Chemosphere,2006,65:1082-1086.
    Bersenyi, Z. et al., Studies on the phytotoxicity of herbicides in maize (Zeamays L.) as affected by temperature and antidotes. In Proceedings of the International Symposium on cereal adaptation to low temperature stress in controled environments, Martonvasarphytotron 25th anniversary celebrations,2-4 June 1997 [edited by bedo Z, Sutka J, et al.81-86 (1997).
    Bhattacharya B, Sarkar S K, Mukherjee N. Organochlorine pesticide residues in sediments of a tropical mangrove estuary, India:implications for monitoring [J]. Environ. Int.,2002,9:587-592.
    Boundy-Mills K L, De Souza M L, Mandelbaum R T. The atzB gene of Pseudomonas sp. strain ADP encodes the second enzyme of a novel atrazine degradation pathway [J]. Appl. Environ. Microbiol., 1997,63(3):916-923
    Bowman B T. Mobility and persistence of alachlor, atrazine and metolachlor in Plainfield sand, and isazofos in Honeywood silt loam, using field lysimeters [J]. Environ. Toxie. Chem.,1990,9:453.
    Bowman B T. Mobility and persistence of the herbicides atrazlne. metolachlor. and terbuthylazine in plainfield sand determined using field lysjmeters. Environ. Toxie [J]. Chem.,1989,8:485.
    Bumpus J A, Austsd. Biodegradation of DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] by the white rot fungus Phanerochaete chrysosporium [J]. Appl. Envir. Microbiol,1987,53(9): 2001-2008.
    Carlson D L, Than K D, Roberts A L. Acid-and base-catalyzed hydrolysis of chloroacetamide herbicides [J]. Journal of Agricultural and Food Chemistry,2006,54(13):4740-4750.
    Chakraborty S K, Anjan B. Degradation of butachlor by two soil fungi [J]. Chem.,199123(1):99-105.
    Charu D, Vishakha R, Rin k P, et al. Organization of lin genes and IS6100 among different strains of hexachlorocyclohexane-degrading Sphingomonas paucimobilis: Evidence for horizontal gene transfer [J]. Journal of Bacteriology,2004,186(8):2225-2235.
    Chaudhry G R, Ali A N, Wheeler W B. Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl. Environ. Microbiol., 1988,54(2):288-293.
    Chen W C, Yen J H, Chang C S. Effects of herbicide butachlor on soil microorganisms and on nitrogen-fixing abilities in paddy soil [J]. Ecotoxicology and Environmental Safety,2009,72: 120-127.
    Chen Y L, Chen C C. Photodecomposition of a herbicide, butachlor [J]. Journal of Pesticide Science, 1978,3:143-148.
    Chen Y L, Wu T C. Degradation of herbicide butachlor by soil microbes [J]. Journal of Pesticide Science, 1978,3(4):411-417.
    Coates J D, Woodward J, Allen J, et al. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harborsediments [J]. Appl. Environ. Microbiol.,1997, 63:3589-3593.
    Coleman S. Comparative metabolism of chloroacetamid herbicides and selected metabolites in human and rat liver microsomes [J]. Envir. Health. Perspect.,2000,108:1151-1159.
    Cui Z L, Li S P, Fu G P. Isolationofmethyl-parathion-degrading strain M6 and cloning of the methylparathion hydrolase gene [J]. Appl. Environ. Microbiol.,2001,67(10):4922-4925.
    Dinham B, Malik S. Pesticides and human rights [J]. Int J. Occup. Environ. Health.,2003,9:40-52.
    Grizard G, Ouchane L, Roddier H, et al. In vitro alachlor effects on reactive oxygen species generation, motility patterns and apoptosis markers in human spermatozoa [J]. Reproductive toxicology,2007, 23 (1):55-62.
    Guo L T J.Sorption and movementofalachlor in soil modified by carbonrich wastes, J. Environ. Qual. 1993,22:186.
    Haruhiko N, Yuko H, Masahiro K, et al. Concentrations and compositions of organochlorine contaminants in sediments, soils, crustaceans, and birds collected from Lake Tai, Hangzhou Bay and Shanghai city region [J]. China Environmental Pollution,2005,133:415-429.
    Hildebrandt A, Lacorte S, Barcelo D. Assessment of priority pesticides, degradation products, and pesticide adjuvants in groundwaters and top soils from agricultural areas of the Ebro river basin [J]. Analytical and Bioanalytical Chemistry,2007, (4):1459-1468.
    Home I, Harcourt R I, Sutherland T D, et al. Isolation of a Pseudomonas monteilli strain with a novel phosphotresterase [J]. FEMS. Microbiol. Lett.,2002,206(1):51-55.
    Hua X, Jiang X, Jin Y, Cai D. Hydrolysis of four new pesticides. Environ.Chem.,1992,11,16-20.
    Hurman E M, Aron E C. Atmospheric transport deposition and fate of triazine herbicides and their metabolites in Pristine areas at Isle Royale National Park [J]. Environ. Sci. Technol.,2000,34: 3079-3085.
    Ilya E, Joseph J Defrankr, Valeria C Culotta. PhnE and glpT genes chance utilization of organophoshates in Escherichia coli K12 [J]. Appl. Environ. Microbiol,1998,67(7):2601-2608.
    Irene H, Tara D. Identification of an opd (Organophosphate Degradation) gene in an Agrobacterium isolate [J]. Appl. Environ. Microbiol,2002,68(7):3371-3376.
    Iwata H, Tanabe S, et al. Distrubution of persistent organochlorines in the oceanic air and surface seawater and therole of ocean on their global transpoorand fate [J]. Environ. Sci. Technol.,1993,27: 1080-1098.
    Jerry C, Hans D. The benefits of pesticides to mankind and the environment [J]. Crop Protection,2007, 26:1337-1348.
    Joshi M, Brown H M. Degradation of chlorsulfuron by soil microorganism [J]. Weed Science,1985,33: 888-893.
    Kobayashi H. A studay on the analytical methods for determination of pesticide residues in animals, plants and the environment [J]. Journal of Pesticide Science,1992,17(2):125-136.
    Kovriznych J A, Urbancikova M. Acute toxicity of acetochlor for zebrafish (Danio rerio) and guppy (Poecilia reticulata) [J]. Ekol-Bratislava,1998,17:449-456.
    Kumarir R, Subudhi S, Suar M, et al. Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis B90 [J]. Appl. Environ. Microbiol,1989,55:289.
    Mulbry W W, Kearney P C. Degradation of pesticides by microo 2002,68(12):6021-6028.
    Liu S Y, Freter A J, Bollag J M. Micromial dechlorination of the herbicide metochlor [J]. J. Agric Food Chem,1991,39 (3):631-636.
    Liu Z Z, He Y, Xu J M. The ratio of clay content to total organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils [J]. Environmental Pollution,2008,152: 163-171.
    Luo H F, Qi H Y, Zhang H X. The impact of acetochlor on the bacterial diversity in soil [J]. Acta. Microbial. Sinica.,2004,44 (4):519-522.
    Magnuson M L, Chemistry of EPA contaminant candidate list compounds: degradation mechanisms and products [M].2002.
    Maloney S E, Maule A, Smith A R. Transformation of synthetic pyrethroid insecticides by a thermophilic Bacillus sp. [J]. Arch. Microbiol.,1992,158(4):282-286.
    Mandelbaulm R T, Allan D, Wackett L P. Isolate and characterrization of a pseudomonas sp that mineralizes the herbicide atrazine [J]. Appl. Environ. Microbiol,1989,55:289.
    Mulbry W W, Kearney P C. Degradation of pesticides by microo 1995,61(2):1451-1457.
    Manzoor A B, Masataka T, Kihachiro H. Identification and characterization of a new plasmid carrying genes for degradation of 2,4-Dichlorophenoxyacetate from Pseudomonas cepacia CSV90 [J]. Appl. Environ. Microbiol.,1994,60(1):307-312.
    Masahito H, Motoko H, Tadahiro N. Involvement of two plasmids in the degradation of carbaryl by Arthrobacter sp. strain RC100 [J]. Appl. Environ. Microbiol.,1999,65(3):1015-1019.
    Mcdaniel C S, Harper I L, Wild J R. Cloning and sequencing of a plasmid brone gene (opd) encoding a phosphotriesterase [J]. Bacteriol,1988,170(5):2306-2311.
    Miyauchik, S S, Nagata Y, et al. Cloning and sequencing of a 2,5 -dihydrochloroquinone reductive dehalogenase gene whose prodouct is involved in the degradation of γ-hexachlorocyclohexane by Sphingomonas paucimobilis [J]. J. Bacteriol,1998,180:1354-1359.
    Mohanty S R, Nayak D R, Babu Y J. Butachlor inhibits production and oxidation of methane in tropical rice soils under flooded condition [J]. Microbiological Research,2004,159:193-201.
    Mulbry W W, Karns J S. Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein [J]. J. Bacteriol.,1989,171(12):6740-674.
    Mulbry W W, Karns J S. Purification and characterization of three parathion hydrolases from Gram-negative bacterial strains [J]. Appl. Environ. Microbiol,1989,55:289.
    Mulbry W W, Kearney P C. Degradation of pesticides by microorganisms and the potential for genetic manipulation [J]. Crop Protection.1991,10:334-346.
    Nagata Y, Hatta T, et al. Purification and characterization of γ-hexachlorocyclohexane (γ-HCH) dehydrochlorinase (LinA) from Pseudomonas paucimobilis [J]. Biosci. Biotechnol. Biochem.,1993, 57:1582-1583.
    Nagata Y, Tnariya, Ohtomo R, et al. Cloningand sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of γ-hexachlorocyclohexane in Pseudomonas paucimobilis [J]. J. Bacteriol.,1993,175(6):403-410.
    Nemeth K L, Fuleky G, Morovjan G, et al. Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon,imidacloprid and isoproturon on Hungarian agricultural soil [J]. Chem.,2002,48: 545-552.
    Nidhi K, Om P, Narayanlal C R. Understanding butachlor toxicity in Aulosira fertilissima using physiological, biochemical and proteomic approaches [J]. Chem,2009,77:1501-1507.
    Niyaz M M, Mokhtar A, Nargess Y L, et al. Nanophotocatalysis using immobilized titanium dioxide nanoparticle degradation and mineralization of water containing organic pollutant: Case study of butachlor. Materials Research Bulletin,2007,42:797-806.
    Ohshiro K, Ono T, Hoshino T, et al. Characterization of isofenphos hydrolasesfrom Arthrobacter sp. strain B-5 [J]. Ferment Bioeng,1997,83:238-245.
    Osano O, Adimiraal W, Klamer H J C, et al. Comparative toxic and genotoxic effects of chloroacetamides formamidines and their degradation products on Vibrio fischeri and Chironomus riparius [J]. Environ. Pollution.,2002,119 (2):195-202.
    Pan H Y, Li X L, Xu X H. Phytotoxicity of four herbicides on Ceratophyllum demersum, Vallisneria natans and Elodea nuttallii [J]. Journal of Environmental Sciences,2009,21:307-312.
    Patnaik G K, Kanungo P K, Moorthy B T S. Effect of herbicides on nitrogen fixation (C2H2 reduction) associated with rice rhizosphere [J]. Chem.,1995,30 (2):339-343.
    Rani N L, Lalithakumari D. Degradation of methyl parathion by Pseudomonas putida [J]. Can. J. Microbiol.,1994,40:1000-1006.
    Rebecca L. Spawn. Effects of alachlor on an algal community from a midwestern agricultural stream [J]. Environ. Toxicol. Chem.,1997,16(4):785-793.
    Ribas G. Genotoxity of humic acid in cultured human lymphocytes and its interaction with the herbicides alachlor and maleic hydrazide [J]. Environ. Molec. Mut.,1997,29 (3):272-276.
    Ryo E, Mayuko K, Keisukemi Y, et al. Identification and characterization of genes involved in the downstream degradation pathway of hexachlorocyclohexane in Sphingomonas paucimobilis UT26 [J]. Journal of Bacteriology,2005,187(3):847-853.
    Sapna S, Natarajan P, Govindaswamy S. Genotoxicity of the herbicide butachlor in cultured human [J]. Mutation Research,1995,344:63-67.
    Saxena A, Zhang R W, Bollag J M. Microorganisms capable of metabolizing the herbicide metolachlor [J]. Appl. Environ. Microbiol,1987,53 (2):390-396.
    Seghers D, Verthek K, Reheul D, et al. Effect of long-term herbicide applications on the bacterial community structure and function in an agricultural soil [J]. FEMS Microbiology Ecology,2003,46 (2):139-146.
    Sharma K K. Degradation of alachlor in water and tropical soils of India [J]. Bull Environ Contam Toxicol,2002,68:394-399.
    Shea P J. Role of humidified organic matter in herbicide adsorption [J]. Weed. Technol.,1989,3(1): 190-197.
    Shelton D R, Khader S, Karns J S, et al. Metabolism of twelve herbicides by Streptomyces [J]. Biodegradation,1996,7(2):129-136.
    Shigehisa H, Yoshio S. A freshwater shrimp (Paratya compressa improvisa) as a sensitive test organism to pesticides [J]. Environmental Pollution,1989,59 (4):325-336.
    Smeeta P, Sanjat K S. Recovery of acetylcholine esterase activity of Drawida willsi (Oligochaeta) following application of three pesticides to soil [J]. Chem.,2004,55:283-290.
    Steen R J. Large-valume injection rn gas chromatography ion trap tandem mass spectrometry for the determination of pesticides in the marine environment at the low ng/L level [J]. Anal. Chim. Acta., 1997,353(2/3):153-163.
    Su Z C, Zhang H W, Li X Y, et al. Toxic effects of acetochlor, methamidophos and their combination on nifH gene in soil [J]. Journal of environmental sciences,2007,19 (7):864-873.
    Torrents, A. Influnce of the polarity of organic matter on the sorption acetamide pesticides [J]. Agric. Food. Chem.,1997,45(8):3320-3325.
    USEpA. Pesticide Fact Book U.S. Environ. Plot Ageney. U5. Gov. Printing Off Washington D C-1988: 522.
    Vargo J D. Determination of sulfonie acid degradates of chloroacetanilide and chloro-acetamide herbicides in groundwater by LC/MS/MS [J]. Anal. Chem.,1998,79(13):2699-2703.
    Voldner E C, Li Y F. Global usage of selected persistent organochlorines [J]. Sci Total Environ.1995, 161:201-210.
    Wang J H, Lu Y T, Chen Y Y. Comparative proteome analysis of butachlor-degrading bacteria [J]. Environ. Geol.,2008,53:1339-1344.
    Wang Q Q, Liu W P. Adsorption of acetanilide herbicides on soils and its correlation with soil with soil properties [J]. Pedosphere,2001,11 (3):217-226.
    Wang T C, Lee T C, Lin M F. Induction of sister-chromatid exchanges by pesticides in primary rat tracheal epithelial cells and Chinese hamster ovary cells [J]. Genetic Toxicology,1987,188 (4) 311-321.
    Wang Y, Liu J, Chen W, et al. Characterization of acetanilide herbicides degrading bacteria isolated from tea garden soil [J]. Microbial Ecology,2007,55(3):435-443.
    Welther S M, Dallos A, Sebk D. Studies on stability of a new herbicide the propisochlor. Hung. J. Ind. Chem.2000,28,143-149.
    Xu D P, Xu Z H, Zhu S Q, et al. Adsorption behavior of herbicide butachlor on typical soils in China and humic acids from the soil samples [J]. Journal of Colloid and Interface Science,2005,285:27-32.
    Xu X Q, Yang H H, Wang L, et al. Analysis of chloroacetanilide herbicides in water samples by solid-phase microextraction coupled with gas chromatography-mass spectrometry [J]. Analytica Chimica Acta,2007 591:87-96.
    Ye C M, Wang X J, Zhang H H. Biodegradation of acetanilide herbicide acetochlor and butachlor in soil [J]. J. Environ. Sci.,2002,14 (4):524-529.
    Yen P Y, Koskinen W C, Schweizer E E. Dissipation of alachor in four soils as influenced by degradation and sorption processes [J]. Weed. Sci.,1994,42:223-240.
    Yu Y L, Chen Y X, Luo Y M, et al. Rapid degradation of butachlor in wheat rhizosphere soil [J]. Chem., 2003,50:771-774.
    Yu Y L, Wu X M, Li S N, et al. Bioavailability of butachlor and myclobutanil residues in soil to earthworms [J]. Chem.,2005,59:961-967.
    Zhao E C, Shanb W L, Jiang S R, et al. Determination of the chloroacetanilide herbicides in waters using single-drop microextraction and gas chromatography [J]. Microchemical Journal,2006,83: 105-110.
    安琼,骆永明,倪俊,等.水田土壤中除草剂丁草胺残留的测试方法及其应用[J].土壤,2000,32(2):107-111.
    柏文琴,何凤琴,邱星辉,等.有机磷农药生物降解研究进展[J].应用与环境生物学报,2004,10(5):675-680.
    蔡宝立,黄今勇.除草剂阿特拉津生物降解研究进展[J].生物工程进展,1999,19(3):7-11.
    陈波,徐冬梅,吴军林,等.异丙甲草胺对根际土壤微生物数量的影响及其在根际环境中的降解研究[J].农业环境科学学报,2006,25(4):898-902.
    陈亚丽,张先恩,刘虹,等.甲基对硫磷降解菌假单胞菌WBC-3的筛选及降解性能的研究[J].微生物学报,2002,42(2):490-497.
    陈一安,等.丁草胺在早地土壤中的残留降解动态[J].福建农业科技,1994.(2):9.
    陈一安,林应椿,王青松,等.丁草胺在蔬菜及环境中的残留探讨[J].福建省农科院学报,1995,10(3):47-49.
    陈一安,蔡清华.丁草胺在蔬菜、小白菜中的残留及降解动态研究[J].农药,1991,30(3):25-27.
    陈忠孝,樊德方.丁草胺在土壤中渗漏、残留与降解的动态研究[J].1988,7(2):30-36.
    楚小强,庞国辉,方华,等.丁草胺降解菌的分离鉴定及降解特性的研究[J].农业环境科学学报,2009,28(1):145-150.
    崔中利.甲基对硫磷的微生物降解及多功能基因工程降解菌的构建[D].南京农业大学博士论文,2000.
    戴树桂,宋文华,李彤,等.偶氮染料结构与其生物降解性关系研究进展[J].环境科学进展,1996,4(6):1-9.
    单敏,虞云龙,方华,等.丁草胺对土壤微生物数量和酶活性的影响[J].农药学学报,2005,7(4):383-386.
    单正军,张子明.除草剂拉索对地下水影响研究[J].环境科学学报,1994,14(1):72-78.
    单正军,朱忠林,华小梅,等.涕灭威等三种农药在土壤中的移动性[J].农村生态环境,1994,10(4):30-33.
    邓晓,廖晓兰,唐群锋.甲胺磷和乙草胺对产甲烷菌种群数量及其活性的影响[J].农村生态环境,2004,20(3):56-59.
    窦阿丽,许景钢,李淑芹.除草剂丁草胺在东北地区主要土壤中的吸附研究[J].东北农业大学学报,2009,40(5):53-57.
    冯慧敏,何红波,武叶叶,等.黑土环境中乙草胺的微生物降解特征研究[J].土壤通报,2008,39(2):379-343.
    高明华,梁载琪,周湘梅.甲胺磷生产废水处理实验研究[J].化工环保,1999,19(2):69-74.
    韩雪冬,谭井坤,李志忠,等.生物农药的开发利用综述[J].化工矿产地质,2002,24(4):248-250.
    韩玉军,闫春秀,何付丽.丁草胺对水稻安全性影响的研究,东北农业大学学报,2007,38(5):586-589.
    韩玉军,赵长山.丁草胺对水稻分蘖影响的研究[J].植物保护,2007,33(6):64-67.
    胡庚东,陈家长,吴伟,等.除草剂丁草胺对黄鳝的遗传毒性[J].湛江海洋大学学报,2005,25(1):43-46.
    胡笑形.我国农药工业的现状与发展方向[J].农药,1998,37(6):7-10.
    孔军苗,郑荣全,顾磊,等.乙草胺对中型土壤动物生物多样性影响的研究[J].农业环境科学学报,2005,24(3):576-580.
    李川,古国榜,柳松.丁草胺高效真菌的分离及性能研究[J].农业环境科学学报,2004,23(3):611-614.
    李丽,李凤珍,安丽,等.异丙甲草胺的毒性研究[J].农药,2000,35(9):17-18
    李淑彬,周仁超,刘玉焕,等.曲霉M-2降解有机磷农药(甲胺磷)的研究.微生物学通报,1999,(1):27-30.
    李淑芹,窦阿丽,许景钢,等.环境因素对除草剂丁草胺在黑土中吸附的影响[J].作物杂志,2009,5:51-54.
    李艳春,熊明华,肖晶.一株丁草胺降解菌的分离鉴定及其降解特性的研究.微生物学通报,2009,36(8):1178-1182.
    林艳.瑞士在水中发现农药残留[J].农药科学与管理,2004,25(1):10.
    刘爱菊.阿特拉津高效降解细菌的筛选及降解特性研究[D].山东:山东农业大学,2003:25-28.
    刘峰,慕卫,王金信.气相色谱法同时测定西草净、丁草胺和恶草灵[J].色谱,1999,17(2)217-218.
    刘刚.巴西1/6农产品农药残留超标[J].农药市场信息,2008,10:29.
    刘惠君,詹秀明,刘维屏.四种酰胺类除草剂对土壤酶活性的影响[J].中国环境科学,2005,25(5): 611-614.
    刘建亲,花日茂.微生物降解农药的研究进展[J].安徽农业科学,2008,36(24):10663-10664.
    刘乾开.新编农药适用手册[M].上海科学技术出版社,1993.
    刘文霞,陈元琦,寇渊博,等.镉、丁草胺单一及复合污染对苋菜生长的影响[J].河南科学,2009,6(2):305-308.
    刘营,孔繁翔,等.菌根真菌对环境污染物的降解、转化能力概述[J].上海环境科学,1998,17(2):4-6.
    刘长令.世界农药大全—除草剂卷[M].北京:化学工业出版社,2002,259-260.
    刘正礼.我国农药行业综述[J].河北化工,2007,30(1):12-14.
    刘智,洪青,徐剑宏,等.甲基对硫磷水解酶基因的克隆与融合表达[J].遗传学报,2003,30(10):40-46.
    刘忠珍,何艳,吴愉萍,等.土壤中丁草胺的吸附动力学[J].中国环境科学,2007,27(4):493-497.
    罗小勇.农药残留及其对策[J]..中国农学通报,2009,25(18):344-347.
    任丽萍,张录达,田芹.正交试验法探讨丁草胺在环境水体中的降解[J].农药,2004,43(6):263-265.
    石健,熊倩,刘泉.丁草胺在土壤中吸附特性研究[J].2009,32(9):51-54.
    谭文捷,李发生,杜晓明,等.降解淀粉芽孢杆菌对水中丁草胺的降解及影响[J].环境科学研究,200,18(3):71-74.
    田芹,周志强,江树人,等.丁草胺在环境降解行为的研究进展[J].农药,2004,43(5):205-207.
    王东冬,潘灿平,任丽萍.丁草胺原药的气相色谱分析[J].化学与生物工程,2005,5:55-56.
    王海勤.丁草胺在毛豆及其土壤环境中的残留动态研究[J].华南热带农业大学学报,2006,12(2):1-4.
    王律先.我国农药工业概况及发展趋势[J].农药,1999,38(10):1-8.
    王琪全,刘维屏.乙草胺和异丙甲草胺在土壤中吸附的研究[J].土壤学报,2000,37(1):95-101.
    王琪全.几种酰胺类除草剂的光降解和致突变性[J].环境科学,1999,20(4):51-54.
    王永杰,李顺鹏,严淑玲.活性微生物与农药降解[J].中国沼气,1999,17(14):10-13.
    吴新杰,岳永德,花日茂,等.丁草胺高效降解细菌的分离[J].应用与环境科学学报,2000,6(6):593-596.
    谢大同.农药的应用、发展及其对环境污染的评价[J].广西农业科学,1978,10:28-33.
    辛碧芬,陈怀宇,黄周英. 除草剂丁草胺对胡子鲶红细胞微核率的影响[J]。泉州师范学院学报,2006,24(4):106-109.
    徐建民.异丙甲草胺在砂壤土中行为的研究[J].环境科学学报,1997,4:124-127.
    阎文圣,肖焰恒.中国农业技术应用的宏观取向与农户技术采用行为诱导[J].中国人口·资源与 环境,2002,3:7-31.
    杨小红,李俊,葛诚.微生物降解农药的研究新进展[J].微生物学通报,2003,30(6):93-96.
    杨寅楣,吴南翔,乐俊仪,等.丙草胺毒性研究[J].浙江省医学科学院学报,2000,41:23-24.
    叶常明,雷志芳,王杏君.丁草胺在土壤中的吸附及环境物质的影响[J].环境化学,2003,22(1):14-18.
    叶央芳,闵航,杜宇峰.一个硫酸盐还原细菌富集物对丁草胺的厌氧降解[J].环境科学学报,2000,20(3):376-378.
    仪美芹,王开运,姜兴印,等.微生物降解农药的研究进展[J].山东农业大学学报(自然科学版),2002,33(4):519-524.
    于建垒,宋国春,万鲁长,等.乙草胺对土壤微生物的影响研究[J].环境污染治理技术与设备,2000,1(5):61-65
    余柳青,徐福强,俞圣康,等.丁草胺和杀草丹对稻田土壤放线菌及其白色链霉菌的影响[J].中国农业科学,1997,30(6):81-83.
    余柳青,张雷,何圣岳,等.丁胺药对土生物的抑制用其产果[J].中国水稻科学,1993,7(1):55-57.
    俞康宁,戚澄九,唐柯.除草剂丁草胺在稻田环境中的消解和残留研究[J].1988,27(6):28-29.
    虞云龙,陈英旭,潘学冬.降解菌HD接种和非接种根围土壤的中丁草胺的降解行为动力学研究[J].土壤学报,2002,39(4):575-581.
    袁树忠,吴进才,徐建祥,等.丁草胺等除草剂对水稻生理生化的影响[J].植物保护学报,2001,9(3):274-278.
    张大弟,张晓红.农药污染与防治[M].北京:化学工业出版社,2001.
    张韩杰,闰艳春.农药残留及微生物在农药降解中的应用与展望[J].湖北植保,2004,1:31-35.
    张建,刘敏,吴永兴,等.上海农田土壤中六六六和滴滴涕污染分布状况研究[J].土壤学报,2009,46(2):362-364.
    赵淑莉,谭文捷,何绪文.除草剂丁草胺的分析测定及其微生物降解产物研究[J].农业环境科学学报,2005,24(5):989-993.
    赵宇华,梅其志,陈美慈,等.丁草胺对水稻土甲烷释放和厌氧细菌的影响[J].微生物学报,1997,37(6):477-479.
    郑和辉,叶常明.乙草胺和丁草胺在土壤中的紫外光化学降解[J].环境化学,2002,21(2):117-122.
    郑和辉,叶常明,刘国辉.乙草胺在水中的光化学降解动态[J].农药科学与管理,2001,22(6):12-13.
    郑和辉,叶常明.环境样品中乙草胺和丁草胺的残留分析[J].中国环境科学,2001,21(3):217-220.
    郑和辉,叶常明.乙草胺和丁草胺的水解及其动力学[J].环境化学,2001,20(2):168-171.
    郑巍,宣日成,刘维屏,等.新农药吡虫啉水解动力学和机理研究[J].环境科学学报,1999,19(1): 101-104.
    周建平,张大弟.丁草胺在土壤中的残留降解及对蔬菜生长的影响[J].上海环境科学,1991,10(10):34-36.
    周健.公元2020年农村面源污染控制战略的目标研究[J].国外农业环境保护,1993(3):24-26.
    周启星,宋玉芳.污染土壤修复原理与方法[M].北京科学出版社,2004.
    朱晶.丁草胺和西草净复配制剂的气相色谱分析法[J].农药科学与管理,1998,66(2):2-4.
    朱九生,乔雄梧,王静,等.乙草胺在土壤环境中的降解及其影响因子的研究[J].农业环境科学学报,2004,23(5):1025-1029.
    朱九生,乔雄梧,王静,等.微生物及环境因子对土壤中乙草胺持效性的影响[J].农药学学报,2004,6(4):67-72.
    朱忠林,单正军,蔡道基.溴氟菊酯的光解、水解与土壤降解[J].农村生态环境,1996,12(4):5-7.
    Akiko T, Hideko M, Kunia K K, et al. Monitoring of herbicides in river water by gas chromatography mass spectrometry and solid phase extraction [J]. Journal of Chromatography A,1996,754 159-168.
    Baker S C, Ferguson S J, Ludwig B, et al. Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility [J]. Micro Mol Bio Rev,1998,62:1046-1078.
    Bhadbhade B J, Sarnaik S S, Kanekar P P. Biomineralization of an organophosphorus pesticide, Monocrotophos, by soil bacteria [J]. Journal of Applied Microbiology,2002,93:224-234.
    Bushra A, Farah M A, Ali M N, et al. Induction of micronuclei and erythrocyte alterations in t he catfish Clarias batrachus by 2,4-dichlorophenoxyacetic acid and butachlor [J]. Mutation Research Genetic Toxicology and Environmental Mutagenesis,2002,518 (2):135-144.
    Hort J G, Krieg N R, Sneath P H, et al. Bergey's manual of determinative bacteriology 9 edition [M]. Baltimore:The Williams & Wilkins Co,1994,150.
    Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences [J]. J Mol Evol 1980,16:111-120.
    Lane D J.16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics [M]. John W, Sons C, United Kingdom,1991:115-175.
    Marchesi J R, Sato T, Weightman A J, et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for 16S rRNA [J]. Appl Environ Microbiol 1998,2:795-799.
    Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees [J]. Mol Biol Evol 1987,4:406-425.
    Xu X Q, Li Q L, Yuan J D, et al. Determination of three kinds of chloroacetanilide herbicides in Radix pseudostellariae by accelerated solvent extraction and gas chromatography mass spectrometry [J]. Chinese Journal of Analytical Chemistry,2007,35 (2):206-210.
    陈小军,程东美,徐汉虹,等.丁草胺在水稻上的降解动态与残留分析[J].华中农业大学学报,2009,28(3):286-290.
    东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    范秀容,李广武,沈萍.微生物学实验[M].北京:高等教育出版社,1988,75-78.
    韩玉军,闫春秀,何付丽,等.丁草胺对水稻安全性影响的研究[J].东北农业大学学报,2007,38(5):586-589.
    胡笑形.我国农药工业的现状与发展方向[J].农药,1998,37(6):7-10.
    刘维屏,许惠庆.丁草胺在水稻田植株-水体-表土系统的迁移、降解规律[J].浙江大学学报(自然科学版),1990,(1):82292.
    叶常明,雷志芳,王杏君.丁草胺在土壤中的吸附及环境物质的影响[J].环境化学,2003,22(1):14-18.
    Baker S C, Ferguson S J, Ludwig B, et al. Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility [J]. Micro. Mol. Bio. Rev.,1998,62:1046-1078.
    Chun J, Lee J H, Jung Y, et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences [J]. Int. J Syst. Evol. Microbiol.,2007,57:2259-2261.
    Collins, M D, Analysis of isoprenoid quinines. In: Methods in microbiology [M], Vol 18, London: Academic Press,1995:329-366.
    Davis D H, Doudoroff M, Stanier R Y, et al. Proposal to reject the genus Hydrogenomonas:taxonomic implications [J]. Int. J Syst. Bacteriol.,1969,19,375-390.
    Felsenstein J. Confidence limits on phylogenies:an approach using the bootstrap [J]. Evolution.1985,39: 783-791.
    Felsenstein J. Evolutionary trees from DNA sequences:a maximum likelihood approach [J]. J. Mol. Evol.,1981,17:368-376.
    Felsenstein J. PHYLIP (phylogeny inference package), version 3.6 a. Distributed by the auther. Department of Genome Sciences, University of Washington, Seattle, USA,2002.
    Hanada S, Takaichi S, Matsuura K, et al. Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes [J]. Int. J Syst. Evol. Microbiol.,2002, 52:187-193.
    Helsel L O, Hollis D, Steigerwalt A G, et al. Identification of "Haematobacter", a new genus of aerobic Gram-negative rods isolated from clinical specimens, and reclassification of Rhodobacter massiliensis as "Haematobacter massiliensis "comb, nov [J]. J. Clin. Microbiol.,2007,45: 1238-1243.
    Hiraishi A, Ueda Y. Intrageneric structure of the genus Rhodobacter: transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov [J]. Int. J Syst. Bacteriol., 1994,44:15-23.
    Hopwood D A, Bibb M J, Chater K F, et al. Genetic Manipulation of Streptomyces:a Laboratory Manual. Norwich:John Innes Foundation,1985.
    Hort, J G., Krieg N R., Sneath P H. et al. Bergey's manual of determinative bacteriology 9 edition[M]. Baltimore:The Williams & Wilkins Co,1994.150.
    Imhoff J F, Triiper H G. Purple nonsulfur bacteria, in: W. R. Hensyl, H. Felscher (Eds.), Bergey's Manual of Systematic Bacteriology [M], Williams & Willkins, Baltimore,1989, pp.1658-1677.
    Imhoff J F, Triiper H G, and Pfennig N. Rearrangement of the species and genera of the phototrophic "purple nonsulfur bacteria" [J]. Int. J Syst. Bacteriol.,1984,34:340-343.
    Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences [J]. J. Mol. Evol.,16,111-120.
    Kluge A G, Farris F S. Quantitative phyletics and the evolution of anurans [J]. Syst Zool,1969,18:1-32.
    Kumar P A, Srinivas T N R, Sasikala C, et al. Rhodobacter changlensis sp. nov., a psychrotolerant, phototrophic alphaproteobacterium from the Himalayas of India [J]. Int. J Syst. Evol. Microbiol., 2007,57:2568-2571.
    Liu Y, Xu C J, Jiang J T, et al. Catellibacterium aquatile sp. nov., isolated from freshwater and emended description of the genus Catellibacterium Tanaka et al,2004 [J]. Int. J Syst. Evol. Microbiol.,2009, doi:10.1099/ijs.0.017632-0.
    Mandel M, Marmur J. Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA [J]. Methods Enzymol,1968,12B:195-206.
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Mol Biol Evol,1987,4:406-425.
    Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 1997,101. Newark, DE: MIDI Inc.
    Srinivas T N R, Kumar P A, Sasikala et al. Rhodobacter vinaykumarii sp. nov., a marine phototrophic alphaproteobacterium from tidal waters, and emended description of the genus Rhodobacter [J]. Int. J Syst. Evol. Microbiol.,2007,57:1984-1987.
    Stackebrandt E, Goebel B M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology [J]. Int. J Syst. Bacteriol.,1994,44: 846-849.
    Tanaka Y, Hanada S, Manome A, et al. Catellibacterium nectariphilum gen. nov., sp. nov., which requires a diffusible compound from a strain related to the genus Sphingomonas for vigorous growth [J]. Int. J Syst. Evol. Microbiol.,2004,54,955-959.
    Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Res,1997,25: 4876-4882.
    Yoon J H, Yeo S H, Oh T K. Hongiella marincola sp. nov., isolated from sea water of the East Sea in Korea [J]. Int. J Syst. Evol. Microbiol.,2004,54:1845-1848.
    东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    刘如林,刁虎欣,梁风来.光合细菌及其应用[M].北京:中国农业科学技术出版社,1991:94.
    徐丽华,李文均,刘志恒,等.放线菌系统学——原理、方法及实践[M].北京:科学出版社,2007:80-87.
    Chakraborty S K, Anjan B. Degradation of butachlor by two soil fungi [J]. Chem.,199123(1):99-105.
    Liu S Y, Freter A J, Bollag J M. Micromial dechlorination of the herbicide metochlor [J]. J. Agric. Food. Chem.,1991,39 (3):631-636.
    Magnuson M L, Chemistry of EPA contaminant candidate list compounds:degradation mechanisms and products [M].2002.
    Ye C M, Wang X J, Zhang H H. Biodegradation of acetanilide herbicide acetochlor and butachlor in soil [J]. J. Environ. Sci.,2002,14 (4):524-529.
    楚小强,庞国辉,方华等.丁草胺降解菌的分离鉴定及降解特性的研究[J].农业环境科学学报,2009,28(1):145-150.
    Bradford M M.. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal. Biochem.,1976,72:248-254.
    Chakraborty S K, Anjan B. Degradation of butachlor by two soil fungi [J]. Chem.,1991,23(1):99-105.
    Chen Y L, Chen C C. Photodecomposition of a herbicide, butachlor [J]. Journal of Pesticide Science, 1978,3:143-148.
    Chen, Y L, Chen S J. Degradation and dissipation of herbicide butachlor in paddy fields. J. Pestic. Sci., 1978,4:431-438.
    Liu Z, Yang H, Huang Z, et al. Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3 [J]. Appl. Microbiol. Biotechnol.,2002,58:679-682.
    Wang J, Lu Y T, Chen Y Y. Comparative proteome analysis of butachlor-degrading bacteria [J]. Environ Geol,2008,53:1339-1344.
    Xu J, Qiu X H, Dai J Y, et al. Isolation and characterization of a Pseudomonas oleovorans degrading the chloroacetamide herbicide acetochlor [J]. Biodegradation,2006,17:219-225.
    Ye C M, Wang X J, Zhang H H. Biodegradation of acetanilide herbicide acetochlor and butachlor in soil [J]. J. Environ. Sci.,2002,14 (4):524-529.
    楚小强,庞国辉,方华,等.丁草胺降解菌的分离鉴定及降解特性的研究[J].农业环境科学学报,2009,28(1):145-150.
    赵淑莉,谭文捷,何绪文.除草剂丁草胺的分析测定及其微生物降解产物研究[J].农业环境科学学报,2005,24(5):989-993.
    Chen Y L, Wu T C. Degradation of herbicide butachlor by soil microbes [J]. Journal of Pesticide Science, 1978,3(4):411-417.
    Gundi V A, Reddy B R. Degradation of monocrotophos in soils [J]. Chem.,2006,62:396-403
    Hua X, Jiang X, Jin Y, Cai D. Hydrolysis of four new pesticides [J]. Environ. Chem.,1992,11:16-20.
    Joshi M, Brown H M. Degradation of chlorsulfuron by soil microorganism [J]. Weed Science,1985,33: 888-893.
    Mulbry W W, Karns J S. Parathion hydrolase specified by the Flavobacterium opd gene:relationship between the gene and protein [J]. J. Bacteriol,1989,171(12):670-674.
    Welther S M, Dallos A, Seb k D. Studies on stability of a new herbicide the propisochlor [J]. Hung. J. Ind. Chem.,2000,28:143-149.
    Yu Y L, Chen Y X, Luo Y M, et al. Rapid degradation of butachlor in wheat rhizosphere soil [J]. Chem., 2003,50:771-774.
    曹启民,王华,郑良永,等.污染土壤的微生物修复机理及研究进展[J].华南热带农业大学学报,2006,12(1):29-32.
    陈一安,林应椿,王青松,等.丁草胺在蔬菜及环境中的残留探讨[J].福建省农科院学报,1995,10(3):47-49.
    任丽萍,张录达,田芹.正交试验法探讨丁草胺在环境水体中的降解[J].农药,2004,43(6):263-265.
    汪海珍,徐建民,谢正苗.甲磺隆结合残留对土壤微生物的影响[J].农药学学报,2003,5(2):69-78.
    徐建民.异丙甲草胺在砂壤土中行为的研究[J].环境科学学报,1997,17(4):464-468.
    郑和辉,叶常明.环境样品中乙草胺和丁草胺的残留分析[J].中国环境科学,2001,21(3):217-220.
    朱九生,乔雄梧,王静,等.微生物及环境因子对土壤中乙草胺持效性的影响[J].农药学学报2004,6(4):67-72.
    朱九生,乔雄梧,王静,等.乙草胺在土壤环境中的降解及其影响因子的研究[J].农业环境科学学报,2004,23(5):1025-1029.