新型毛细管电色谱整体柱固定相的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳由于具有高效、快速、微量的特点,使其成为分析化学20世纪以来发展最快的研究领域之一。毛细管电色谱是毛细管电泳常用的六种分离模式之一,兼具电泳的高效和液相色谱的高选择性优点,成为当代色谱学发展的新方向和研究热点。色谱柱是色谱技术的心脏,而固定相是色谱柱中最关键的部分。随着现代分离技术的发展,现有的电色谱固定相难以满足日益复杂分离对象的分离要求,因此,发展新型毛细管电色谱固定相具有非常重要的意义。
     整体柱是采用有机或无机聚合的方法在色谱柱内进行原位聚合的连续床固定相。硅胶基质整体柱具有高的通透性和柱容量,溶剂耐受能力强,化学稳定性高等优点,但是由于硅胶基质整体中只有硅羟基,分离能力有限,可以通过柱后修饰和有机-无机杂化这两种方法能引入更多的功能基团来实现高选择性的分离。杂化法是将含有有机功能基团的硅氧烷前驱体引入溶胶-凝胶缩聚的过程中,这样就可以直接在合成硅胶基质的同时引入所需的功能基团,一步制得整体柱来满足分离的要求,通过改变各种具有不同性质前驱体的配比,可以方便地控制杂化固定相的结构特性和选择性。该方法中所形成的Si-C与整体以共价键形式结合,能克服柱后修饰的固定相水解稳定性较差的不足。
     超分子化学是一门研究分子间特定识别能力的新兴学科,超分子化合物所具有的主-客体识别能力为高选择性的色谱分离提供了广阔的发展前景,因而被广泛地应用于复杂物质的分离和纯化。近年来,利用两种超分子化合物的协同作用用于解决复杂样品的分离已引起关注,也有用于毛细管电色谱固定相的报道,但是用作毛细管电色谱整体柱固定相的报道并不多见。
     本文合成了几种含有端烯基的新型超分子液晶和液晶冠醚化合物和含有双键的离子液体,制作了含有乙烯基的杂化硅整体柱,通过双键聚合反应,将所合成的超分子化合物及离子液体键合到杂化硅整体柱表面,系统研究了其在毛细管电色谱中的分离性能,并将其应用到实际样品的分析中。主要内容如下:
     1.合成了含有端烯基的液晶4’-(ω-十一烯基氧)-4-联苯酚(UX);三种含有端烯基的液晶冠醚:4-(烯丙基氧)-4’-(4’-羧基苯并15-冠-5)联苯(PCB)、4-(ω-十一烯基氧)-4’-(4’-羧基苯并15-冠-5)-2,2-二苯丙烷(UCP)和4-(ω-十一烯基氧)-4’-(4’-羧基苯并15-冠-5)联苯(UCB)。并采用熔点测定、红外光谱、拉曼光谱和质谱法对所合成的几种固定相的纯度和结构进行了表征。以四甲氧基硅烷和乙烯基三甲氧硅烷为前驱体,采用溶胶-凝胶技术制备了含有乙烯基的杂化硅胶整体柱,采用扫描电镜考察了制孔剂用量、硅烷化试剂用量和尿素用量对乙烯基杂化硅整体柱形貌的影响,进一步优化了整体柱的制备条件,经优化后制备的整体柱,采用夺汞法测定了孔径分布,通孔孔径约为3μm,分布较均匀。
     2.将合成的带烯基的近晶相液晶4’-(ω-十一烯基氧)-4-联苯酚(UX)用作毛细管电色谱固定液,通过用自由基聚合反应将液晶固定液修饰到带烯基的有机-无机杂化硅胶整体柱上,与未进行修饰的硅胶整体柱相比较,制备的液晶整体柱有好的选择性,萘酚、多环芳烃、酞酸酯和甾体激素得到很好的分离。同时,考察有机溶剂、溶液pH值、缓冲溶剂对分离的影响。并探讨其分离机理,提出以上分离对象选择性的改善主要是由于液晶上长链烷基的疏水作用和液晶上的羟基官能团氢键作用所致。
     3.通过自由基聚合将所合成的含有端烯基的液晶冠醚4-(ω-十一烯基氧)-4’-(4’-羧基苯并15-冠-5)-2,2-二苯丙烷(UCP)键合至硅胶整体柱上,首次制备了液晶冠醚UCP修饰的杂化硅基质整体柱。成功地实现了多环芳烃、苯二酚、氨基甲酸酯农药和甾体等难分离物质的分离。相比未修饰液晶冠醚的杂化硅基质整体柱,电色谱分离选择性显著提高。由于液晶冠醚冠醚上的富电子云密度的氢键作用及长链液晶基团的疏水作用的协同效应,使该柱具有高选择性和良好的分离效率。
     4.通过自由基聚合反应将短链液晶冠醚4-(烯丙基氧)-4’-(4’-羧基苯并15-冠-5)联苯(PCB)和长链液晶冠醚4-(ω-十一烯基氧)-4’-(4’-羧基苯并15-冠-5)联苯(UCB)交联到杂化硅整体柱上,制备了两种液晶冠醚PCB和UCB修饰的杂化硅基质整体柱。成功地实现了酞酸酯、酚类和核苷酸的分离。并与液晶修饰的整体柱(UX)以及未修饰的整体柱的分离效果进行了比较。结果表明:对于酞酸酯的分离,是由于长链的疏水作用导致;对于酚类物质的分离,氢键作用力和疏水作用都有贡献,二者的协同作用可以提高分离的效果。
     5.以自制的液晶冠醚修饰的杂化硅整体柱(UCB-VTMS-TMOS)为毛细管电色谱的分离柱,首次建立毛细管电色谱法分析番茄中毗虫啉和多菌灵残留的定量检测方法。对样品萃取和净化条件以及毛细管电色谱分离条件进行了优化,考察了待测样品的基质效应对定量结果的影响,采用标准加入法定量,能有效地克服基质效应,回收率令人满意。方法的检出限均低于国际食品法典规定的最大残留限量(MRL),方法快速、简便,适合于番茄中吡虫啉和多菌灵的残留分析。
     6.合成了含有烯丙基的离子液体采用自由基聚合反应将所合成的含有烯丙基的离子液体氯化1-烯丙基-3-甲基咪唑(1-allyl-3-methyl imidazole chloride,记作AMC),采用红外光谱和核磁共振对其结构进行表征。通过自由基聚合反应将其固定到杂化硅整体柱表面,制备了离子液体修饰的杂化硅整体柱,利用该整体柱分离了核苷酸、酚类物质和苯甲酸。与未进行修饰的整体柱相比较,分离选择性提高,究其原因,认为是碳链提供的疏水作用和咪唑环提供的氢键作用以静电作用导致。
Capillary electrophoresis is a type of micro-separation methods that separates samples by their various properties using capillary as the separation channel and high-voltage electric fields as driving force. For the features of its efficient, fast, and trace quantity, capillary electrophoresis is becoming to the fastest growing areas of analytical chemistry. As one of six kinds of separation modes of CE, capillary electrochromatography is a hybrid technique that combines the high efficiency of capillary electrophoresis and good selectivity of high performance liquid chromatography, which is the new aspect and have been focus of chromatography development. Chromatography column is the heart of chromatography technique, while stationary phase is the key component of chromatography column. However, the stationary phases existed could not meet the demand of analysis as the samples are becoming more complicated, therefore, the development of new stationary phases for CEC to address this issue is of great significance.
     Monolithic column is a kind of chromatography column which can be prepared by sol-gel and in-situ free radical polymerization technology. Silica based monolith exhibits high permeability and column capacity, excellent solvent tolerance ability, and mechanical stability, however, there are only siloxane bonds in this kind of monolithic column which is restricted for further use by its poor hydrolytic stability, which could be improved by modification and organic-inorganic hybrid. Hybrid silica monolith was synthesized through a "one pot" approach by inserting a functional group and content with the separation demand. The characteristic of structure and selectivity of the stationary phase could be controlled by changing the ratio of the precursor. The Si-C bond and monolith were combined by covalent bonds, which could overcome the disadvantage of poor stability of the stationary phase modified after column.
     Supramolecular chemistry is a kind of emerging subject, which deals with the specific recognitions between molecules. The host-guest interactions, which are exerted by supramolecular compounds, can provide a promising prospect for chromatographic separations with high selectivity. They have been widely used for purification and separation of complicated mixtures. Nowadays, it has been attracted considerable attentions that the synergistic reaction of two kind supramolecular compounds on the separation of complicated samples, and the use as stationary phase on CEC has been reported, while it has received scant attention on CEC monolithic columns.
     Several kinds of novel supramolecular liquid crystal and liquid crystal crown ether with terminal vinyl were synthesized, and vinyl hybrid silica monolithic column was prepared in this paper, then the supramolecular was bonded to the monolith by free radical polymerization reaction. The electrochromtographic performance of the column was systematically studied, and was used in real samples. The main points of this dissertation are listed as follows:
     1. Terminal-vinyl supramolecular liquid crystal 4'-(ω-undeceny-1-lyoxy)-4-xenol (UX), liquid crystal crown ether 4-allyloxy -4'-(4'-carboxylbenzo 15-crown-5)-biphenyl (PCB),2-[4-(ω-undeceny-1-yloxy)-phenyl]-2-[4'-(4'- carboxybenzo-15-crown-5)-phenyl] propane (UCP) and 4- (ω-undecenyl-1-lyoxy)-4'-(4'-carboxylbenzo 15-crown-5)-biphenyl(UCB) were synthesized, which could be bonded to vinyl hybrid silica monolithic column. Melting point test, infrared spectrum, Raman spectrum and mass spectrum were used to confirm the structure and purity of the compounds. Vinyl hybrid silica monolith was prepared, the condition such as the dosage of porogenic agent, silylating reagent and urea were investigated. After optimizing preparation conditions, the pore diameter was measured by mercury porosimetry, and the median pore diameter was around 3μm.
     2. The terminal-vinyl liquid crystal 4'-(ω- undeceny-1-lyoxy)-4-xenol (UX) was used to modify terminal-vinyl organic-inorganic hybrid silica monolithic column by free radical polymerization procedure. Naphthol, PAHs, phthalate ester and steroids were successfully separated on the column and the separation effects were compared with unmodified column. The separation conditions including organic solvent, pH, and buffer agent on the effect of separation were investigated. The mechanism was inferred to hydrophobic interaction supplied by alkyl chain and hydrogen bonding supplied by hydroxide on liquid crystal.
     3. The terminal-vinyl liquid crystal crown ether 2-[4-(ω-undeceny-1-yloxy)-phenyl]-2-[4'-(4'-carboxybenzo-15-crown-5)-phenyl] propane (UCP) was firstly used to modify hybrid silica-based monolithic column possessing vinyl ligands by free radical polymerization procedure. Polycyclic aromatic hydrocarbons, benzenediols, carbamate pesticides and steroids, were successfully separated on the column. Compared with unmodified monolithic column, the selectivity was observably improved, which was caused by the high electron cloud hydrogen bonding on crown ether and hydrophobic interaction on liquid crystal chains.
     4. Two terminal-vinyl liquid crystal crown ethers 4-allyloxy -4'-(4'-carboxylbenzo 15-crown-5)-biphenyl (PCB) and 4-(ω-undecenyl-l-lyoxy)-4'-(4'-carboxylbenzo 15-crown-5)-biphenyl (UCB) with different alkyl groups were introduced to modify hybrid silica monolithic columns possessing vinyl ligands. Phthalate esters, phenols and nucleotide acids, were successfully separated on the column and the results were compared with UX modified column and unmodified column. The results indicated that the hydrophobic interaction played an important role on UCB column and UX column, the separation effect on phthalate esters was better than PCB column, while the synergy of hydrogen bonding interaction and hydrophobic interaction makes the separation on phenols better.
     5. Determination of imidacloprid and carbendazim residues in tomato was performed using capillary electrochromatography with a terminal-vinyl organic-inorganic hybrid silica monolithic column modified by liquid crystalline crown ether (UCB-VTMS-TMOS). Standard addition method was employed to overcome the matrix effects which were thoroughly investigated in the article. Satisfactory recoveries were obtained and the limits of detection were both below the MRL values stipulated by CAC. The result showed the method developed was applicable to the determination of imidacloprid and carbendazim residues in tomato with rapid analysis and simplicity.
     6. A kind of ionic liquid,1-allyl-3-methyl imidazole chloride (AMC) was synthesized; the structure was examined by infrared spectrum and nuclear magnetic resonance and was used to modify the vinyl hybrid silica monolith by free radical polymerization procedure. Nucleotide acids, phenols and benzoic acid compounds were separated on the column and the separation mechanism was discussed. Compared with unmodified column, the selectivity improved, which was believed to the hydrophobic interaction on carbon chain, hydrogen bonding interaction and electrostatic interaction on imidazole ring.
引文
1. 王志欣,原虎山,朱英等.杯芳烃涂层毛细管的制备与电泳性能考察.分析化学2000,28:206-210.
    2. 王镜岩,朱圣庚,徐长法.生物化学(第三版).高等教育出版社,2002:478-483.
    3. 李来生.杯芳烃高效液相色谱和电色谱键合硅胶固定相的研究.武汉大学博士学位论文,2004.
    4. 李来生,达世禄,冯钰錡等.对-叔丁基杯[8]芳烃键合硅胶制备及其毛细管电色谱性能研究.高等学校化学学报,2005,26(7):1228-1232.
    5.邹汉法,刘震,叶明亮等.毛细管电色谱及其应用.科学出版社,2001.
    6. 陈义.毛细管电泳技术及应用(第二版).化学工业出版社,2005.
    7. Abidi S, Thiam S, Warner I. Elution behavior of unsaponifiable lipids with various capillary electrochromatographic stationary phases. Journal of Chromatography A, 2002,949(1-2):195-207.
    8. Abidi S L. Capillary electrochromatography of sterols and related steryl esters derived from vegetable oils. Journal of Chromatography A,2004,1059(1-2): 199-208.
    9. Allen D, El Rassi Z. Capillary electrochromatography with monolithic silica column: I. Preparation of silica monoliths having surface-bound octadecyl moieties and their chromatographic characterization and applications to the separation of neutral and charged species. Electrophoresis,2003,24(3):408-420.
    10. Allen D, El Rassi Z. Capillary electrochromatography with monolithic silica columns III. Preparation of hydrophilic silica monoliths having surface-bound cyano groups:chromatographic characterization and application to the separation of carbohydrates, nucleosides, nucleic acid bases and other neutral polar species. Journal of Chromatography A,2004,1029(1-2):239-247.
    11. Andre C, Guillaume Y C. CEC for Studying the Retention and Separation of Pesticides on a Humic Acid Stationary Phase. Chromatographia,2008,68(9-10): 791-796.
    12. Armstrong D W, Tang Y, Ward T et al. Derivatized cyclodextrins immobilized on fused-silica capillaries for enantiomeric separations via capillary electrophoresis, gas chromatography, or supercritical fluid chromatography. Analytical Chemistry,1993, 65(8):1114-1117.
    13. Aturki Z, D'Orazio G, Fanali S. Rapid assay of vitamin E in vegetable oils by reversed-phase capillary electrochromatography. Electrophoresis,2005,26(4-5): 798-803.
    14. Aturki Z, Fanali S, D'Orazio G et al. Analysis of phenolic compounds in extra virgin olive oil by using reversed-phase capillary electrochromatography. Electrophoresis, 2008,29(8):1643-1650.
    15. Aturki Z, Vichi F, Messina A et al., Indirect resolution of B-blocker agents by reversed-phase capillary electrochromatography. Electrophoresis,2004, 25(4-5):607-614.
    16. Augustin V, Stachowiak T, Svec F et al. CEC separation of peptides using a poly(hexyl acrylate-co-1,4-butanediol diacrylate-co-[2-(acryloyloxy)ethyl] trimethyl ammonium chloride) monolithic column. Electrophoresis,2008,29(18):3875-3886.
    17. Bailey C, Wallenborg S. Indirect laser-induced fluorescence detection of explosive compounds using capillary electrochromatography and micellar electrokinetic chromatography. Electrophoresis,2000,21(15):3081-3087.
    18. Barcelo-Barrachina E, Moyano E, Galceran M T. State-of-the-art of the hyphenation of capillary electrochromatography with mass spectrometry. Electrophoresis,2004, 25(13):1927-1948.
    19. Barcelo-Barrachina E, Moyano E, Puignou L et al. CEC separation of heterocyclic amines using methacrylate monolithic columns. Electrophoresis,2007,28(11): 1704-1713.
    20. Behnke B, Bayer E. Pressurized gradient electro-high-performance liquid chromatography. Journal of Chromatography A,1994,680(1):93-98.
    21. Boyce M C. Determination of additives and organic contaminants in food by CE and CEC. Electrophoresis,2007,28(22):4046-4062.
    22. Breadmore M C, Hilder E F, Macka M et al. Modelling of migration behaviour of inorganic anions in ion-exchange capillary electrochromatography. Electrophoresis, 2001,22(3):503-10.
    23. Breadmore M C, Palmer A S, Curran M et al. On-column ion-exchange preconcentration of inorganic anions in open tubular capillary electrochromatography with elution using transient-isotachophoretic gradients.3. Implementation and method development. Anal Chem,2002a,74(9):2112-8.
    24. Breadmore M C, Shrinivasan S, Wolfe K A et al. Towards a microchip-based chromatographic platform. Part 1:Evaluation of sol-gel phases for capillary electrochromatography. Electrophoresis,2002b,23(20):3487-3495.
    25. Breadmore M C, Shrinivasan S, Karlinsey J et al. Towards a microchip-based chromatographic platform. Part 2:Sol-gel phases modified with polyelectrolyte multilayers for capillary electrochromatography. Electrophoresis,2003,24(7-8): 1261-1270.
    26. Cabrera K, Lubda D, Eggenweiler H-M et al. A New Monolithic-Type HPLC Column For Fast Separations. Journal of High Resolution Chromatography,2000. 23(1):93-99.
    27. Cacho C, Schweitz L, Turiel E et al. Molecularly imprinted capillary electrochromatography for selective determination of thiabendazole in citrus samples. Journal of Chromatography A,2008,1179(2):216-223.
    28. Chaisuwan P, Nacapricha D, Wilairat P et al. Separation of alpha-, beta-, gamma-, delta-tocopherols and alpha-tocopherol acetate on a pentaerythritol diacrylate monostearate-ethylene dimethacrylate monolith by capillary electrochromatography. Electrophoresis,2008,29(11):2301-2309.
    29. Chen D, Wang J, Jiang Y et al. Separation and determination of coumarins in Fructus cnidii extracts by pressurized capillary electrochromatography using a packed column with a monolithic outlet frit. Journal of Pharmaceutical and Biomedical Analysis,2009a,50(5):695-702.
    30. Chen J-L. Etched succinate-functionalized silica hydride stationary phase for open-tubular CEC. Electrophoresis,2009b,30(22):3855-3862.
    31. Chen J-L. Multi-wall carbon nanotubes bonding on silica-hydride surfaces for open-tubular capillary electrochromatography. Journal of Chromatography A,2010b, 1217(5):715-721.
    32. Chen T-H, Misra T K, Liu C-Y. Capillary electrochromatographic separation of peptides using a macrocyclic polyamine for molecular recognition. Electrophoresis, 2008a,29(8):1651-1657.
    33. Chen W H, Liu C Y. Macrocyclic polyamine as a selective modifier in a bonded-phase capillary column for the electrophoretic separation of aromatic acids. J Chromatogr A,1999,848(1-2):401-16.
    34. Chen W-H, Lin S-Y, Liu C-Y. Capillary electrochromatographic separation of metal ion species with on-line detection by inductively coupled plasma mass spectrometry. Analytica Chimica Acta,2000,410(1-2):25-35.
    35. Chen X J, Ji H, Wang Y T et al. Simultaneous determination of seven flavonoids in Epimedium using pressurized liquid extraction and capillary electrochromatography. Journal of Separation Science,2008b,31(5):881-887.
    36. Chen X J, Zhao J, Meng Q et al. Simultaneous determination of five flavonoids in licorice using pressurized liquid extraction and capillary electrochromatography coupled with peak suppression diode array detection. Journal of Chromatography A, 2009b,1216(43):7329-7335.
    37. Chen X-J, Yang F-Q, Wang Y-T et al. CE and CEC of nucleosides and nucleotides in food materials. Electrophoresis,2010c,31(13):2092-2105.
    38. Chiari M, Ceriotti L, Crini G et al. Poly(vinylamine)-coated capillaries with reversed electroosmotic flow for the separation of organic anions. Journal of Chromatography A,1999,836(1):81-91.
    39. Choudhary G, Horvath C. Dynamics of capillary electrochromatography-Experimental study on the electrosmotic flow and conductance in open and packed capillaries. Journal of Chromatography A,1997,781(1-2):161-183.
    40. Colon H, Zhang X, Murphy J K et al. Allyl-functionalized hybrid silica monoliths. Chemical Communications,2005(22):2826-2828.
    41. Colon L A, Burgos G, Maloney T D et al. Recent progress in capillary electrochromatography. Electrophoresis,2000,21(18):3965-3993.
    42. Crego A L, Diez-Masa J C, Dabrio M V. Preparation of open tubular columns for reversed-phase high-performance liquid chromatography. Analytical Chemistry, 1993,65(11):1615-1621.
    43. D'Orazio G, Fanali S. Coupling capillary electrochromatography with mass spectrometry by using a liquid-junction nano-spray interface. Journal of Chromatography A,2010,1217(25):4079-4086.
    44. Dabek-Zlotorzynska E, Aranda-Rodriguez R, Keppel-Jones K. Recent advances in capillary electrophoresis and capillary electrochromatography of pollutants. Electrophoresis,2001,22(19):4262-4280.
    45. Dabek-Zlotorzynska E, Chen H, Ding L Y. Recent advances in capillary electrophoresis and capillary electrochromatography of pollutants. Electrophoresis, 2003,24(22-23):4128-4149.
    46. Dabek-Zlotorzynska E, Celo V. Recent advances in capillary electrophoresis and capillary electrochromatography of pollutants. Electrophoresis,2006,27(1): 304-322.
    47. Dabek-Zlotorzynska E, Celo V, Yassine M M. Recent advances in CE and CEC of pollutants. Electrophoresis,2008,29(1):310-323.
    48. Dawson G B, Matyska M T, Pesek J J et al. Electrochromatographic studies of etched capillaries modified with a cyano pentoxy biphenyl liquid crystal. Journal of Chromatography A,2004,1047(2):299-303.
    49. De Rossi A, Desiderio C. Separation of negatively charged nonsteroidal anti-inflammatory drugs by reversed-phase capillary electrochromatography. Journal of Chromatography A,2003,984(2):283-290.
    50. De Rossi A, Desiderio C. Application of reversed phase short end-capillary electrochromatography to herbicides residues analysis. Chromatographia,2005a, 61(5-6):271-275.
    51. De Rossi A, Sinibaldi M, Berti A et al. Optimization of the separation of triazines, metabolites, and phenylurea herbicides in mixture by reversed phase capillary electrochromatography. Journal of Liquid Chromatography & Related Technologies, 2005b,28(4):537-548.
    52. Dermaux A, Sandra P, Ferraz V. Analysis of free fatty acids and fatty acid phenacyl esters in vegetable oils and margarine by capillary electrochromatography. Electrophoresis,1999a,20(1):74-79.
    53. Dermaux A, Medvedovici A, Ksir M et al. Elucidation of the triglycerides in fish oil by packed-column supercritical fluid chromatography fractionation followed by capillary electrochromatography and electrospray mass spectrometry. Journal of Microcolumn Separations,1999b,11(6):451-459.
    54. Desiderio C, Rudaz S, Veuthey J L et al., Use of vancomycin silica stationary phase in packed capillary electrochromatography. Part Ⅳ:Enantiomer separation of fluoxetine and norfluoxetine employing UV high sensitivity detection cell. Journal of Separation Science,2002,25(15-17):1291-1296.
    55. Ding G S, Zhang J L, Bao J J. Preparation and evaluation of amphiphilic silica-based monolithic column having surface-bound octanoyl-aminopropyl moieties for capillary electrochromatography. Electrophoresis,2010,31(12):1983-1990.
    56. Dong J, Ou J, Dong X et al. Preparation and evaluation of rigid porous polyacrylamide-based strong cation-exchange monolithic columns for capillary electrochromatography. Journal of Separation Scicenc,2007,30(17):2986-92.
    57. Dong X L, Wu R, Dong J et al. Polyacrylamide-based monolithic capillary column with coating of cellulose tris(3,5-dimethylphenyl-carbamate) for enantiomer separation in capillary electrochromatography. Electrophoresis,2008,29(4): 919-927.
    58. Eeltink S, Kok W T. Recent applications in capillary electrochromatography. Electrophoresis,2006,27(1):84-96.
    59. Eeltink S, Rozing G R, Kok W T. Recent applications in capillary electrochromatography. Electrophoresis,2003,24(22-23):3935-3961.
    60. El Rassi Z. Electrophoretic and electrochromatographic separation of proteins in capillaries:An update covering 2007-2009. Electrophoresis,2010,31(1):174-191.
    61. Enlund A M, Ericson C, Hjerten S et al. Capillary electrochromatography of hydrophobic amines on continuous beds. Electrophoresis,2001b,22(3):511-7.
    62. Enlund A M, Isaksson R, Westerlund D. Capillary electrochromatography of tricyclic antidepressants on strong cation exchangers with different pore sizes. Journal of Chromatography A,2001a,918(1):211-220.
    63. Ericson C, Holm J, Ericson T et al. Electroosmosis- and pressure-driven chromatography in chips using continuous beds. Analytical Chemistry,2000,72(1): 81-87.
    64. Fanali S, Catarcini P, Quaglia M G et al. Separation of delta-, gamma- and alpha-tocopherols by CEC. Journal of Pharmaceutical and Biomedical Analysis. 2002,29(6):973-979.
    65. Fu H J, Huang X D, Jin W H et al. The separation of biomolecules using capillary electrochromatography. Current Opinion in Biotechnology,2003,14(1):96-100.
    66. Fu H J, Xie C H, Xiao H et al. Monolithic columns with mixed modes of reversed-phase and anion-exchange stationary phase for capillary electrochromatography. Journal of Chromatography A,2004,1044:237-244.
    67. Fujimoto C. Charged Polyacrylamide Gels for Capillary Electrochromatographic Separations of Uncharged, Low Molecular Weight Compounds. Analytical Chemistry,1995,67(13):2050-2053.
    68. Fujimoto C, Fujise Y, Matsuzawa E. Fritless Packed Columns for Capillary Electrochromatography:Separation of Uncharged Compounds on Hydrophobic Hydrogels. Analytical Chemistry,1996,68(17):2753-2757.
    69. Gago-Martinez A, Pineiro N, Aguete E C et al. Further improvements in the application of high-performance liquid chromatography, capillary electrophoresis and capillary electrochromatography to the analysis of algal toxins in the aquatic environment. Journal of Chromatography A,2003,992(1-2):159-168.
    70. Garguilo M, Thomas D, Anex D. Laser-induced dispersed fluorescence detection of polycyclic aromatic compounds in soil extracts separated by capillary electrochromatography. Journal of Chromatography A,2000,883(1-2):231-248.
    71. Gfrorer P, Schewitz J, Pusecker K et al. Gradient elution capillary electrochromatography and hyphenation with nuclear magnetic resonance. Electrophoresis,1999,20(1):3-8.
    72. Gong Y H, Lee H K. Enantiomeric separations in capillary electrochromatography with crown ether-capped beta-cyclodextrin-bonded silica particles as chiral stationary phase. Helvetica Chimica Acta,2002a,85(10):3283-3293.
    73. Gong Y H, Xiang Y Q, Yue B F et al. Application of diaza-18-crown-6-capped beta-cyclodextrin bonded silica particles as chiral stationary phases for ultrahigh pressure capillary liquid chromatography. Journal of Chromatography A,2003, 1002(1-2):63-70.
    74. Gong Y H, Xue G P, Xiang Y Q et al. Synthesis of cyclam-capped beta-cyclodextrin-bonded silica particles for use as chiral stationary Phases in capillary electrochromatography. Tetrahedron Letters,2002b,43(13):2463-2466.
    75. Gu C, Lin L, Li B et al. Rapid separation and determination of microcystins using monolithic columns in isocratic elution mode by pressurized capillary electrochromatography. Electrophoresis,2008,29(18):3887-3895.
    76. Gu C Y, He J, Jia J P et al. Surfactant-bound monolithic columns for CEC. Electrophoresis,2009,30(22):3814-3827.
    77. Gu C Y, Shamsi S A. CEC-atmospheric pressure ionization MS of pesticides using a surfactant-bound monolithic column. Electrophoresis,2010,31 (7):1162-1174.
    78. Guo Y, Colon L A. A Stationary Phase for Open Tubular Liquid Chromatography and Electrochromatography Using Sol-Gel Technology. Analytical Chemistry,1995, 67(15):2511-2516.
    79. Gusev I, Huang X, Horvath C. Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography. Journal of Chromatography A,1999,855(1):273-290.
    80. Han Y H, Levkin P, Abarientos I et al. Monolithic Superhydrophobic Polymer Layer with Photopatterned Virtual Channel for the Separation of Peptides Using Two-Dimensional Thin Layer Chromatography-Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry,2010,82(6):2520-2528.
    81. Haselberg R, de Jong G J, Somsen G W. Capillary electrophoresis-mass spectrometry for the analysis of intact proteins. Journal of Chromatography A,2007, 1159(1-2):81-109.
    82. Hebenstreit D, Bicker W, Lammerhofer M et al. Novel enantioselective strong cation exchangers based on sulfodipeptide selectors:evaluation for enantiomer separation of chiral bases by nonaqueous capillary electrochromatography. Electrophoresis, 2004,25(2):277-89.
    83. Herrero-Martinez J M, Eeltink S, Schoenmakers P J et al. Determination of major carotenoids in vegetables by capillary electrochromatography. Journal of Separation Science,2006,29(5):660-665.
    84. Hilder E F, Zemann A J, Macka M et al. Anion-exchange capillary electrochromatography with indirect UV and direct contactless conductivity detection. Electrophoresis,2001,22(7):1273-81.
    85. Hilmi A, Luong J. In-line coupling capillary electrochromatography with amperometric detection for analysis of explosive compounds. Electrophoresis,2000, 21(7):1395-1404.
    86. Hjerten S. Free zone electrophoresis. Chromatographic Reviews,1967,9(2): 122-219.
    87. Hjerten S. High-performance electrophoresis:the electrophoretic counterpart of high-performance liquid chromatography. Journal of Chromatography A,1983,270: 1-6.
    88. Hjerten S, Zhu M-d. Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing. Journal of Chromatography A,1985,346: 265-270.
    89. Holdsvendova P, Suchankova J, Buncek M et al. Hydroxymethyl methacrylate-based monolithic columns designed for separation of oligonucleotides in hydrophilic-interaction capillary liquid chromatography. Journal of Biochemical and Biophysical Methods,2007,70(1):23-29.
    90. Hou C, Herr A E. Clinically relevant advances in on-chip affinity-based electrophoresis and electrochrornatography. Electrophoresis,2008,29(16): 3306-3319.
    91. Hu J, Li X, Cai Y et al. Hybrid silica polymeric monolith-based in-tube microextraction and CE for determination of bisphenol A in beverages. Journal of Separation Science,2009a,32(15-16):2759-2766.
    92. Hu K, Tian Y L, Yang H et al. Preparation and Characterization of p-tert-Butylcalix[4]arene Modified Sol-Gel Column for Open-Tubular Capillary Electrochromatography. Journal of Liquid Chromatography & Related Technologies, 2009b,32(18):2627-2641.
    93. Huang H-Y, Liu Y-C, Cheng Y-J. Development of capillary electrochromatography with poly(styrene-divinylbenzene-vinylbenzenesulfonic acid) monolith as the stationary phase. Journal of Chromatography A,2008,1190(1-2):263-270.
    94. Huang H Y, Chiu C W, Huang I Y et al. Analyses of preservatives by capillary electrochromatography using methacrylate ester-based monolithic columns. Electrophoresis,2004,25(18-19):3237-3246.
    95. Huo Y, Kok W T. Recent applications in CEC. Electrophoresis,2008,29(1):80-93.
    96. Hutchinson J P, Hilder E F, Macka M et al. Preparation and characterisation of anion-exchange latex-coated silica monoliths for capillary electrochromatography. Journal of Chromatography A,2006,1109(1):10-18.
    97. Hutchinson J P, Macka M, Avdalovic N et al. Use of coupled open-tubular capillaries for in-line ion-exchange preconcentration of anions by capillary electrochromatography with elution by a transient isotachophoretic gradient. Journal of Chromatography A,2004,1039(1-2):187-92.
    98. Ishii D, Tsuda T, Takeuchi T. Studies of open-tubular micro-capillary liquid chromatography:Ⅳ. Soda-lime glass columns treated with alkaline solution. Journal of Chromatography A,1979,185:73-78.
    99. Ishizuka N, Minakuchi H, Nakanishi K et al. Performance of a Monolithic Silica Column in a Capillary under Pressure-Driven and Electrodriven Conditions. Analytical Chemistry,2000,72(6):1275-1280.
    100.Issaq H J, Chan K C, Blonder J et al. Separation, detection and quantitation of peptides by liquid chromatography and capillary electrochromatography. Journal of Chromatography A,2009,1216(10):1825-1837.
    101.Jaafar J, Watanabe Y, Ikegami T et al. Anion exchange silica monolith for capillary liquid chromatography. Analytical and Bioanalytical Chemistry,2008,391(7): 2551-2556.
    102.Jacobson S C, Hergenroeder R, Koutny L B et al. Open Channel Electrochromatography on a Microchip. Analytical Chemistry,1994,66(14): 2369-2373.
    103.Jandera P, Urban J, Skerikova V et al. Polymethacrylate monolithic and hybrid particle-monolithic columns for reversed-phase and hydrophilic interaction capillary liquid chromatography. Journal of Chromatography A,2010,1217(1):22-33.
    104.Jayawickrama D A, Sweedler J V. Hyphenation of capillary separations with nuclear magnetic resonance spectroscopy. Journal of Chromatography A,2003,1000(1-2): 819-840.
    105.Jorgenson J W, Guthrie E J. Liquid chromatography in open-tubular columns: Theory of column optimization with limited pressure and analysis time, and fabrication of chemically bonded reversed-phase columns on etched borosilicate glass capillaries. Journal of Chromatography A,1983,255:335-348.
    106.Jorgenson J W, Lukacs K D. High-resolution separations based on electrophoresis and electroosmosis. Journal of Chromatography A,1981,218:209-216.
    107.Jorgenson J W, Lukacs K D. Zone electrophoresis in open-tubular glass capillaries. Analytical Chemistry,1981,53(8):1298-1302.
    108.Jouyban A, Kenndler E. Impurity analysis of pharmaceuticals using capillary electromigration methods. Electrophoresis,2008,29(17):3531-3551.
    109.Karenga S, Rassi Z E. Neutral octadecyl monolith for reversed phase capillary electrochromatography of a wide range of solutes. Journal of Separation Science, 2008,31(14):2677-2685.
    110.Kasicka V. Recent developments in capillary electrophoresis and capillary electrochromatography of peptides. Electrophoresis,2006,27(1):142-175.
    111.Kasicka V. Recent developments in CE and CEC of peptides. Electrophoresis,2008, 29(1):179-206.
    112.Kasicka V. Recent advances in CE and CEC of peptides (2007-2009). Electrophoresis,2010,31(1):122-146.
    113.Kitagawa S, Tsuda T. Behavior of neutral solutes in pressurized flow driven electrochromatography using a mixed stationary phase of ODS and anion-exchange. Journal of Chromatography A,2003,995(1-2):209-215.
    114.Klampfl C W. Determination of organic acids by CE and CEC methods. Electrophoresis,2007,28:3362-3378.
    115.Klampfl C W, Buchberger WHaddad P R. Fast separation of pyrimidine derivatives by capillary electrochromatography on ion-exchange/reversed-phase mixed-mode stationary phases. Journal of Chromatography A,2001,911(2):277-283.
    116.Knox J. Thermal effects and band spreading in capillary electro-separation. Chromatographia,1988,26(1):329-337.
    117.Knox J, Grant I. Miniaturisation in pressure and electroendosmotically driven liquid chromatography:Some theoretical considerations. Chromatographia,1987,24(1): 135-143.
    118.Knox J, Grant I. Electrochromatography in packed tubes using 1.5 to 50μm silica gels and ODS bonded silica gels. Chromatographia,1991,32(7):317-328.
    119.Krenkova J, Svec F. Less common applications of monoliths:Ⅳ. Recent developments in immobilized enzyme reactors for proteomics and biotechnology. Journal of Separation Science,2009,32(5-6):706-718.
    120.Lacey M E, Webb A G, Sweedler J V. On-Line Temperature Monitoring in a Capillary Electrochromatography Frit Using Microcoil NMR. Analytical Chemistry, 2002,74(17):4583-4587.
    121.Lammerhofer M, Gargano A. Monoliths with chiral surface functionalization for enantioselective capillary electrochromatography. Journal of Pharmaceutical and Biomedical Analysis,2010,53(5):1091-1123.
    122.Leao Martins J M, Gago-Martinez A, Dabek-Zlotorzynska E et al. Preliminary results on the application of capillary electrochromatography to the analysis of domoic acid. Journal of Separation Science,2002,25(5-6):342-344.
    123.Lee T, Lee W, Hyun M H et al. Enantioseparation of alpha-amino acids on an 18-crown-6-tetracarboxylic acid-bonded silica by capillary electrochromatography. Journal of Chromatography A,2010,1217(8):1425-1428.
    124.Lerma-Garcia M J, Alfonso E F S, Ramis-Ramos G et al. Rapid determination of sterols in vegetable oils by CEC using methacrylate ester-based monolithic columns. Electrophoresis,2008,29(22):4603-4611.
    125.Lerma-Garcia M J, Lantano C, Chiavaro E et al. Classification of extra virgin olive oils according to their geographical origin using phenolic compound profiles obtained by capillary electrochromatography. Food Research International,2009, 42(10):1446-1452.
    126.U H B, Chen Y Y, Zeng Z R et al. p-tert-butylcalix[4]arene-1,3-bis(allyloxyethoxy)ether coated capillaries for open-tubular electrochromatography. Analytical Sciences,2005,21(6):717-720.
    127.Li H B, Zeng Z R, Xie C H et al. Preparation and application of a novel type of calix[6]crown coated capillary for open-tubular capillary electrochromatography. Chromatographia,2002,55(9-10):591-594.
    128.Li L, Colon L A. Hydrosilylated allyl-silica hybrid monolithic columns. Journal of Separation Science,2009,32(15-16):2737-2746.
    129.Li Y, Lee M L. Biocompatible polymeric monoliths for protein and peptide separations. Journal of Separation Science,2009,32(20):3369-3378.
    130.Liao J-L, Chen N, Ericson C et al. Preparation of Continuous Beds Derivatized with One-Step Alkyl and Sulfonate Groups for Capillary Electrochromatography. Analytical Chemistry,1996,68(19):3468-3472.
    131.Lin J, Huang G H, Lin X C et al. Methacrylate-based monolithic column with mixed-mode hydrophillic interaction/strong cation-exchange stationary phase for capillary liquid chromatography and pressure-assisted CEC. Electrophoresis,2008b, 29(19):4055-4065.
    132.Lin J, Lin X C, Xie Z G. Preparation of a mixed-mode hydrophilic interaction/anion-exchange polymeric monolithic stationary phase for capillary liquid chromatography of polar analytes. Journal of Chromatography A,2009, 1216(5):801-806.
    133.Lin S Y, Liu C Y. An insight into the phenomena involved in a multiple-function stationary phase for the capillary electrochromatographic separation of 2'-,3'-, and 5'-monophosphorylated nucleoside isomers. Electrophoresis,2003,24(17): 2973-2982.
    134.Lin X, Wang J, Li L et al. Separation and determination of five major opium alkaloids with mixed mode of hydrophilic/cation-exchange monolith by pressurized capillary electrochromatography. Journal of Separation Science,2007b,30(17): 3011-3017.
    135.Lin Z, Lin J, Wu X P et al. Evaluation of band broadening in chemiluminescence detection coupled to pressurized capillary electrochromatography with an off-column coaxial flow interface. Electrophoresis,2008a,29(2):401-409.
    136.Lin Z, Wu X, Lin X et al. End-column chemiluminescence detection for pressurized capillary electrochromatographic analysis of norepinephrine and epinephrine. Journal of Chromatography A,2007a,1170(1-2):118-121.
    137.Liu C Y, Chen T H, Misra T K. A macrocyclic polyamine as an anion receptor in the capillary electrochromatographic separation of carbohydrates. Journal of Chromatography A,2007a,1154(1-2):407-415.
    138.Liu S, Xie Z, Wu X et al. Separation of structurally related estrogens using isocratic elution pressurized capillary electrochromatography. Journal of Chromatography A, 2005b,1092(2):258-262.
    139.Liu S F, Wu X P, Xie Z H et al. On-line coupling of pressurized capillary electrochromatography with end-column amperometric detection for analysis of estrogens. Electrophoresis,2005a,26(12):2342-2350.
    140.Liu S F, Zhang X, Lin X C et al. Development of a new method for analysis of Sudan dyes by pressurized CEC with amperometric detection. Electrophoresis, 2007b,28(11):1696-1703.
    141.Liu X, Takahashi L, Fitch W et al. Capillary electrochromatography-laser-induced fluorescence method for separation and detection of dansylated dialkylamine tags in encoded combinatorial libraries. Journal of Chromatography A,2001,924(1-2): 323-329.
    142.Lord G A, Gordon D B, Tetler L W et al. Electrochromatography-electrospray mass spectrometry of textile dyes. Journal of Chromatography A,1995,700(1-2):27-33.
    143.Lu H X, Wang J B, Wang X C et al. Rapid separation and determination of structurally related anthraquinones in Rhubarb by pressurized capillary electrochromatography. Journal of Pharmaceutical and Biomedical Analysis.2007, 43(1):352-357.
    144.Lu H X, Wu X P, Xie Z H et al. Separation and determination of seven fluoroquinolones by pressurized capillary electrochromatography. Journal of Separation Science,2005,28(16):2210-2217.
    145.Lu Q M, Zhang L, Chen L H et al. Simultaneous analysis of endogenetic and ectogenic plant hormones by pressurized capillary electrochromatography. Journal of Separation Science,2010,33(4-5):651-657.
    146.Ma J F, Liang Z, Qiao X Q et al. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity. Analytical Chemistry, 2008,80(8):2949-2956.
    147.Mandrioli R, Raggi M A. Advances in the enantioseparation of second-generation antidepressant drugs by electrodriven methods. Electrophoresis,2006,27(1): 213-221.
    148.Martin M, Guiochon G. Axial dispersion in open-tubular capillary liquid chromatography with electroosmotic flow. Analytical Chemistry,1984,56(4): 614-620.
    149.Martin M, Guiochon G, Walbroehi Y et al. Peak Broadening in Open-Tubular Liquid Chromatography with Electroosmotic Flow. Analytical Chemistry,1985,57(2): 559-561.
    150.Maruska A, Kornysova O. Homogeneous reversed-phase agarose thermogels for electrochromatography. Journal of Chromatography A,2004,1044(1-2):223-227.
    151.Matyska M T, Pesek J J, Katrekar A. Open tubular capillary electrochromatography using etched fused-silica tubing modified with chemically bonded liquid crystals. Analytical Chemistry,1999,71(24):5508-5514.
    152.Mould D L, Synge R L M. Electrokinetic ultrafiltration analysis of polysaccharides. A New Approach to the Chromatography of Large Molecules. Analyst,1952,77: 964-969.
    153.Natishan T K. Recent progress in the analysis of pharmaceuticals by capillary electrophoresis. Journal of Liquid Chromatography & Related Technologies,2005, 28(7-8):1115-1160.
    154.Nilsson C, Viberg P, Spegel P et al. Nanoparticle-based continuous full filling capillary electrochromatography/electrospray ionization-mass spectrometry for separation of neutral compounds. Analytical Chemistry,2006,78(17):6088-6095.
    155.Nischang I, Holtzel A, Tallarek U. Electrochromatographic retention of peptides on strong cation-exchange stationary phases. Electrophoresis,2010,31(5):933-43.
    156.Norton D, Shamsi S. Packed-column capillary electrochromatography and capillary electrochromatography-mass spectrometry using a lithocholic acid stationary phase. Electrophoresis,2008,29(10):2004.
    157.Norton D, Shamsi S A. Capillary electrochromatography-mass spectrometry of nonionic surfactants. Analytical Chemistry,2007,79(24):9459-9470.
    158.O'Mahony T, Owens V P, Murrihy J P et al. Alkylthiol gold nanoparticles in open-tubular capillary electrochromatography. Journal of Chromatography A,2003, 1004(1-2):181-193.
    159.Oguri S, Okuya Y, Yanase Y et al. Post-column derivatization capillary electrochromatography for detection of biogenic amines in tuna-meat. Journal of Chromatography A,2008,1202(1):96-101.
    160.Ohyama K, Fujimoto E, Wada M et al. Investigation of a novel mixed-mode stationary phase for capillary electrochromatography. Part III:Separation of nucleosides and nucleic acid bases on sulfonated naphthalimido-modified silyl silica gel. Journal of Separation Science,2005a,28(8):767-773.
    161.Ohyama K, Kuroda N. Capillary Electrochromatography of Charged Biomolecules with Mixed-Mode Stationary Phases. Journal of Liquid Chromatography & Related Technologies,2007,30(5):833-851.
    162.Ohyama K, Shirasawa Y, Wada M et al. Investigation of the novel mixed-mode stationary phase for capillary electrochromatography-Ⅰ. Preparation and characterization of sulfonated naphthalimido-modified silyl silica gel. Journal of Chromatography A,2004a,1042(1-2):189-195.
    163.Ohyama K, Shirasawa Y, Wada M et al. Investigation of the novel mixed-mode stationary phase for capillary electrochromatography. Ⅱ. Separation of amino acids and peptides on sulfonated naphthalimido-modified silyl silica gel. Electrophoresis, 2004b,25(18-19):3224-3230.
    164.Ohyama K, Wada M, Kishikawa N et al. Stepwise gradient of buffer concentration for capillary electrochromatography of peptides on sulfonated naphthalimido-modified silyl silica gel. Journal of Chromatography A,2005b, 1064(2):255-259.
    165.Ohyama K, Wada M, Lord G A et al. Capillary electrochromatographic analysis of barbiturates in serum. Electrophoresis,2004c,25(4-5):594-599.
    166.Ohyama K, Wada M, Lord G A et al. Capillary electrochromatography of caffeine and its metabolites in rat brain microdialysate. Electrophoresis,2005c,26(4-5): 812-817.
    167.Okanda F M, El Rassi M. Capillary electrochromatography with monolithic stationary phases.4. Preparation of neutral stearyl-acrylate monoliths and their evaluation in capillary electrochromatography of neutral and charged small species as well as peptides and proteins. Electrophoresis,2005,26(10):1988-1995,
    168.Okanda F M, El Rassi Z. Affinity monolithic capillary columns for glycomics/proteomics:I. Polymethacrylate monoliths with immobilized lectins for glycoprotein separation by affinity capillary electrochromatography and affinity nano-liquid chromatography in either a single column or columns coupled in series. Electrophoresis,2006,27(5-6):1020-1030.
    169.Pesek J J, Matyska M T. Column technology in capillary electrophoresis and capillary electrochromatography. Electrophoresis,1997,18(12-13):2228-38.
    170.Pesek J J, Matyska M T. Silica hydride surfaces:Versatile separation media for chromatographic and electrophoretic analyses. Journal of Liquid Chromatography & Related Technologies,2006,29(7-8):1105-1124.
    171.Pesek J J, Matyska M T, Bloomquist T et al. Analysis of antibiotics in milk using open tubular capillary electrochromatography. Journal of Liquid Chromatography & Related Technologies,2005,28(19):3015-3024.
    172.Pesek J J, Matyska M T, Salgotra V. Retention of proteins and metalloproteins in open tubular capillary electrochromatography with etched chemically modified columns. Electrophoresis,2008,29(18):3842-3849.
    173.Peters E C, Petro M, Svec F et al. Molded rigid polymer monoliths as separation media for capillary electrochromatography. Analytical Chemistry,1997,69(17): 3646-3649.
    174.Pirogov A V, Buchberger W. Ionene-coated sulfonated silica as a packing material in the packed-capillary mode of electrochromatography. Journal of Chromatography A, 2001,916(1-2):51-59.
    175.Polcaro C M, Berti A, De Rossi A et al. Analysis of phenylurea herbicides in groundwater by reverse phase capillary electrochromatography. Chromatographia, 2003,57(9-10):623-628.
    176.Preinerstorfer B, Hoffmann C, Lubda D et al. Enantioselective silica-based monoliths modified with a novel aminosulfonic acid-derived strong cation exchanger for electrically driven and pressure-driven capillary chromatography. Electrophoresis, 2008,29(8):1626-1637.
    177.Preinerstorfer B, Lubda D, Lindner W et al. Monolithic silica-based capillary column with strong chiral cation-exchange type surface modification for enantioselective non-aqueous capillary electrochromatography. Journal of Chromatography A,2006, 1106(1-2):94-105.
    178.Pretorius V, Hopkins B J, Schieke J D. Electro-osmosis:A new concept for high-speed liquid chromatography. Journal of Chromatography A,1974,99:23-30.
    179.Pusecker K, Schewitz J, Gfrorer P et al. On-Line Coupling of Capillary Electrochromatography, Capillary Electrophoresis, and Capillary HPLC with Nuclear Magnetic Resonance Spectroscopy. Analytical Chemistry,1998,70(15): 3280-3285.
    180.Qu Q S, Peng S W, Mangelings D et al. Silica spheres coated with C18-modified gold nanoparticles for capillary LC and pressurized CEC separations. Electrophoresis,2010,31(3):556-562.
    181.Qu Q S, Tang X Q, Wang C Y et al. Preparation of particle-fixed silica monoliths used in capillary electrochromatography. Journal of Separation Science,2006, 29(13):2098-2102.
    182.Rainer M, Sonderegger H, Bakry R et al. Analysis of protein phosphorylation by monolithic extraction columns based on poly(divinylbenzene) containing embedded titanium dioxide and zirconium dioxide nano-powders. Proteomics,2008,8(21): 4593-4602.
    183.Randon J, Huguet S, Demesmay C et al. Zirconia based monoliths used in hydrophilic-interaction chromatography for original selectivity of xanthines. Journal of Chromatography A,2010,1217(9):1496-1500.
    184.Rathore A S. Theory of electroosmotic flow, retention and separation efficiency in capillary electrochromatography. Electrophoresis,2002,23(22-23):3827-3846.
    185.Rebscher H, Pyell U. A method for the experimental determination of contributions to band broadening in electrochromatography with packed capillaries. Chromatographia,1994,38(11):737-743.
    186.Rehder-Silinski M A, McGown L B. Capillary electrochromatographic separation of bovine milk proteins using a G-quartet DNA stationary phase. Journal of Chromatography A,2003,1008(2):233-245.
    187.Rocco A, Aturki Z, D'Orazio G et al. CEC separation of insect oostatic peptides using a strong-cation-exchange stationary phase. Electrophoresis,2007,28(11): 1689-1695.
    188.Rocco A, Fanali S. Capillary electrochromatography without external pressure assistance:Use of packed columns with a monolithic inlet frit. Journal of Chromatography A,2008,1191(1-2):263-267.
    189.Roux R, Jaoud M A, Demesmay C et al. Optimization of the single-step synthesis of hybrid C8 silica monoliths dedicated to nano-liquid chromatography and capillary electrochromatography. Journal of Chromatography A,2008,1209(1-2):120-127.
    190.Sandra P, Dermaux A, Ferraz V et al. Analysis of triglycerides by capillary electrochromatography. Journal of Microcolumn Separations,1997,9(5):409-419.
    191. Sandra P, Medvedovici A, Zhao Y et al. Characterization of triglycerides in vegetable oils by silver-ion packed-column supercritical fluid chromatography coupled to mass spectroscopy with atmospheric pressure chemical ionization and coordination ion spray. Journal of Chromatography A,2002,974(1-2):231-241.
    192.Schaller D, Hilder E F, Haddad P R. Monolithic stationary phases for fast ion chromatography and capillary electrochromatography of inorganic ions. Journal of Separation Science,2006,29(12):1705-1719.
    193.Schwer C, Kenndler E. Electrophoresis in fused-silica capillaries:the influence of organic solvents on the electroosmotic velocity and the.zeta. potential. Analytical Chemistry,1991,63(17):1801-1807.
    194.Siouffi A M. Silica gel-based monoliths prepared by the sol-gel method:facts and figures. Journal of Chromatography A,2003,1000(1-2):801-818.
    195.Smith N, Evans M. The analysis of pharmaceutical compounds using electrochromatography. Chromatographia,1994,38(9):649-657.
    196.Smith N, Evans M. The efficient analysis of neutral and highly polar pharmaceutical compounds using reversed-phase and ion-exchange electrochromatography. Chromatographia,1995,41(5):197-203.
    197.Sneekes E-J, Damen M, Swart R et al. Isoform separation of a multi-acetylated protein using capillary polystyrene-divinylbenzene monolithic columns. Journal of Chromatography A,2008,1194(2):199-204.
    198.Spegel P, Viberg P, Carlstedt J et al. Continuous full filling capillary electrochromatography:Nanoparticle synthesis and evaluation. Journal of Chromatography A,2007,1154(1-2):379-385.
    199.Steiner F, Lobert T. Capillary electrochrornatography with bare silicas of different pore sizes as stationary phases. Journal of Separation Science,2003,26(17): 1589-1594.
    200.Steiner F, Scherer B. Separation of small peptides by electrochromatography on silica-based reversed phases and hydrophobic anion exchange phases. Electrophoresis,2005,26(10):1996-2004.
    201.Stol R, Mazereeuw M, Tjaden U R et al. Pseudo-electrokinetic packing of high efficiency columns for capillary electrochromatography. Journal of Chromatography A,2000,873(2):293-298.
    202.Stulik K, Pacakova V, Suchankova J et al. Monolithic organic polymeric columns for capillary liquid chromatography and electrochromatography. Journal of Chromatography B,2006,841(1-2):79-87.
    203.Svec F. CEC:Selected developments that caught my eye since the year 2000. Electrophoresis,2009,30(S1):S68-S82.
    204.Terabe S, Otsuka K, Ichikawa K et al. Electrokinetic separations with micellar solutions and open-tubular capillaries. Analytical Chemistry,1984,56(1):111-113.
    205.Tian R J, Sun J M, Zhang H et al. Large-pore mesoporous SBA-15 silica particles with submicrometer size as stationary phases for high-speed CEC separation. Electrophoresis,2006,27(4):742-748.
    206.Tian Y, Zeng Z R, Chen Y Y et al. Open-tubular capillary electrochromatography using capillaries modified with p-tert-butylcalix[4]arene-1,3-bis (allyloxyethy)ether. Journal of Liquid Chromatograph & Related Technologies,2005,28(18): 2931-2943.
    207.Tian Y, Zhang L F, Zeng Z R et al. Calix[4] open-chain crown ether-modified, vinyl-functionalized hybrid silica monolith for capillary electrochromatography. Electrophoresis,2008,29(4):960-970.
    208.Tian Y, Zhong C, Fu E et al. Novel [beta]-cyclodextrin derivative functionalized polymethacrylate-based monolithic columns for enantioselective separation of ibuprofen and naproxen enantiomers in capillary electrochromatography. Journal of Chromatography A,2009,1216(6):1000-1007.
    209.Tsuda T. Electrochromatography using high applied voltage. Analytical Chemistry, 1987,59(3):521-523.
    210.Tsuda T, Nomura K, Nakagawa G. Open-tubular microcapillary liquid chromatography with electro-osmosis flow using a UV detector. Journal of Chromatography A,1982,248(2):241-247.
    211.Unger K K, Skudas R, Schulte M M. Particle packed columns and monolithic columns in high-performance liquid chromatography-comparison and critical appraisal. Jo urnal of Chromatography A,2008,1184(1-2):393-415.
    212.Urban J, Svec F, Frechet J M J. Efficient Separation of Small Molecules Using a Large Surface Area Hypercrosslinked Monolithic Polymer Capillary Column. Analytical Chemistry,2010,82(5):1621-1623.
    213.Uysal U D, Aturki Z, Raggi M A et al. Separation of catechins and methylxanthines in tea samples by capillary electrochromatography. Journal of Separation Science, 2009,32(7):1002-1010.
    214.Vanhoenacker G, Van den Bosch T, Rozing G et al. Recent applications of capillary electrochromatography. Electrophoresis,2001,22(19):4064-4103.
    215.Vaz F A S, de Castro P M, Molina C et al. External polyacrylate-coating as alternative material for preparation of photopolymerized sol-gel monolithic column. Talanta,2008,76(1):226-229.
    216.Viberg P, Spegel P, Carlstedt J et al. Continuous full filling capillary electrochromatography:Chromatographic performance and reproducibility. Journal of Chromatography A,2007b,1154(1-2):386-389.
    217.Viberg P, Spegel P, Nilsson J et al. Reversed phase continuous full filling CEC-ESI-MS. Chromatographia,2007a,65(5-6):291-297.
    218.Vindevogel J, Sandra P. Simultaneous pH and ionic strength effects and buffer selection in capillary electrophoretic techniques. Journal of Chromatography A, 1991,541:483-488.
    219.Wahl A, Schnell I, Pyell U. Capillary electrochromatography with polymeric continuous beds synthesized via free radical polymerization in aqueous media using derivatized cyclodextrins as solubilizing agents. Journal of Chromatography A,2004, 1044(1-2):211-222.
    220.Wall W, Li J, El Rassi Z. Electrically driven microseparation methods for pesticides and metabolites Part VII:Capillary electrophoresis and electrochromatography of derivatized and underivatized phenol pesticidic metabolites. Preconcentration and laser induced fluorescence detection of dilute samples. Journal of Separation Science,2002,25(15-17):1231-1244.
    221.Wang G R, Huang K P, Huang B Y et al. Preparation and characterization of monoliths covalently bonded chelating groups for capillary electrochromatographic separation of metal ions. Journal of Chromatography A,2009d,1216(34): 6245-6251.
    222.Wang H, Cao J, Bi Y et al. Magnetically immobilized frits for the preparation of packed columns used in capillary electrochromatography. Journal of Chromatography A,2009a,1216(31):5882-5887.
    223.Wang H F, Zhu Y Z, Lin J P et al. Fabrication of molecularly imprinted hybrid monoliths via a room temperature ionic liquid-mediated nonhydrolytic sol-gel route for chiral separation of zolmitriptan by capillary electrochromatography. Electrophoresis,2008a,29(4):952-959.
    224.Wang J, Chen D, Chen Z et al. Fast separation and determination of coumarins in Fructus cnidii extracts by CEC using poly(butyl methacrylate-co-ethylene dimethacrylate-co-[2-(methacryloyloxy)ethyl] trimethylammonium chloride) monolithic columns. Journal of Separation Science,2010b,33(8):1099-1108.
    225.Wang J B, Lue H X, Lin X C et al. Monolithic column with double mixed-modes of hydrophilic interaction/cation-exchange and reverse-phase/cation-exchange stationary phase for pressurized capillary electrochromatography. Electrophoresis, 2008b,29(4):928-935.
    226.Wang S, Jia L, Chen D. Pressurized CEC with gradient elution for separation of flavonoids from corn. Journal of Separation Science,2009c,32(3):388-393.
    227.Wang X, Ding K, Yang C et al. Sulfoalkylbetaine-based monolithic column with mixed-mode of hydrophilic interaction and strong anion-exchange stationary phase for capillary electrochromatography. Electrophoresis,2010a,31(17):2997-3005.
    228.Wang X, Lin X, Xie Z. Preparation and evaluation of a sulfoalkylbetaine-based zwitterionic monolithic column for CEC of polar analytes. Electrophoresis,2009b, 30(15):2702-2710.
    229.Wang X C, Lu H X, Lin X C et al. Electrochromatographic characterization of methacrylate-based monolith with mixed mode of hydrophilic and weak electrostatic interactions by pressurized capillary electrochromatography. Journal of Chromatography A,2008,1190(1-2):365-371.
    230.Wang Z, Chen Y, Yuan H et al., Preparation and characterization of calixarene-coated capillaries for capillary electrophoresis. Electrophoresis,2000,21(8):1620-1624.
    231.Watanabe Y, Ikegami T, Horie K et al. Improvement of separation efficiencies of anion-exchange chromatography using monolithic silica capillary columns modified with polyacrylates and polymethacrylates containing tertiary amino or quaternary ammonium groups. Journal of Chromatography A,2009,1216(44):7394-7401.
    232.Wei G T, Hsu C F, Liu F K et al. The development of reversed-phase capillary electrochromatography for the separation of steroids. Journal of the Chinese Chemical Society,2005,52(4):741-751.
    233.Wen E, Asiaie R, Horvath C. Dynamics of capillary electrochromatography Ⅱ. Comparison of column efficiency parameters in microscale high-performance liquid chromatography and capillary electrochromatography. Journal of Chromatography A, 1999,855(2):349-366.
    234.Wistuba D. Chiral silica-based monoliths in chromatography and capillary electrochromatography. Journal of Chromatography A,2010,1217(7):941-952.
    235.Wu M, Chen Y, Wu R a et al. The synthesis of chloropropyl-functionalized silica hybrid monolithic column with modification of N,N-dimethyl-N-dodecylamine for capillary electrochromatography separation. Journal of Chromatography A,2010, 1217(26):4389-4394.
    236.Wu M H, Wu R A, Wang F J et al. "One-Pot" Process for Fabrication of Organic-Silica Hybrid Monolithic Capillary Columns Using Organic Monomer and Alkoxysilane. Analytical Chemistry,2009,81(9):3529-3536.
    237.Wu R a, Zou H, Ye M et al. Capillary Electrochromatography for Separation of Peptides Driven with Electrophoretic Mobility on Monolithic Column. Analytical Chemistry,2001,73(20):4918-4923.
    238.Wu R A, Zou H F, Fu H J et al. Separation of peptides on mixed mode of reversed-phase and ion-exchange capillary electrochromatography with a monolithic column. Electrophoresis,2002,23(9):1239-1245.
    239.Wu X J, Liu H X, Liu H et al. Preparation and characterization of p-tert-butylcalix[8]arene bonded capillaries for open-tubular capillary electrochromatography. Analytica Chimica Acta,2003,478(2):191-197.
    240.Wu X P, Wang L, Xie Z H et al. Rapid separation and determination of carbamate insecticides using isocratic elution pressurized capillary electrochromatography. Electrophoresis,2006,27(4):768-777.
    241.Xie C H, Hu J W, Xiao H et al. Electrochromatographic evaluation of a silica monolith capillary column for separation of basic pharmaceuticals. Electrophoresis, 2005,26(4-5):790-797.
    242.Xu L, Feng Y-Q, Shi Z-G et al. Preparation of a sulfonated fused-silica capillary and its application in capillary electrophoresis and electrochromatography. Journal of Chromatography A,2004,1033(1):161-6.
    243.Xu L, Lee H K. Preparation, characterization and analytical application of a hybrid organic-inorganic silica-based monolith. Journal of Chromatography A,2008, 1195(1-2):78-84.
    244.Xu Y, Zhang W P, Zeng P et al. A Butyl Methacrylate Monolithic Column Prepared In-Situ on a Microfluidic Chip and its Applications. Sensors,2009,9(5):3437-3446.
    245.Yamamoto H, Baumann J, Erni F. Electrokinetic reversed-phase chromatography with packed capillaries. Journal of Chromatography A,1992,593(1-2):313-319.
    246.Yan C, Dadoo R, Zare R N et al. Gradient Elution in Capillary Electrochromatography. Analytical Chemistry,1996,68(17):2726-2730.
    247.Yan L-J, Zhang Q-H, Feng Y-Q et al. Octyl-functionalized hybrid silica monolithic column for reversed-phase capillary electrochromatography. Journal of Chromatography A,2006,1121(1):92-98.
    248.Yang F Q, Zhao J, Li S P. CEC of phytochemical bioactive compounds. Electrophoresis,2010,31(1):260-277.
    249.Yang L, Guihen E, Holmes J D et al. Gold nanoparticle-modified etched capillaries for open-tubular capillary electrochromatography. Analytical Chemistry,2005,77(6): 1840-1846.
    250.Ye F, Xie Z, Wu X et al. Phenylaminopropyl silica monolithic column for pressure assisted capillary electrochromatography. Journal of Chromatography A,2006a, 1117(2):170-175.
    251.Ye F G, Xie Z G, Wu X P et al. Determination of pyrethroid pesticide residues in vegetables by pressurized capillary electrochromatography. Talanta,2006b,69(1): 97-102.
    252.Ye M, Zou H, Lei Z et al. Enantiomer separation by strong anion-exchange capillary electrochromatography with dynamically modified sulfated β-cyclodextrin. Electrophoresis,2001,22(3):518-525.
    253.Ye M, Zou H, Liu Z et al. Theoretical study of the separation mechanism of ionizable compounds in capillary electrochromatography. Science in China Series B: Chemistry,1999,42(6):639-648.
    254.Yone A, Carballo R R, Rezzano I N et al. Separation of peptides by open-tubular capillary electrochromatography using Fe(Ⅲ)-deuteroporphyrin as a covalently attached stationary phase. Electrophoresis,2009,30(13):2293-2299.
    255.Yoo M J, Hage D S. Evaluation of silica monoliths in affinity microcolumns for high-throughput analysis of drug-protein interactions. Journal of Separation Science, 2009,32(15-16):2776-2785.
    256.Yu C J, Su C L, Tseng W L. Separation of acidic and basic proteins by nanoparticle-filled capillary electrophoresis. Analytical Chemistry,2006,78(23): 8004-8010.
    257.Zeng Z R, Xie C H, Li H B et al. Open-tubular capillary electrochromatography using capillary columns chemically bonded with the new host molecules calix[6]crown, calix[6]arene. Electrophoresis,2002,23(9):1272-1278.
    258.Zhang D D, Li F M, Kim D H et al. Resolution of beta-blockers on a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid:Unusual temperature effect. Journal of Chromatography A,2005,1083(1-2):89-95.
    259.Zhang K, Jiang Z, Yao C et al. Separation of peptides by pressurized capillary electrochromatography. Journal of Chromatography A,2003,987(1-2):453-458.
    260.Zhang R, Yang G, Xin P et al. Preparation of poly(N-isopropylacrylamide)-grafted polymer monolith for hydrophobic interaction chromatography of proteins. Journal of Chromatography A,2009a,1216(12):2404-2411.
    261.Zhang T, Khadra I, Euerby M R et al. Simultaneous analysis of basic, acidic and neutral compounds on an endcapped octadecylsilane silica-based monolith by pressure-assisted capillary electrochromatography. Electrophoresis,2008a,29(4): 944-951.
    262.Zhang Y-P, Li W, Wang X-J et al. Fast preparation of polystyrene-based monolith using microwave irradiation for micro-column separation. Analytical and Bioanalytical Chemistry,2009b,394(2):617-623.
    263.Zhang Y-P, Ye X-W, Tian M-K et al. Novel method to prepare polystyrene-based monolithic columns for chromatographic and electrophoretic separations by microwave irradiation. Journal of Chromatography A,2008b,1188(1):43-49.
    264.Zhang Y P, Zhang Y J, Gong W J et al. Novel fabrication of on-column capillary inlet frits through flame induced sintering of stainless steel particles. Microchemical Journal,2010,95(1):67-73.
    265.Zheng J, Shamsi S A. Combination of chiral capillary electrochromatography with electrospray ionization mass spectrometry:Method development and assay of warfarin enantiomers in human plasma. Analytical Chemistry,2003,75(22): 6295-6305.
    266.Zheng J, Shamsi S A. Capillary electrochromatography coupled to atmospheric pressure photoionization mass spectrometry for methylated benzo[a]pyrene isomers. Analytical Chemistry,2006,78(19):6921-6927.
    267.Zheng M-M, Ruan G-D, Feng Y-Q. Hybrid organic-inorganic silica monolith with hydrophobic/strong cation-exchange functional groups as a sorbent for micro-solid phase extraction. Journal of Chromatography A,2009,1216(45):7739-7746.
    268.Zhong H W, El Rassi Z. Capillary electrochromatography with monolithic silica columns. IV. Electrochromatographic characterization of polar bonded monolithic stationary phases having surface-bound cyano functionalitiles. Journal of Separation Science,2006a,29(13):2031-2037.
    269.Zhong H W, El Rassi Z. Capillary electrochromatography with monolithic silica columns. V. Study of the electrochromatographic behaviors of polar compounds on monolithic silica having surface bound cyano functionalities. Journal of Separation Science,2006b,29(13):2023-2030.
    270.Zhong H W, El Rassi Z. Monolithic silica capillary columns having immobilized lectins and surface bound polar functionalities for lectin affinity and normal phase nano-LC and CEC of glycoconjugates, respectively. Journal of Separation Science, 2009b,32(10):1642-1653.
    271.Zhong H W, El Rassi Z. Neutral polar methacrylate-based monoliths for normal phase nano-LC and CEC of polar species including N-glycans. Journal of Separation Science,2009a,32(1):10-20.
    1.王志欣,原虎山,朱英等.杯芳烃涂层毛细管的制备与电泳性能考察.分析化学,2000,28:206-210.
    2.李来生.杯芳烃高效液相色谱和电色谱键合硅胶固定相的研究.武汉大学博士学位论文,2004.
    3. 陈雁飞,黄载福.端烯基液晶冠醚的合成及其性质的研究.高等学校化学学报,1995,16(4):553-558.
    4.李来生,达世禄,冯钰錡等.对-叔丁基杯[8]芳烃键合硅胶制备及其毛细管电色谱性能研究.高等学校化学学报,2005,26(7):1228-1232.
    5. Allen D, El Rassi Z. Silica-based monoliths for capillary electrochromatography: Methods of fabrication and their applications in analytical separations. Electrophoresis,2003,24(22-23):3962-3976.
    6. Bogdanski A, Wistuba D, Larsen K L et al. Reciprocal principle of molecular recognition in supramolecular chromatography-highly selective analytical separation of cyclodextrin congeners on a silica-bonded [60]fullerene stationary phase. New Journal of Chemistry,2010,34(4):693-698.
    7. Buszewski B, Ricanyova J, Gadzala-Kopciuch R et al. Supramolecular recognition of estrogens via molecularly imprinted polymers. Analytical and Bioanalytical Chemistry,2010,397(7):2977-2986.
    8. Chen T-H, Misra T K, Liu C-Y. Capillary electrochromatographic separation of peptides using a macrocyclic polyamine for molecular recognition. Electrophoresis, 2008,29(8):1651-1657.
    9. Chen W-H, Lin S-Y, Liu C-Y. Capillary electrochromatographic separation of metal ion species with on-line detection by inductively coupled plasma mass spectrometry. Analytica Chimica Acta,2000,410(1-2):25-35.
    10. Chen W H, Liu C Y. Macrocyclic polyamine as a selective modifier in a bonded-phase capillary column for the electrophoretic separation of aromatic acids. Journal of Chromatography A,1999,848(1-2):401-16.
    11. Colon H, Zhang X, Murphy J K et al. Allyl-functionalized hybrid silica monoliths. Chemical Communications,2005(22):2826-2828.
    12. Dawson G B, Matyska M T, Pesek J J et al. Electrochromatographic studies of etched capillaries modified with a cyano pentoxy biphenyl liquid crystal. Journal of Chromatography A,2004,1047(2):299-303.
    13. Gong Y H, Lee H K. Enantiomeric separations in capillary electrochromatography with crown ether-capped beta-cyclodextrin-bonded silica particles as chiral stationary phase. Helvetica Chimica Acta,2002a,85(10):3283-3293.
    14. Gong Y H, Xiang Y Q, Yue B F et al. Application of diaza-18-crown-6-capped beta-cyclodextrin bonded silica particles as chiral stationary phases for ultrahigh pressure capillary liquid chromatography. Journal of Chromatography A,2003, 1002(1-2):63-70.
    15. Gong Y H, Xue G P, Xiang Y Q et al. Synthesis of cyclam-capped beta-cyclodextrin-bonded silica particles for use as chiral stationary Phases in capillary electrochromatography. Tetrahedron Letters,2002b,43(13):2463-2466.
    16. Hu K, Tian Y L, Yang H et al. Preparation and Characterization of p-tert-Butylcalix[4]arene Modified Sol-Gel Column for Open-Tubular Capillary Electrochromatography. Journal of Liquid Chromatography & Related Technologies, 2009,32(18):2627-2641.
    17. Jorgenson J W, Lukacs K D. Zone electrophoresis in open-tubular glass capillaries. Analytical Chemistry,1981,53(8):1298-1302.
    18. Jose Lopez-Jimenez F, Rubio S, Perez-Bendito D. Supramolecular solvent-based microextraction of Sudan dyes in chilli-containing foodstuffs prior to their liquid chromatography-photodiode array determination. Food Chemistry,2010,121(3): 763-769.
    19. Lee T, Lee W, Hyun M H et al. Enantioseparation of alpha-amino acids on an 18-crown-6-tetracarboxylic acid-bonded silica by capillary electrochromatography. Journal of Chromatography A,2010,1217(8):1425-1428.
    20. Lehn L-M,沈兴海.超分子化学:概念和展望.北京大学出版社,2002.
    21. Li L, Sun Y C, Wang S A et al. New fluorescent probes based on supramolecular diastereomers for the detection of 2-nitrophenol. Talanta,2010,81(4-5):1643-1649.
    22. Li W, Fries D P, Malik A. Sol-gel stationary phases for capillary electrochromatography. Journal of Chromatography A,2004,1044(1-2):23-52.
    23. Lin S Y, Liu C Y. An insight into the phenomena involved in a multiple-function stationary phase for the capillary electrochromatographic separation of 2'-,3'-, and 5'-monophosphorylated nucleoside isomers. Electrophoresis,2003,24(17): 2973-2982.
    24. Liu C Y, Chen T H, Misra T K. A macrocyclic polyamine as an anion receptor in the capillary electrochromatographic separation of carbohydrates. Journal of Chromatography A,2007,1154(1-2):407-415.
    25. Matyska M T, Pesek J J, Katrekar A. Open tubular capillary electrochromatography using etched fused-silica tubing modified with chemically bonded liquid crystals. Analytical Chemistry,1999,71(24):5508-5514.
    26. Minakuchi H, Nakanishi K, Soga N et al. Octadecylsilylated Porous Silica Rods as Separation Media for Reversed-Phase Liquid Chromatography. Analytical Chemistry, 1996,68(19):3498-3501.
    27. Nakanishi K, Shikata H, Ishizuka N et al. Tailoring Mesopores in Monolithic Macroporous Silica for HPLC. Journal of High Resolution Chromatography,2000, 23(1):106-110.
    28. Pesek J J, Matyska M T, Bloomquist T et al. Analysis of antibiotics in milk using open tubular capillary electrochromatography. Journal of Liquid Chromatography & Related Technologies,2005,28(19):3015-3024.
    29. Pesek J J, Matyska M T, Salgotra V. Retention of proteins and metalloproteins in open tubular capillary electrochromatography with etched chemically modified columns. Electrophoresis,2008,29(18):3842-3849.
    30. Silva C R, Jardim I, Collins C H et al. New stationary phases based on silica for high performance liquid chromatography. Quimica Nova,2004,27(2):270-276.
    31. Siouffi A M. Silica gel-based monoliths prepared by the sol-gel method:facts and figures. Journal of Chromatography A,2003,1000(1-2):801-818.
    32. Steed J W, Attwood J L,赵耀鹏等.超分子化学.化学工业出版社,2006.
    33. Tian Y, Zhang L F, Zeng Z R et al. Calix[4] open-chain crown ether-modified, vinyl-functionalized hybrid silica monolith for capillary electrochromatography. Electrophoresis,2008,29(4):960-970.
    34.
    35. Wang Z, Chen Y, Yuan H et al. Preparation and characterization of calixarene-coated capillaries for capillary electrophoresis. Electrophoresis,2000(21):1620-1624.
    36. Wistuba D, Schurig V. Comparison of monolithic approaches for enantioselective capillary electrochromatography involving cyclodextrins. Journal of Separation Science,2006,29(10):1344-1352.
    37. Wu X J, Liu H X, Liu H et al. Preparation and characterization of p-tert-butylcalix[8]arene bonded capillaries for open-tubular capillary electrochromatography. Analytica Chimica Acta,2003,478(2):191-197.
    38. Ye F, Wang H, Huang B et al. Maleopimaric acid anhydride-bonded silica monolith as chiral stationary phase for separations of phenylthiocarbamyl amino acids by CEC. Electrophoresis,2010,31 (9):1488-1492.
    39. Zhang D D, Li F M, Kim D H et al. Resolution of beta-blockers on a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid:Unusual temperature effect. Journal of Chromatography A,2005,1083(1-2):89-95.
    1.方国桢,吴纯,谢明贵等.液晶作为GC固定液的发展及趋势.化学试剂,1996,18(4):213-222.
    2. Dawson G B, Matyska M T, Pesek J J et al. Electrochromatographic studies of etched capillaries modified with a cyano pentoxy biphenyl liquid crystal. Journal of Chromatography A,2004,1047(2):299-303.
    3. Delaurent C, Tomao V, Siouffi A. Synthesis and characterization of a chemically-bonded cholesteric stationary phase for high-performance liquid chromatogrphy. Chromatographia,1997,45(1):355-363.
    4. Ferroukhi O, Guermouche S, Sebih S et al. Synthesis, characterization and liquid chromatographic behaviours of a new chemically bonded liquid crystal. Journal of Chromatography A,2002,971(1-2):87-94.
    5. Hsu C-S. The application of side-chain liquid-crystalline polymers. Progress in Polymer Science,1997,22(4):829-871.
    6. Kelker H. Kristallin-flussige Schmelzen als stationare Phasen in der Gas-Fliissigkeits-Verteilungschromatographie. Fresenius' Journal of Analytical Chemistry,1963,198(3):254-266.
    7. Matyska M T, Pesek J J, Katrekar A. Open tubular capillary electrochromatography using etched fused-silica tubing modified with chemically bonded liquid crystals. Analytical Chemistry,1999,71(24):5508-5514.
    8. Norton D, Shamsi S. Packed-column capillary electrochromatography and capillary electrochromatography-mass spectrometry using a lithocholic acid stationary phase. Electrophoresis,2008,29(10):2004.
    9. Pesek J, Cash T. A chemically bonded liquid crystal as a stationary phase for high performance liquid chromatography. Synthesis on silica via an organochlorosilane pathway. Chromatographia,1989a,27(11):559-564.
    10. Pesek J, Lu Y, Siouffi A et al. Chromatographic characterization of a bonded liquid crystal stationary phase for HPLC. Chromatographia,1991,31(3):147-151.
    11. Pesek J, Matyska M, Muley S. Synthesis and characterization of a new type of chemically bonded liquid crystal stationary phase for HPLC. Chromatographia, 2000,52(7):439-444.
    12. Pesek J, Matyska M, Williamser E et al. Variable-temperature, solid-state NMR studies of bonded liquid crystal stationary phases for HPLC. Chromatographia,1995, 41(5):301-310.
    13. Pesek J J, Matyska M T, Bloomquist T et al. Analysis of antibiotics in milk using open tubular capillary electrochromatography. Journal of Liquid Chromatography & Related Technologies,2005,28(19):3015-3024.
    14. Pesek J J, Siouffi A M. Chemically bonded liquid crystals as stationary phases for high-performance liquid chromatography. Effects of mobile-phase composition. Analytical Chemistry,1989b,61(17):1928-1931.
    15. Rokushika S, Naikwadi K, Jadhav A et al. Polyacrylate liquid crystalline stationary phases in supercritical fluid chromatography with carbon dioxide mobile phase. Chromatographia,1986,22(1):209-212.
    16. Saito Y, Jinno K, Pesek J et al. Molecular shape recognition capability of liquid-crystal bonded phases in reversed-phase high performance liquid chromatography. Chromatographia,1994,38(5):295-303.
    17. Weidenhoffer Z, Turek B, Mitera J. Xenobiotics in food. I. Metabolic phthalate degradation. Central European Journal of Public Health,1996,4(1):11-5.
    18. Witkiewicz Z, Oszczudlowski J, Repelewicz M. Liquid-crystalline stationary phases for gas chromatography. Journal of Chromatography A,2005,1062(2):155-174.
    1. 陈雁飞,黄载福.端烯基液晶冠醚的合成及其性质的研究.高等学校化学报,1995,16(4):553-558.
    2.李来生,达世禄,冯钰錡等.对-叔丁基杯[8]芳烃键合硅胶制备及其毛细管电色谱性能研究.高等学校化学学报,2005,26(7):1228-1232.
    3.卿笑天,周在德,谢明贵等.用胆甾液晶冠醚气相色谱固定相分离取代苯位置异构体.分析化学,1997,25(6):648-651.
    4.张岩,肖湘竹,冯钰錡等.硅胶键合杯[4]芳烃固定相的合成和核磁共振表征.物理化学学报,2000,16(01):65-68.
    5. Chen T-H, Misra T K, Liu C-Y. Capillary electrochromatographic separation of peptides using a macrocyclic polyamine for molecular recognition. Electrophoresis, 2008,29(8):1651-1657.
    6. Dawson G B, Matyska M T, Pesek J J et al. Electrochromatographic studies of etched capillaries modified with a cyano pentoxy biphenyl liquid crystal. Journal of Chromatography A,2004,1047(2):299-303.
    7. Fu R, Jing P, Gu J et al. Side-chain liquid crystalline polysiloxane containing crown ether used as stationary phase for capillary gas chromatography. Analytical Chemistry 1993,65(15):2141-2144.
    8. Hongjun E, Yang Y, Su P et al. Preparation of stationary phases for open tubular capillary electrochromatography on the basis of sulfated beta-cyclodextrin intercalated in layered double hydroxides. Journal of Analytical Chemistry,2009, 64(4):393-397.
    9. Hsieh M L, Li G Y, Chau L K et al. Single-step approach to beta-cyclodextrin-bonded silica as monolithic stationary phases for CEC. Journal of Separation Science,2008,31(10):1819-1827.
    10. Hu K, Tian Y L, Yang H et al. Preparation and Characterization of p-tert-Butylcalix[4]arene Modified Sol-Gel Column for Open-Tubular Capillary Electrochromatography. Journal of Liquid Chromatography & Related Technologies, 2009,32(18):2627-2641.
    11. Jin Y, Fu R, Huang Z. Use of Crown Ethers in Gas Chromatography. Journal of Chromatography 1989,469:153-159.
    12. Lee T, Lee W, Hyun M H et al. Enantioseparation of alpha-amino acids on an 18-crown-6-tetracarboxylic acid-bonded silica by capillary electrochromatography. Journal of Chromatography A,2010,1217(8):1425-1428.
    13. Lehn J-M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices. Angewandte Chemie International Edition, 1988,27(1):89-112.
    14. Li H B, Chen Y Y, Zeng Z R et al. p-tert-butylcalix[4]arene-1,3-bis (allyloxyethoxy)ether coated capillaries for open-tubular electrochromatography. Analytical Sciences,2005,21(6):717-720.
    15. Li Y J, Song C H, Zhang L Y et al. Fabrication and evaluation of chiral monolithic column modified by beta-cyclodextrin derivatives. Talanta,2010,80(3):1378-1384.
    16. Lin S Y, Chen W H, Liu C Y. Nucleoside monophosphates recognition using macrocyclic polyamine bonded phase in capillary electrochromatography. Electrophoresis,2002,23(9):1230-1238.
    17. Liu C Y, Chen T H, Misra T K. A macrocyclic polyamine as an anion receptor in the capillary electrochromatographic separation of carbohydrates. Journal of Chromatography A,2007,1154(1-2):407-415.
    18. Matyska M T, Pesek J J, Katrekar A. Open tubular capillary electrochromatography using etched fused-silica tubing modified with chemically bonded liquid crystals. Analytical Chemistry,1999,71(24):5508-5514.
    19. Meyer R, Jira T. Calixarene HPLC phases-Applications. Current Analytical Chemistry,2007,3(2):161-170.
    20. Norton D, Shamsi S. Packed-column capillary electrochromatography and capillary electrochromatography-mass spectrometry using a lithocholic acid stationary phase. Electrophoresis,2008,29(10):2004.
    21. Percec V, Rodenhouse R. Liquid-crystal polyethers containing macroheterocyclic ligands.1. Polyethers and copolyethers based on 4,4'-dihydroxy-.alpha.-methylstilbene, bis(8-bromooctyl)dibenzo-18-crown-6 and/or 1,11-dibromoundecane. Macromolecules,1989,22(5):2043-2047.
    22. Pesek J J, Matyska M T, Bloomquist T et al. Analysis of antibiotics in milk using open tubular capillary electrochromatography. Journal of Liquid Chromatography & Related Technologies,2005a,28(19):3015-3024.
    23. Pesek J J, Matyska M T, Dawson G B et al. Open tubular capillary electrochromatography of synthetic peptides on etched chemically modified columns. Analytical Chemistry,2004,76(1):23-30.
    24. Pesek J J, Matyska M T, Freeman K et al. The use of etched, chemically modified, rectangular capillaries as a separation medium for open tubular capillary electrochromatography. Analytical and Bioanalytical Chemistry,2005b,382(3): 795-803.
    25. Pesek J J, Matyska M T, Salgotra V. Retention of proteins and metalloproteins in open tubular capillary electrochromatography with etched chemically modified columns. Electrophoresis,2008,29(18):3842-3849.
    26. Pesek J J, Matyska M T, Velpula S. Open tubular capillary electrochromatography migration behavior of enkephalins in etched chemically modified fused silica capillaries. Journal of Chromatography A,2006,1126(1-2):298-303.
    27. Santalad A, Srijaranai S, Burakham R et al. Cloud-point extraction and reversed-phase high-performance liquid chromatography for the determination of carbamate insecticide residues in fruits. Analytical and Bioanalytical Chemistry, 2009,394(5):1307-1317.
    28. Schurig V. Separation of enantiomers by gas chromatography. Journal of Chromatography A,2001,906(1-2):275-299.
    29. Shinkai S, Nishi T, Matsuda T. Chirality Recognition by a Color Change in Crowned Cholesteric Liquid Crystals. Chemistry Letters,1991,20(3):437-440.
    30. Sun T, Shen J, Sun H Y et al. A Novel Model of Host Molecule in Supramolecular Chemistry Based on Cyclodextrin-Crownether Coupling System. Progress in Chemistry,2009,21(12):2515-2524.
    31. Tian Y, Li H B, Zeng Z R. A novel sol-gel calix[4]arene-modified capillary column for open-tubular capillary electrochromatography. Electrophoresis,2006,27(17): 3381-3390.
    32. Tian Y, Yang F X, Yang X M et al. Macrocyclic polyamine-modified poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith for capillary electrochromatography. Electrophoresis,2008a,29(11):2293-2300.
    33. Tian Y, Zeng Z R, Chen Y Y et al. Open-tubular capillary electrochromatography using capillaries modified with p-tert-butylcalix[4]arene-1,3-bis(allyloxyethy)ether. Journal of Liquid Chromatography & Related Technologies,2005,28(18): 2931-2943.
    34. Tian Y, Zhang L F, Zeng Z R et al. Calix[4] open-chain crown ether-modified, vinyl-functionalized hybrid silica monolith for capillary electrochromatography. Electrophoresis,2008b,29(4):960-970.
    35. Tian Y, Zhong C, Fu E et al. Novel [beta]-cyclodextrin derivative functionalized polymethacrylate-based monolithic columns for enantioselective separation of ibuprofen and naproxen enantiomers in capillary electrochromatography. Journal of Chromatography A,2009,1216(6):1000-1007.
    36. Wang Y, Xiao Y, Tan T T Y et al. Application of Click-chemistry-based perphenylcarbamated beta-CD chiral stationary phase in CEC. Electrophoresis,2009, 30(4):705-711.
    37. Wistuba D, Schurig V. The Separation of Enantiomers on Modified Cyclodextrins by Capillary Electrochromatography (CEC). Lc Gc Europe,2009,22(2):60-+.
    38. Wu X J, Liu H X, Liu H et al. Preparation and characterization of p-tert-butylcalix[8]arene bonded capillaries for open-tubular capillary electrochromatography. Analytica Chimica Acta,2003,478(2):191-197.
    39. Yang L, Chen C J, Liu X et al. Use of cyclodextrin-modified gold nanoparticles for enantioseparations of drugs and amino acids based on pseudostationary phase-capillary electrochromatography. Electrophoresis,2010,31(10):1697-1705.
    40. Yang X, M, Wang Z, Wang C et al. Determination of carbamate pesticides in reservoir water by hollow fiber-based liquid phase microextraction coupled with high performance liquid chromatography. Chinese Journal of Chromatography,2007, 25(3):362-366.
    41. Zeng Z R, Xie C H, Li H B et al. Open-tubular capillary electrochromatography using capillary columns chemically bonded with the new host molecules calix[6]crown, calix[6]arene. Electrophoresis,2002,23(9):1272-1278.
    42. Zhang D D, Li F M, Kim D H et al. Resolution of beta-blockers on a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid:Unusual temperature effect. Journal of Chromatography A,2005,1083(1-2):89-95.
    43. Zhu Y M, Jia X B, Xiao D et al. Characterization of the monolayer transition of a double-armed crown ether liquid crystal by liquid crystal alignment. Physics Letters A,1994,188(3):287-290.
    1.陈雁飞,黄载福.端烯基液晶冠醚的合成及其性质的研究.高等学校化学学报,1995,16(4):553-558.
    2.方国桢,吴纯,谢明贵等.液晶作为GC固定液的发展及趋势.化学试剂,1996,18(4):213-222.
    3. 王镜岩,朱圣庚,徐长法.生物化学(第三版).高等教育出版社,2002:478-483.
    4. 田耘,曹小敏,张琪等.超分子化合物毛细管电色谱固定相的研究进展.色谱,2009(06):737-744.
    5. Baniceru M, Radu S, Sarpe-Tudoran C. Synthesis of a new liquid crystal. 4-[(4-chlorobenzyl)oxy]-4'-cyanoazobenzene and its use as stationary phase in gas-chromatography. Chromatographia,1998,48(5):427-430.
    6. Cao X L. Phthalate Esters in Foods:Sources, Occurrence, and Analytical Methods. Comprehensive Reviews in Food Science and Food Safety,2010,9(1):21-43.
    7. Chen J L. Multi-wall carbon nanotubes bonding on silica-hydride surfaces for open-tubular capillary electrochromatography. Journal of Chromatography A,2010b, 1217(5):715-721.
    8. Chen X-J, Yang F-Q, Wang Y-T et al. CE and CEC of nucleosides and nucleotides in food materials. Electrophoresis,2010a,31(13):2092-2105.
    9. Eeltink S, Kok W T. Recent applications in capillary electrochromatography. Electrophoresis,2006,27(1):84-96.
    10. Eeltink S, Rozing G R, Kok W T. Recent applications in capillary electrochromatography. Electrophoresis,2003,24(22-23):3935-3961.
    11. Fu R, Jing P, Gu J et al. Side-chain liquid crystalline polysiloxane containing crown ether used as stationary phase for capillary gas chromatography. Analytical Chemistry 1993,65(15):2141-2144.
    12. Gong Y H, Lee H K. Enantiomeric separations in capillary electrochromatography with crown ether-capped beta-cyclodextrin-bonded silica particles as chiral stationary phase. Helvetica Chimica Acta,2002a,85(10):3283-3293.
    13. Gong Y H, Xiang Y Q, Yue B F et al. Application of diaza-18-crown-6-capped beta-cyclodextrin bonded silica particles as chiral stationary phases for ultrahigh pressure capillary liquid chromatography. Journal of Chromatography A,2003, 1002(1-2):63-70.
    14. Gong Y H, Xue G P, Xiang Y Q et al. Synthesis of cyclam-capped beta-cyclodextrin-bonded silica particles for use as chiral stationary Phases in capillary electrochromatography. Tetrahedron Letters,2002b,43(13):2463-2466.
    15. Guo B Y, Wen B, Shan X Q et al. Separation and determination of phthalates by micellar electrokinetic chromatography. Journal of Chromatography A,2005, 1095(1-2):189-192.
    16. Huo Y, Kok W T. Recent applications in CEC. Electrophoresis,2008,29(1):80-93.
    17. Jing P, Fu R, Dai R et al. Consequence of diluting modified β-cyclodextrins in a side-chain crown ether polysiloxane and in a side-chain liquid-crystalline polysiloxane-containing crown ether as stationary phases in capillary gas chromatography. Chromatographia,1996a,43(9):546-550.
    18. Jing P, Fu R, Zhou W et al. Unusual behaviour of a new kind of side chain crown ether polysiloxanes used in capillary gas chromatography. Journal Of Chromatography A,1996b,752(1-2):189-195.
    19. Knobloch T, Engewald W. Identification of some polar polycyclic compounds in emissions from brown-coal-fired residential stoves. Journal of High Resolution Chromatography,1993,16(4):239-242.
    20. Koide T, Ueno K. Enantiomeric separations of primary amino compounds by capillary electrochromatography with monolithic chiral stationary phases of chiral crown ether-bonded negatively charged polyacrylamide gels. Journal of Chromatography A,2001,909(2):305-315.
    21. Kuhn R. Enantiomeric separation by capillary electrophoresis using a crown ether as chiral selector. Electrophoresis,1999,20(13):2605-2613.
    22. Li H B, Chen Y Y, Zeng Z R et al. p-tert-butylcalix[4]arene-1,3-bis (allyloxyethoxy)ether coated capillaries for open-tubular electrochromatography. Analytical Sciences,2005,21(6):717-720.
    23. Li H B, Zeng Z R, Xie C H et al. Preparation and application of a novel type of calix[6]crown coated capillary for open-tubular capillary electrochromatography. Chromatographia,2002,55(9-10):591-594.
    24. Li S, Purdy W C. Circular dichroism, ultraviolet, and proton nuclear magnetic resonance spectroscopic studies of the chiral recognition mechanism of.beta.-cyclodextrin. Analytical Chemistry,1992,64(13):1405-1412.
    25. Liu M, Li L-S, Da S-L et al. High performance liquid chromatography with cyclodextrin and calixarene macrocycle bonded silica stationary phases for separation of steroids. Talanta,2005,66(2):479-486.
    26. Matsuda T, Maruyama T, Iizuka H et al. Phthalate esters reveal skin-sensitizing activity of phenethyl isothiocyanate in mice. Food and Chemical Toxicology,2010, 48(6):1704-1708.
    27. Rodriguez I, Turnes M I, Mejuto M C et al. Determination of chlorophenols at the sub-ppb level in tap water using derivatization, solid-phase extraction and gas chromatography with plasma atomic emission detection. Journal of Chromatography A,1996,721(2):297-304.
    28. Shen S, Li Y, Wakida S-i et al. Determination of adrenal steroids by microfluidic chip using micellar electrokinetic chromatography. Environmental Monitoring and Assessment,2009,153(1):201-208.
    29. Skogsberg U, Handel H, Gesele E et al. Investigation of the retention behaviour of steroids with calixarene-based stationary phases by modern NMR spectroscopy. Journal of Separation Science,2003,26(12-13):1119-1124.
    30. Svec F. CEC:Selected developments that caught my eye since the year 2000. Electrophoresis,2009,30(S1):S68-S82.
    31. Tian Y, Zeng Z R, Chen Y Y et al. Open-tubular capillary electrochromatography using capillaries modified with p-tert-butylcalix[4]arene-1,3-bis(allyloxyethy)ether. Journal of Liquid Chromatography & Related Technologies,2005,28(18): 2931-2943.
    32. Tian Y, Zhang L F, Zeng Z R et al. Calix[4] open-chain crown ether-modified, vinyl-functionalized hybrid silica monolith for capillary electrochromatography. Electrophoresis,2008,29(4):960-970.
    33. Vanhoenacker G, Van den Bosch T, Rozing G et al. Recent applications of capillary electrochromatography. Electrophoresis,2001,22(19):4064-4103.
    34. Witkiewicz Z. Liquid Crystals:Applications and Uses. World Scientific Publishing, 1991.
    35. Witkiewicz Z, Oszczudlowski J, Repelewicz M. Liquid-crystalline stationary phases for gas chromatography. Journal of Chromatography A,2005,1062(2):155-174.
    36. Xu Q, Yin X Y, Wu S Y et al. Determination of phthalate esters in water samples using Nylon6 nanofibers mat-based solid-phase extraction coupled to liquid chromatography. Microchimica Acta,2010,168(3-4):267-275.
    37. Zarzycki P K, Kulhanek K M, Smith R. Chromatographic behaviour of selected steroids and their inclusion complexes with [beta]-cyclodextrin on octadecylsilica stationary phases with different carbon loads. Journal of Chromatography A,2002, 955(1):71-78.
    38. Zeng Z R, Xie C H, Li H B et al. Open-tubular capillary electrochromatography using capillary columns chemically bonded with the new host molecules calix[6]crown, calix[6]arene. Electrophoresis,2002,23(9):1272-1278.
    1. 张志恒.农药合理使用规范和最高残留限量标准.化学工业出版社,2007.
    2. Blasco C, Font G, Pic Y. Evaluation of 10 pesticide residues in oranges and tangerines from Valencia (Spain). Food Control,2006,17(11):841-846.
    3. Cacho C, Schweitz L, Turiel E et al. Molecularly imprinted capillary electrochromatography for selective determination of thiabendazole in citrus samples. Journal of Chromatography A,2008,1179(2):216-223.
    4. Chen T-H, Misra T K, Liu C-Y. Capillary electrochromatographic separation of peptides using a macrocyclic polyamine for molecular recognition. Electrophoresis, 2008,29(8):1651-1657.
    5. Dawson G B, Matyska M T, Pesek J J et al. Electrochromatographic studies of etched capillaries modified with a cyano pentoxy biphenyl liquid crystal. Journal of Chromatography A,2004,1047(2):299-303.
    6. Fernandez-Alba A R, Valverde A, Aguera A et al. Determination of imidacloprid in vegetables by high-performance liquid chromatography with diode-array detection. Journal of Chromatography A,1996,721(1):97-105.
    7. Ferrer I, Garcia-Reyes J F, Mezcua M et al. Multi-residue pesticide analysis in fruits and vegetables by liquid chromatography-time-of-flight mass spectrometry. Journal of Chromatography A,2005,1082(1):81-90.
    8. Fu R, Jing P, Gu J et al. Side-chain liquid crystalline polysiloxane containing crown ether used as stationary phase for capillary gas chromatography. Analytical Chemistry 1993,65(15):2141-2144.
    9. Hu K, Tian Y L, Yang H et al. Preparation and Characterization of p-tert-Butylcalix[4]arene Modified Sol-Gel Column for Open-Tubular Capillary Electrochromatography. Journal of Liquid Chromatography & Related Technologies, 2009,32(18):2627-2641.
    10. Jansson C, Pihlstrom T, Osterdahl B-G et al. A new multi-residue method for analysis of pesticide residues in fruit and vegetables using liquid chromatography with tandem mass spectrometric detection. Journal of Chromatography A,2004, 1023(1):93-104.
    11. Jing P, Fu R, Zhou W et al. Unusual behaviour of a new kind of side chain crown ether polysiloxanes used in capillary gas chromatography. Journal of Chromatography A,1996,752(1-2):189-195.
    12. Kato T, Frechet J M J. A new approach to mesophase stabilization through hydrogen bonding molecular interactions in binary mixtures. Journal of the American Chemical Society,1989,111(22):8533-8534.
    13. Koide T, Ueno K. Enantiomeric separations of primary amino compounds by capillary electrochromatography with monolithic chiral stationary phases of chiral crown ether-bonded negatively charged polyacrylamide gels. Journal of Chromatography A,2001,909(2):305-315.
    14. Lee T, Lee W, Hyun M H et al. Enantioseparation of alpha-amino acids on an 18-crown-6-tetracarboxylic acid-bonded silica by capillary electrochromatography. Journal of Chromatography A,2010,1217(8):1425-1428.
    15. Li H B, Zeng Z R, Xie C H et al. Preparation and application of a novel type of calix[6]crown coated capillary for open-tubular capillary electrochromatography. Chromatographia,2002,55(9-10):591-594.
    16. Li Y J, Song C H, Zhang L Y et al. Fabrication and evaluation of chiral monolithic column modified by beta-cyclodextrin derivatives. Talanta,2010,80(3):1378-1384.
    17. Liu C Y, Chen T H, Misra T K. A macrocyclic polyamine as an anion receptor in the capillary electrochromatographic separation of carbohydrates. Journal of Chromatography A,2007,1154(1-2):407-415.
    18. Mandic A, Lazic S, Okresz S et al. Determination of the Insecticide Imidacloprid in Potato and Onion by High-Performance Liquid Chromatography with Diode-Array Detection. Journal of Analytical Chemistry,2005,60(12):1134-1138.
    19. Matyska M T, Pesek J J, Katrekar A. Open tubular capillary electrochromatography using etched fused-silica tubing modified with chemically bonded liquid crystals. Analytical Chemistry,1999,71(24):5508-5514.
    20. Michel M, Buszewski B, Isolation and determination of carbendazim residue from wheat grain by matrix solid-phase dispersion and HPLC. Journal of Sepration Science,2003,(26):1269-1272.
    21. Navarrete-Casas M, Segura-Carretero A, Cruces-Blanco C et al. Potential determination of aminated pesticides and metabolites by cyclodextrin capillary electrophoresis-laser-induced fluorescence using FITC as labelling. Pest Management Science,2005(61),197-203.
    22. Pesek J J, Matyska M T, Bloomquist T et al. Analysis of antibiotics in milk using open tubular capillary electrochromatography. Journal of Liquid Chromatography & Related Technologies,2005,28(19):3015-3024.
    23. Tian Y, Yang F X, Yang X M et al. Macrocyclic polyamine-modified poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith for capillary electrochromatography. Electrophoresis,2008b,29(11):2293-2300.
    24. Tian Y, Zhang L F, Zeng Z R et al. Calix[4] open-chain crown ether-modified, vinyl-functionalized hybrid silica monolith for capillary electrochromatography. Electrophoresis,2008a,29(4):960-970.
    25. Tian Y, Zhong C, Fu E et al. Novel [beta]-cyclodextrin derivative functionalized polymethacrylate-based monolithic columns for enantioselective separation of ibuprofen and naproxen enantiomers in capillary electrochromatography. Journal of Chromatography A,2009,1216(6):1000-1007.
    26. Wang Z, Chen Y, Yuan H et al., Preparation and characterization of calixarene-coated capillaries for capillary electrophoresis. Electrophoresis,2000(21):1620-1624.
    27. Wu W, Wu Y, Zheng M et al. Pressurized capillary electrochromatography with indirect amperometric detection for analysis of organophosphorus pesticide residues. Analyst,2010,135(8):2150-2156.
    28. Yang L, Chen C J, Liu X et al. Use of cyclodextrin-modified gold nanoparticles for enantioseparations of drugs and amino acids based on pseudostationary phase-capillary electrochromatography. Electrophoresis,2010,31(10):1697-1705.
    29. Ye F G, Xie Z G, Wu X P et al. Determination of pyrethroid pesticide residues in vegetables by pressurized capillary electrochromatography. Talanta,2006,69(1): 97-102.
    30. Zhu G J, Zhang L H, Yuan H M et al. Recent development of monolithic materials as matrices in microcolumn separation systems. Journal of Separation Science,2007, 30(6):792-803.
    1.李汝雄.绿色溶剂:离子液体的合成与应用.化学工业出版社工业装备与信息工程出版中心,2004.
    2. 肖小华,刘淑娟,刘霞等.离子液体及其在分离分析中的应用进展.分析化学,2005,33(4):569-574.
    3. 晏根成AMIMC1离子液体的合成与应用研究.哈尔滨工程大学2007届硕士论文,2007.
    4. 张所波,丁孟贤,高连勋.离子液体在有机反应中的应用.有机化学,2002,22(3):159-163
    5. Buszewski B, Studzinska S. A review of ionic liquids in chromatographic and electromigration techniques. Chromatographia,2008,68(1-2):1-10.
    6. Chitta K R, Van Meter D S, Stalcup A M. Separation of peptides by HPLC using a surface-confined ionic liquid stationary phase. Analytical and Bioanalytical Chemistry,2010,396(2):775-781.
    7. Fuller J, Carlin R T, Delong H C et al. Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate-model for room-temperature molten-salts. Journal of the Chemical Society-Chemical Communications,1994(3):299-300.
    8. Han D, Row K H. Recent Applications of Ionic Liquids in Separation Technology. Molecules,2010,15(4):2405-2426.
    9. Ho W Y, Hsieh Y N, Lin W C et al. High temperature imidazolium ionic polymer for gas chromatography. Analytical Methods,2010,2(5):455-457.
    10. Hu X L, Peng J F, Huan Y J et al. Ionic liquids as mobile phase additives for high-performance liquid chromatography separation of phenoxy acid herbicides and phenols. Journal of Separation Science,2009,32(23-24):4126-4132.
    11. Huang K, Zhang X, Armstrong D W. Ionic cyclodextrins in ionic liquid matrices as chiral stationary phases for gas chromatography. Journal of Chromatography A, 2010,1217(32):5261-73.
    12. Jiang T F, Gu Y L, Liang B et al. Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis. Analytica Chimica Acta,2003,479(2):249-254.
    13. Li D, Wang Z M, Wang L et al. Separation and Determination of Amino Acids by CE Using 1-Butyl-3-methylimidazolium-Based Ionic Liquid as Background Electrolyte. Chromatographia,2009,70(5-6):825-830.
    14. Liu H T, Liu Y, Li J H. Ionic liquids in surface electrochemistry. Physical Chemistry Chemical Physics,2010,12(8):1685-1697.
    15. Lopez-Pastor M, Simonet B M, Lendl B et al. Ionic liquids and CE combination. Electrophoresis,2008,29(1):94-107.
    16. Martin-Calero A, Tejral G, Ayala J H et al. Suitability of ionic liquids as mobile-phase additives in HPLC with fluorescence and UV detection for the determination of heterocyclic aromatic amines. Journal of Separation Science,2010, 33(2):182-190.
    17. Polyakova Y, Koo Y M, Row K H. Application of ionic liquids as mobile phase modifier in HPLC. Biotechnology and Bioprocess Engineering,2006,11(1):1-6.
    18. Poole C F, Applications of ionic liquids in extraction, chromatography, and electrophoresis, Advances in Chromatography,2007(45):89-124.
    19. Qin W D, Li S F Y. An ionic liquid coating for determination of sildenafil and UK-103,320 in human serum by capillary zone electrophoresis-ion trap mass spectrometry. Electrophoresis,2002,23(24):4110-4116.
    20. Qin W D, Li S F Y. Electrophoresis of DNA in ionic liquid coated capillary. Analyst, 2003,128(1):37-41.
    21. Qin W D, Li S F Y. Determination of ammonium and metal ions by capillary electrophoresis-potential gradient detection using ionic liquid as background electrolyte and covalent coating reagent. Journal of Chromatography A,2004. 1048(2):253-256.
    22. Qin W D, Wei H P, Li S F Y.1,3-dialkylimidazolium-based room-temperature ionic liquids as background electrolyte and coating material in aqueous capillary electrophoresis. Journal of Chromatography A,2003,985(1-2):447-454.
    23. Studzinska S, Buszewski B. Study of retention mechanism of imidazolium-based ionic liquids in HPLC. Journal of Separation Science,2010,33(9):1264-1273.
    24. Su H L, Kao W C, Lin K W et al. 1-Butyl-3-methylimidazolium-based ionic liquids and an anionic surfactant:Excellent background electrolyte modifiers for the analysis of benzodiazepines through capillary electrophoresis. Journal of Chromatography A,2010,1217(17):2973-2979.
    25. Tian Y, Feng R, Liao L P et al. Dynamically coated silica monolith with ionic liquids for capillary electrochromatography. Electrophoresis,2008,29(15):3153-3159.
    26. Vaher M, Koel M, Kaljurand M, Ionic liquids as electrolytes for nonaqueous capillary electrophoresis. Electrophoresis,2002(23):426-430.
    27. Wang J H, Cheng D H, Chen X W et al. Direct extraction of double-stranded DNA into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and its quantification. Analytical Chemistry,2007,79(2):620-625.
    28. Wei D, Ivaska A. Applications of ionic liquids in electrochemical sensors. Analytica Chimica Acta,2008,607(2):126-135.
    29. Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chemical Reviews,1999,99(8):2071-2084.
    30. Welton T. Ionic liquids in catalysis. Coordination Chemistry Reviews,2004, 248(21-24):2459-2477.
    31. Xiaohua X, Liang Z, Xia L et al. Ionic liquids as additives in high performance liquid chromatography:Analysis of amines and the interaction mechanism of ionic liquids. Analytica Chimica Acta,2004,519(2):207-211.
    32. Yanes E G, Gratz S R, Baldwin M J et al. Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids. Analytical Chemistry,2001, 73(16):3838-3844.
    33. Yanes E G, Gratz S R, Stalcup A M. Tetraethylammonium tetrafluoroborate:a novel electrolyte with a unique role in the capillary electrophoretic separation of polyphenols found in grape seed extracts. Analyst,2000,125(11):1919-1923.
    34. Yue M E, Shi Y P. Application of 1-alkyl-3-methylimidazolium-based ionic liquids in separation of bioactive flavonoids by capillary zone electrophoresis. Journal of Separation Science,2006,29(2):272-276.
    35. Zhou Q X, Mao J L, Xiao J P et al. Uses of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate as a good separation electrolyte for direct electrophoretic separation of quaternary ammonium herbicides. Journal of Separation Science,2010,33(9):1288-1293.