山羊早期胚胎发育基因表达与调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胚胎发育一直是生命科学研究的主题之一。从一个单细胞发育成一个多细胞的个体,是许多基因和蛋白质在时间和空间上顺序表达的结果,核内基因的遗传信息控制着细胞质内蛋白质的合成,细胞质中的调控因子又反过来控制以后的发育时期中核内遗传信息的表达,胚胎内这种核与质之间的矛盾,相互作用和相互制约,推动着发育过程的进行。通过卵母细胞的体外成熟、体外受精、体外培养的方法和常规同期发情、超数排卵处理,获取山羊体外培养的成熟卵母细胞、2细胞、4细胞和8~16细胞胚胎、桑椹胚和囊胚及体内发育的2细胞、4细胞和8~16细胞胚胎、桑椹胚和囊胚。运用mRNA差异显示技术和蛋白质相关技术,分析胚胎发育不同阶段基因表达和蛋白质组的变化,从分子水平了解山羊胚胎发育过程中基因和蛋白质整体变化规律,探讨不同发育阶段基因表达的模式和胚胎发育机理,以期为哺乳动物胚胎早期发育基因表达的分子调控机制研究提供参考。
     mRNA差异显示共筛选到了44条分别在不同时期胚胎特异表达的片段,其中成熟卵母细胞4条,2细胞期7条(体内5条,体外2条),4细胞期8条带(体内5条,体外3条),8~16细胞期14条带(体内11条,体外3条),桑椹胚和囊胚9条带(体内8条,体外1条),全程表达2条(体内1条,体外1条),经过测序及比对分析,表明有10条带与已知的功能基因或调控基因相似,其余条带为未知功能基因或无相似基因。其中:
     S12在卵母细胞中特异性表达与蛋白激酶基因具有较高的同源性(98%),蛋白激酶对卵母细胞成熟过程中基因转录、调控和表达调控起到重要作用;Y62序列在2细胞胚胎中特异性表达与磷酸酶基因具有较高的同源性(98%),磷酸酶通过信号传递,对细胞的分裂活动具有重要的调控作用;E66序列在2细胞胚胎中特异性表达与动力球蛋白基因具有较高的同源性(95%),动力球蛋白为胚胎发育提供能量,从而对早期胚胎发育过程中的基因转录调控和表达调控起到重要作用;Y72序列4细胞胚胎中特异性表达与表皮生长因子受体基因具有较高的同源性(89%),EGF通过刺激胚胎细胞分裂增殖,而影响早期胚胎的生长发育;Sg78序列在4细胞和8-16细胞胚胎中特异性表达与牛醛氧化酶(脱氢酶)基因具有较高的同源性97%,E8序列在8-16细胞胚胎中特异性表达与氨基乙酸脱氢酶基因具有较高的同源性(97%),氧化酶(脱氢酶)通过调控ATP的合成,提供细胞活跃代谢以及DNA去甲基化和核内基因组再程序化时的能量需要;S81序列在8-16细胞胚胎中特异性表达与连接蛋白基因具有较高的同源性(97%),连接蛋白促进卵裂球间缝隙连接,促进胚胎的致密化和囊胚的形成;S97序列在桑椹胚和囊胚中特异性表达与老鼠白血病抑制因子(LIF)受体基因具有较高的同源性(95%),LIF是调节胚胎发育、启动胚胎着床过程的重要细胞因子,在妊娠识别过程中起到了重要作用;Y97序列在桑椹胚和囊胚中特异性表达与生长激素(GH)基因具有较高的同源性(91%),GH是调节调节母体的妊娠生理,影响生殖激素的分泌,从而推动胚胎生长、分化;Sg6789为早期胚胎发育各时期均表达的基因,其序列与肥胖基因(ob)转录翻译的Leptind蛋白具有较高的同源性(96%),Leptin作用于卵母细胞的成熟以及早期胚胎的分裂,参与早期胚胎的生长发育过程。
     体内外胚胎蛋白经蛋白质电泳和染色,能够检测到的蛋白斑点数为195个,其中卵母细胞14个蛋白质斑点;2细胞胚胎检测到32个蛋白质斑点,其中体内16个,体外16个,匹配的蛋白斑点为15个,匹配率为93.8%;4细胞胚胎检测到39个蛋白质斑点,其中体内21个,体外18个,能匹配的蛋白斑点为16个,匹配率为76.9%;8~16细胞期检测到53个蛋白质斑点,其中体内29个,体外24个,能匹配的蛋白斑点为19个,匹配率为71. 7%;桑椹胚和囊胚时期57个蛋白质斑点,其中体内30个,体外27个,能匹配的蛋白斑点为20个,匹配率为70. 2%。在体内发育的胚胎蛋白质电泳图谱中有11个蛋白斑点在体外培养的胚胎蛋白质电泳图谱中不存在,推测这些蛋白与胚胎的发育阻滞有关。在山羊胚胎早期发育过程中始终能够检测到的位点有4个,卵母细胞的蛋白斑点在2细胞胚胎中全部能够找到,这些蛋白质在胚胎发育进程中起重要作用。
     体内外不同时期差异蛋白和差异基因表达显示:山羊受精卵在卵裂后就开始合成胚胎自身的mRNA和蛋白质;不同阶段基因表达和胚胎蛋白质的组成存在着差异,说明胚胎基因的表达是依照一定的时空性的,前一阶段基因的不表达,影响下一阶段基因的表达,从而影响胚胎蛋白的合成,影响胚胎解除阻滞进入生长发育阶段;呈阶段性表达的基因及其翻译的蛋白,在随后邻近的胚胎发育阶段中消失,显示这些基因和蛋白可能与相应胚胎的形体特征发育有关,或进一步影响邻近胚胎的形体特征发育;全程表达的基因和蛋白,参与胚胎植入前发育的全过程,说明这些基因可能是生命活动所必需的。
     本实验在分子水平上对特异性表达的基因和蛋白进行分析,从蛋白质的变化初步了解了山羊胚胎结构基因激活表达的实施,但对于各特异性表达的基因在染色体上的精确定位、结构以及特异蛋白斑点的功能等方面,尚需通过大量分析和实验进行进一步研究。
Embryo development is one of the most important subjects in life science research. Embryogenesis represents the critical transition from the single-celled fertilized embryo to the mature and multicellular embryo by undergoing a series of controlled cell divisions and cell differentiation events. It is a process of gene expression and protein regulation with time-space alternation. Nucleus gene determined translation progress of cytoplasm protein, on the contrary gene expression during embryogenesis and development stages was controlled by protein regulation factors. The impact between nucleolus and cytoplasm was promoted the development of embryo. The oocytes, 2-cell, 4-cell, 8~16-cell, morulae and blastocyst embryos of in vitro of goat were obtained through the process of oocytes matured in vitro (IVM), fertilized in vitro (IVF) and cultured in vitro (IVC). The 2-cell, 4-cell, 8~16-cell, morulae and blastocyst embryos of in vivo in goat were obtained using the way of estrus synchronization and superovulation. Silver staining mRNA differential display and SDS-PAGE were used in this study to analysis the variety of gene expression and proteome at developmental embryo. In order to establish the pattern of developmental gene expression and to understand the molecular mechanism of developmental goat preimplantation embryos, provide the academic theory of gene expression and control mechanism about mammal. Results as follow:
     44 different stage specific bands in total were screened. 5, 5, 11, 8 specific bands which only displayed in in vivo 2-cell, 4-cell, 8~16-cell, morulae and blastocyst stage were screened and 4, 2, 3, 3, 1 specific bands were displayed in in vitro oocytes, 2-cell, 4-cell, 8~16-cell, morulae and blastocyst. 2 specific bands were found all stage of embryo development. The sequencing and alignment results The sequencing and alignment results suggested that 10 differential expression bands were homologous with function genes or regulatory genes which already known from the GenBank. Other 34 differential expression bands were unknown genes.
     The specific band S12 which was expressed in oocytes was similar to protein kinase gene (98%). Protein kinase played an important role in regulation of gene transcription and expression in the progress of oocytes mature. The specific band Y62 which was expressed in 2-cell stage, was similar to phosphatas gene (98%). Cell divisions and cell differentiation were controlled by phosphates through signal transfer. E66 was 2-cell stage specific band and it was homologous with sapiens dynein gene (95%). Dynein regulated gene transcription and expression of preimplantation stage embryo in virtue of provided energy. Y72 was 4-cell stage specific band and it was homologous with epidermal growth factor receptor gene (89%). Effect of EGF on early embryos development in goat was stimulated cell divisions and differentiation. Sg78 was 4-cell and 8~16- cell stage specific band and it was homologous with aldehyde dehydrogenase gene (97%). E8 was 8~16-cell stage specific band and it was homologous with Glycine dehydrogenase gene (97%). Glycine dehydrogenase and aldehyde dehydrogenase were essential for ATP synthesis to provide energy for cell metabolism, DNA demethylation and genomic reprogramming. S81 was 8~16- cell stage specific band and it was similar to fibronection gene (97%). Fibronection was the regulator of connection between cleavage cells, it also can promoted come into being blastula. S97 was morulae and blastocyst specific band and it was homologous with leukemia inhibitory factor gene (95%). LIF is an important cytokine in early embryo development, which regulated fetation and pregnancy. The specific band Y97 which expressed in morulae and blastocyst was homologous with growth hormone gene (91%). It was promoted embryonic cell division and differentiation by the way of influence pregnancy physiology and reproductive hormones secretion. Sg6789 band was found at all stage of embryo development and it homologous with leptin receptor-like protein (obese) gene (96%). Leptin had the effects on oocytes maturation, embryonic cell division and differentiation.
     The changes of embryo protein in different development stags from in vivo and in vitro were discussed in the present research. Through electrophoresis and staining about 195 protein spots were detected in the gel. 14 protein spots were detected in MII. 32 protein spots were detected in 2-cell stage, 16 in in vivo and 16 in in vitro, respectively. Match protein spots were 15, the matching rate of these two patterns reached 93.7%. 39 protein spots were detected in 4-cell stage, 21 in in vivo and 18 in in vitro, respectively. Match protein spots were 16, the matching rate of these two patterns reached 76.9%. 53 protein spots were detected in 8~16-cell stage, 29 in in vivo and 24 in in vitro, respectively. Match protein spots were 19, the matching rate of these two patterns reached 71.7%. 57 protein spots were detected in morulae and blastocyst stage, 30 in in vivo and 27 in in vitro, respectively. The matching rate of these two patterns reached 70.2%. 11 protein spots were not detected from embryo in in vitro culture, which suggested those protein spots connected with block of development. 4 protein spots were detected from 2-cell stage to blastocyst stage and 2 protein spots were detected from MII stage to blastocyst stage. No change of proteins during embryo development showed that it played an important role in cell divisions and differentiation.
     Through the comparative analysis of the patterns of protein and mRNA of goat embryo in different stages, the results showed as follow:
     The zygote genome of goat synthesized mRNA and protein at the stage when embryo was start cleavage. The gene expression and protein composing were difference in different developmental stage of goat embryo, it indicated that process of gene expression was regulation with time-space alternation. The potential ability of gene expression was determined by previous correlation gene expression. Cell divisions and differentiation was controlled by gene expression, and it also related with block of development. Research on the changes of special protein spots and mRNA appeared in each stage showed that the majority of these spots disappeared in the following contiguous stage of embryo development. The results suggested that these proteins and genes existed in the corresponding stages might be related with the development of morphological character of corresponding embryo, even with contiguous embryo. The special proteins and genes which were expressed at all stage were concerned with preimplantation embryo development. Those proteins and genes were necessary for embryo activity.
     This study on the molecule level of the hereditary basis provided important information for researching the mechanism of developmental embryo. However, further research on the function, structure and orientation of special expressed gene in the gel from developmental embryo is required.
引文
[1] Taylor K D, Piko L. Expression of ribosomal protein genes in mouse oocytes and early embryos [J]. Mol Reprod, 1992, 31: 182~188.
    [2] Mastnmoto k, Woffc A P. Gene regulation by Y-box proteins: coupling control of transcription and translation [J].Trends cell Biol, 1998, 21: 8318~323.
    [3] Memili E, Neal L. Control of gene expression at the onset of bovine embryonic development [J]. Biol Reprod, 1999, 61:1198-1207.
    [4] Nothias J Y, Majumder S, Kaneko K J, et al. Regulation of gene expression at the beginning of mammalian development[J]. J Biol Chem, 1995, 270(38): 22077 ~ 22080.
    [5] Schultz R M, Worrad DM. Role of chromatin structure in zygotic gene activation in the mammalian embryo [J].Semin Cell Biol.1995, 6(4):201~ 208.
    [6] Ram P T, Schultz R M. Reporter gene expression in G2 of the 1-cell mouse embryo [J]. Dev Biol, 1993, 156: 552 ~556
    [7] Aoki F, Worrad D M, Schultz R M. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo [J]. Dev Biol, 1997, 181: 296~307
    [8] Wiekowski M, Miranda M, Depamphillis M L. Regulation of gene expression in preimplantation mouse embryos: effects of the zygotic clock and the first mitosis on promoter and enhancer activities [J]. Dev Biol, 1991, 147: 403~414
    [9] Forlani S, Bonnerot C, Capgras S, et al.. Relief of a repressed gene expression state in the mouse 1-cell embryo requires DNA replication [J]. Development, 1998, 125: 3153 ~3166
    [10] Latham K E, Solter D, Schultz R M. Activation of a two-cell stage-specific gene following transfer of heterologous nuclei into enucleated mouse embryos [J]. Mol Reprod Dev, 1991, 30(3): 182~186
    [11]Telford N A, Watson A J, Schultz G A. Transition from maternal to embryonic control in early mammal and evelopment: acomparison of several species [J]. Mol Reprod Dev, 1990, 26(1): 91~100
    [12]Kanka J. Gene expression and chromatin structure in the preimplantation embryo [J]. Theriogenology, 2003, 59(1): 3~19.
    [13] Kanka J, HoIak P, Heyman Y, et al.. Transcriptional activity and nucleolar ultrastructure of embryo nicrabbit nuclei after transplantation to enucleated oocytes [J]. Mol Reprod Dev, 1996, 43:135~144.
    [14] Liu M Y, Li Y P. Regulation of zygotic gene activation in mouse [J].Chinese Bulletin of Life Sciences,1998,10(2): 98~102.
    [15]Nothias J Y, Miranda M, Depamphilis M L, et al.. Uncoupling of transcription and translation during zygotic gene activation in the mouse [J]. The EMBO Journal, 1996, 15: 5715~5725.
    [16]Christians E, Michel E, Adenot P, et al.. Evidence of the involvement of mouse heat shock factor in the typical expression of the HSP70 heat shock gene during mouse zygotic genome activation [J].MolCellBiol, 1997, 17: 778~788.
    [17] Wang Q, Latham K E. Requirement for protein synthesis during embryonic genome activation in mice [J]. Mol Reprod Dev, 1997, 47: 265 ~270
    [18]Thompson E M. Chromatin structure and gene expression in the preimplantation mammalian embryo [J]. Reprod Nutr Dev, 1996, 36(6): 619~635
    [19]Yu W D, Yang L X, Li W Y, et al..Establishment of single preimplantation embryos differential polymerase chain reaction[J]. Prog Biochem Biophys, 2003, 30 (2): 308~313
    [20]Schultz R M, Davis W, Stein P, et al..Reprogramming of gene expression during preimplantation development [J]. Jexp Zool, 1999, 285(3): 276~282
    [21] Latham K E, Solter D, Schultz R M. Activation of a 2-cell stage-specific geneexpression following transfer of heterologous nuclei into enucleated mouse embryos [J ].Mol Reprod Dev, 1991, 30: 182~186. [22 ] Matsumoto K, Anzai M, Nakagata N,et al. Onset of paternal gene activation in early mouse embryos fertilized with transgenic mouse sperm [J ]. Mol Reprod Dev, 1994, 39: 136~140.
    [23] Ram PT, Schultz RM. Reporter gene expression in G2 of the 1-cell mouse embryo [J]. Dev Biol, 1993, 156: 552~556.
    [24] Brunet-Simon A, Henrion G, Renard JP, et al.. Onset of zygotic transcription and maternal transcript legacy in the rabbit embryo [J]. Mol Reprod Dev, 2001, 58: 127 ~136.
    [25] Renard JP, Zhou Q, Lebourhis D, et al.. Nuclear transfer technologies: between successes and doubts [J]. Theriogenology, 2002, 57: 203~222.
    [26] Kanka J, Hozak P, Heyman Y, et al.. Transcriptional activity and nucleolar ultrastructure of embryonic rabbit nuclei after transplantation to enucleated oocytes [J ].Mol Reprod Dev, 1996, 43: 135~144.
    [27] Niemann H, Wrenzycki C. Alterations of expression of developmentally important genes in pre-implantation bovine embryos by in vitro culture conditions: implication for subsequent development [J]. Theriogenology, 2001, 53: 21~34.
    [28] Wrenzycki C, Herrmann D, Keskintepe A, et al.. Effect of culture system and protein supplementation on mRNA expression in preimplantation bovine embryos [J]. Hum Reprod, 2001, 16: 893~901.
    [29] Rizos D, Lonergan P, Boland M P, et al.. Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implication for blastocyst quality [J ]. Biol Reprod, 2002, 66: 589~595.
    [30] Tanaka M, Hennebold J D, Macfarlane J, et al.. A mammalian oocyte-specific linker histone gene H1oo: homology with thegenes for the oocyte-specific cleavagestage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog [J]. Dev, 2001, 128: 655~664.
    [31] Latham KE, Schultz RM. Embryonic genome activation [J]. Frontiers Biosci 2001, 6: 90~100
    [32] Kaye PL, Church RB. Uncoordinated synthesis of histones and DNA by mouse eggs and preimplantation embryos [J].J Exp Zool.1983, 226 (2): 231~237.
    [33] Huet-Hudson YM, Chakraborty C, De SK, et al.. Estrogen regulates the synthesis of epidermal growth factor in mouse uterine epithelial cells [J]. Mol Endocrinol, 1990, 4(3): 510~523.
    [34] Wood S A, Kaye P L. Effects of epidermal growth factor on preimplantation mouse embryos [J]. J Reprod Fertil, 1989, 85: 575~582.
    [35] Defize L H, de Laat SW. Structural and functional aspects of epidermal growth factor (EGF) and its receptor [J]. Mol Endocrinol, 1986, 69: 169~182.
    [36] Morrish DW, Dakour J, Li h. Functionnal regulation of human trophoblast differentiation [J]. J Reprod Immunol, 1998, 39(12): 179~195.
    [37]罗莉,焦中秀,徐昌芬.表皮生长因子对人绒毛膜促性腺激素分泌的影响及其受体在滋养层细胞的表达[J].南京医科大学学报,2001,21(2):106~108.
    [38] Filla MS, Kaul KL. Relative expression of epidermal growth factor receptor in placenta cytotrophoblasts and choriocarcinoma cell lines placenta, 1997, 18 (1): 17~25.
    [39]范立青,卢光秀,卢惠霖.表皮生长因子受体特异的落氨酸激酶抑制剂对小鼠胚泡体外发育和着床的影响[J].生殖与避孕,1997,17(6): 365~366.
    [40] Threadgill DW, Dluyosz AA, Hansen LA, et al.. Targeted disruption of mouse EGF receptor: Effect of genetic backgroud on mutant phenotype [J].Science, 1995, 269: 230~234.
    [41] Paria B C, Dey S K. Preimplnatation embryo development in vitro: cooperativeinteractions among embryos and role of growth factors [J].Proc Natf Acad Sci,1990:87:4756~4760.
    [42] Kimber S J. Leukaemia inhibitory factor in implantation and uterine biology [J]. Reproduction, 2005, 130(2):131~145
    [43] Mitchell M H, Swanson R J, Oehninger S. In vitro effect of leukemia inhibitory factor(LIF)and murine embryo and fetal development following exposure at the time of transcerrvical blastocyst transfer [J].Biol Reprod, 2002, 67(2): 460~464
    [44] Cheng L P, Leung H Y, Bongso A. Effect of supplementation of leukemia inhibitory factor and epidermal growth factor on murine embryonic development in vitro, implantation and outcome of off-spring[J]. Fertil Steril, 2003, 80(Suppl 2):727 ~ 735
    [45] Penkov L I, Platonov E S, Kondrakbina M S, et al.. Leukemia inhibitory factor improves and prolongs the development of parthenogenetic mouse embryo [J]. Ontogenez, 2003, 34(4): 301~305
    [46] Perrier d, Hauterive S, Charlet-Renard C, et al.. Human endometrial leukemia inhibitory factor and interleukin-6: control of secretion by transforming growth factor-beta- related members [J]. Neuroimmunomodulation, 2005, 12(3):157~163.
    [47] Lavranos TC, Rathjen P D, Seamark R F. Trophic effects of myeloid leukemia inhibitory factor(LIF)on mouse embryos[J]. J Reprod Fertil, 1995, 105(2): 331~338.
    [48] Penkov LI, Platonov ES, Kondrakbina MS, et al..Leukemia inhibitory factor improves and prolongs the development of parthenogenetic mouse embryo [J]. Ontogenez, 2003, 34(4):301~305.
    [49] Tsai HD, Chang CC, Hsieh YY, et al.. Recombinant human leukemia inhibitory factor enhances the development of preimplantation mouse embryo in vitro [J]. FertilSteril, 1999, 71(4): 722~725.
    [50] Rodriguez A, Frutos C D, Diez C, et al.. Effects of human versus mouse leukemia inhibitory factor on the in vitro development of bovine embryos [J]. Theriogenology, 2007, 67: 1092~1095.
    [51]Grazyna Ptak, Federica Lopes, Kazutsugu, et al.. Leukaemia inhibitory factor enhances sheep fertilization in vitro via an influence on the oocyte [J]. Theriogenology, 2006, 65: 1891~1899
    [52] Peng L, Arthur BP. Differentia display of eukaryotic messenger RNA by means of polymerase chain reaction [J].Science, 1992, 257: 967~971.
    [53] Arnold A M, Anderson G W, McIver B, et al.. A novel dynaminⅢis up-regulated in the central nervous system in hypothyroidism [J]. Int J Deve Neuroscience, 2003, 21: 267~275
    [54] Yeh C H, Pang JHS, Wu Y C, et al..Differential2display polymerase chain identifies nicotinamide adenine dinucleotide ubiquone oxidoreductase as an ischemia/reperfusion regulated gene in cardiomyocytes (laboratory and animal investigations) [J]. Chest, 2004, 124: 1386~1390
    [55] Bobe J, Goetz F W. A S100 homologue mRNA isolated by differential display PCR Down2regulated in the brook trout (Salvelinus fontinalis) Post2ovary[J]. Gene, 2000, 257: 187~194
    [56]安健.柔嫩艾美耳球虫抗药性虫体纯化及mRNA差异显示的研究[M].中国农业大学博士学位论文,2004
    [57] Liang P, Averboukh L, Pardee AB. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization [J]. Nucleic Acids Res, 1993, 21:3269~3275.
    [58] Liang P, Zhu W, Zhang X, et al.. Differential display using one-base anchored oligo-dT primers [J].Nucleic Acids Res, 1994, 22: 5763~5764.
    [59] Ayala M, Balint R F. New primers strategy improves precision of differentialdisplay [J].BioTechniques, 1995, (18)5: 842~850
    [60] Lievens S, Goormachtig S, Holster M. A critical evaluation of differential display as a tool to identify genes involved in legume nodulation: looking back and looking forward [J].Nucleic Acids Res, 2001, 29(17): 3459-~3468.
    [61] Liang P. Factors ensuring successful use of differential display [J]. Methods, 1998, 16(4):360~364.
    [62] Lauren S, Stephen J. Overcoming Limitation of mRNA Differential Display [J]. Bio Techniques, 1995, 18(5):842~850
    [63] Veerasingham S J, Sellers KW, Raizada MK. Functional genomics as an emerging strategy for the investigation of central mechanisms in experimental hypertension [J]. Prog Biophys Mol Biol, 2004, 84(23):107~123.
    [64] Blomberg L A, Long E L, Sonstegard T S, et al. Serial analysis of gene expression during elongation the peri-implantation procine trophetoderm (conceptus ) [J]. Physiol Genomics, 2005, 20 (2):188~194
    [65] Maillard J C, Berthier D, Thevenons, et al.. Use of Serial Analysis of Gene Expression (SAGE) method in veterinary research: A concrete application in the study of the bovine try pano tolerance genetic control [J]. Ann N Y Acad Sc, 2004, 1026: 171~182
    [66] Blomberg Ie A,Zeulek K A. Expression analysis of the steroide genic acute regulatory STAR gene in developing procine conceptuses[J]. Mol Reprod Dev, 2005, 72(4): 419~429
    [67] Knoll-Gellida A, Andre M, Gattegno T, et al.. Molecular phenotype of zebrafish ovarian follicle by serial analysis of gene expression and protein profiling and comparison with transcription of other animal [J]. Genomics, 2006, 7(1): 46~52
    [68] Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J].Science, 1992, 257(5072): 967~971.
    [69] Li W, Zhang J, Yu W, et al.. Expression of stage specific genes during zygotic gene activation in preimplantation mouse embryos[J]. Zoolog Sci, 2003, 20 (11):1389~1393.
    [70] Ponsuksili S, Tesfaye D, El-Halawany N, et al.. Stage specific expressed sequence tags obtained during preimplantation bovine development byd ifferential display RT-PCR and suppression subtractive hybridization [J]. Prenat Diagn, 2002, 22 (12) :1135~1142.
    [71] Koerber S, Santos A N, Tetens F, et al..Increase expression of NADH- ubiquinone oxidoreductase chain 2(ND2) in preimplantation rabbit embryos cultured with 2 0% oxygen concentration [J]. Mo lReprod Dev, 1998, 49(4):394~399.
    [72] Chang H S, Cheng W T, Wu H K, et al.. Identifica tion of genes expressed in the epithelium of porcine oviduct contain in gearly embryos atvarious stages of dvelopment [J].Mol Reprod Dev, 2000, 56(3): 331~335.
    [73] Lee K F, Chow J F, Xu J S, et al.. Acomparative study of gene expression in murine embryos developed in vivo, cultured in vitro, and cocultured with human oviductal cells using messenger ribonucleic acid differential display [J]. Biol Reprod, 2001, 64 (3): 910~917.
    [74] Salamonsen L A, Nie G, Findlay J K. Newly identified endometrial genes of importance for implantation[J].Jreprod Immunol, 2002, 53(12): 215~225.
    [75] Fontanier Razzaq N, Harries D N, Hay S M, et al.. Amino acid deficiency up regulates specific mRNAs in murine embryo nic cells [J].J Nutr, 2002, 132(8): 2137~2142.
    [76]李文雍,郁卫东,刘桂生等.用DDRT-PCR技术隆小鼠早期胚胎发育相关基因[J].中国生物化学与分子生物学报,2002,18(6):728~732.
    [77]朱新产,张涌,王宝维.早期小鼠胚胎发育的基因表达[J].动物学报,2003,49(2):272~276.
    [78]李拥军,敖红,孙桂金等.羊体内发育与体外培养特定阶段胚胎基因差异表达的研究[J].畜牧兽医学报,2005,36(12),1281~1285.
    [79]郁卫东,杨立新,李文雍,等.兔单个植入前克隆胚胎cDNA文库的构建[J].中国生物化学与分子生物学报,2004,20(2):162~165
    [80] Chang H S, Cheng W T, Wu H K, et al.. Identification of genes expressed in the epithelium of porcine oviduct containing early embryos at various stages of development [J].Mol Reprod Dev, 2000, 56(3): 331~335
    [81] Wesolowski S R, Raney N E, Ernst C W. Developmental changes in the fetal pig transcriptome [J].Physiology and Genomics,2004,16(2): 268~274
    [82] Natale D R, Kidder G M, Westhusin M E, et al.. Assessment by differential display RT-PCR of mRNA transcript transitions and alphaamanitin sensitivity during bovine preattachment development [J]. Mol Reprod Dev, 2000, 55(2): 152~163
    [83] Ponsuksili S, Wimmers K, Adjaye J, et al.. A sourcefor expression profiling in single preimplantation bovine embryos [J].Theriogenology, 2002, 57(6): 1611~ 1624
    [84] Ponsuksili S, Tesfaye D, El-Halawany N, et al.. Stage specific expressed sequence tags obtained during preimplantation bovine development by differential display RT-PCR and suppression subtractive hybridization [J].Prenat Diagn, 2002, 22 (12):1135~1142
    [85] Tesfaye D, Ponsuksili S, WimmersK, et al.. Identification and quantification of differentially expressed transcriptsin in vitro produced bovine preimplantation stage embryos [J]. Mol Reprod Dev, 2003, 66(2):105~114.
    [86] Daniels R, Lowell S, Bolton V, et al.. Transcription of tissue-specific genes in human preimplantation embryos [J].Hum Reprod, 1997, 12(10): 2251~2256
    [87] Holding C, Bolton V, Monk M. Detection of human novel developmental genes in cDNA derived from replicate individual preimplantation embryos[J]. Mol HumReprod, 2000, 6(9): 801~809
    [88] Li S-L, Liu Y H, Tseng C N, et al..Analysis of gene expression in single human oocytes and preimplantation embryos [J]. Biochemical and Biophysical Research Communications, 2006, 340: 48~53
    [89] Wasinger V C, Humphery Smith I, Williams K L, et al.. Progress with gene-product mapping of the moliecutes: Mycoplasma genitalium. Electrophoresis, 1995,16: 1090~1094.
    [90] Wilkins M R, Sanchez J C, Gooley A A, et al.. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it [J].Biotechnol Genet Eng Rev, 1995, 49:13~19.
    [91] Dove A. Proteomics: translation genomics into products? [J]. Nature Biotechnology, 1999, 17(3): 233~236
    [95] Pandey A, Mann M. Proteomics to study genes genomes [J]. Nature, 2000, 25:405 ~ 437
    [96]何大澄,赵和平.从基因组学到蛋白质组学[J].生物学通报,2002,37(9):9~12
    [97]杨礼富.蛋白质组学研究技术与展望[J],热带农业科学2007,27(2):58~63
    [98] Anderson N L, Anderson N C. Proteome and Proteomics: new technologies, new concepts, and new words. Electrophoresis, 1998, 19: 1853~1861
    [99]何大澄,肖雪媛.差异蛋白质组学及其应用[J].北京师范大学学报(自然科学版),2002,38(4):558~564
    [100] Robert F. Proteomics, can Celera do it again? [J]. Science, 2000, 287: 2136~2145
    [101] Walling L, Drewsg N,Golcberg R B. Transcriptional and posttranscriptional regulation of soybean seed protein mRNA levels [J]. Proc Natl Acad Sci, 1986, 83:2123~2127
    [102] Ladin B F, Tierney M L, Meinke D W. Development regulation ofβ-conglycinin in soybean axes and、otyledons [J]. Plant Physiol, 1987, 84:35~41
    [103] Clark A J. An embryo specific protein of barley [J]. Ear J Biochem, 1991, 199 (1):115~121
    [104] Bassuner R, Baumlein H, Huth A, et al.. Abundant embryonic mRNA in field bean (Vicirc frcbrc L) order for a new lass of seed proteins: DNA cloning and harac; terization of the primary translation product [J]. Plant Mol Biol, 1988, 11: 321~331
    [105] Kim W, Oe Lim S, Kim JS, et al.. Comparison of proteome between hepatitis B virus and hepatitis C virus-associated hepatocellular carcinoma [J]. Clin Cancer Res. 2003, (15)9: 5493~5500.
    [106] Ornstein DK, Gillespie JW, Paweletz CP, et al.. Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines [J]. Electrophoresis, 2000, 21(11): 2235~2242
    [107] Zeindl-Eberhart E, Haraida S, Liebmann.S, et al. Detection and identification of tumor-associated protein variants in human hepatocellular carcinomas [J]. Hepatology, 2004, 39(2): 540~549
    [108] Poon TC, Yip TT, Chan AT, e t al.. Comprehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes [J]. Clin Chem, 2003, 49(5): 752~760.
    [109]王文梅蒋文晖胡勤刚等.应用双向电泳和质谱技术筛选口腔扁平苔藓差异蛋白,实用口腔医学杂志[J]. 2008, 24(1):120~124
    [110]陈伟,黄春梅,昌柳新.顽拗植物荔枝蛋自质双向电泳的改良方法[J].福建农业大学学报,2001. 30(11): 123~126
    [111] Aimin W, Jin L. Analysis of the Cotton E6 Promoter [J].Tsinghua Science &Technology, 2005, 10(4): 409~413.
    [112] Bainy EM, Tosh SM, Corredig M, et al.. Varietal differences of carbohydrates in defatted soybean flour and soy protein isolate by-products [J]. CarbohydratePolymers, 2008, 72: 664~672 .
    [113] Jessica C, Chiara M, Massimo F, et al.. Application of two-dimensional electrophoresis to industrial process analysis of proteins in lupin-based pasta [J]. LWT - Food Science and Technology, 2008, 41(6): 1011~1017
    [114] Sabrina L, Kristian B J, Per H, et al.. Barley peroxidase isozymes Expression and post translational modification in mature seeds as identified by two-dimensional gel electrophoresis and mass spectrometry [J]. International Journal of Mass Spectrometry, 2007, 268: 244~253
    [115] William J H, Charlene K T. Extraction of wheat endosperm proteins for proteome analysis [J]. Journal of Chromatography B, 2007, 849: 344~350
    [116]罗文,周忠良,赵云龙等.红鳌鳌虾胚胎发育过程中蛋白质含量及氨基酸组成的分析,华东师范大学学报(自然科学版),2004, 3(1): 88~93
    [117] Latham K E,Garrels J I,Chang C,et al. Quantitative analysis of protein in mouse embryos. I.Extensive reprogramming at the one cell and two cell stages [J]. Development.Aug, 1991, 112(4): 921~32.
    [118] Sasaki R, Nakayama T, Kato T. Microelectrophoretic analysis of changes in protein expression patterns in mouse oocytes and preimplantation embryos [J].BiolReprod, 1999, 60: 1410~1418
    [119]姚国华,钟伯雄,颜新培等.家蚕胚胎发育关联的初始蛋白质研究[J].蚕业科学, 2004, 30(4): 436~439.
    [120]钟伯雄,陈金娥,颜新培等.家蚕催青后期胚胎蛋白质双向电泳图谱分析[J].昆虫学报, 2005, 48(4): 637~640
    [121]王水莲,薛立群,刘进辉等.附植前后不同时期兔子宫蛋白质的特异性[J].湖南农业大学学报, 2005, 31 (3 ): 293~296.
    [122] Laemmli U K, Beguin F , Gujer-Kellenberger G. A factor preventing the major head protein of bacteriophage T4 from random aggregation [J]. Journal of Molecular Biology, 1970, 47(1): 69~74
    [123] Sarvella P and Marks H. Attempts to obtain quail chicken hybrids[J]. Poult Sci, 1970,49: 1176~1178.
    [124]房兴堂,等.乌骨鸡胚胎发育过程中卵内蛋白质脂肪的变化研究[J].生命科学研究, 2004, 8(2):185~188.
    [125] Masamichi, Ohish, Tadakazu. Maeda Sepa ration techniques for high-molecula mass proteins [J]. Journal of Chromatography B, 2002, 771: 49~66.
    [126] Vlahou A, Schellhammer P F, Mendrinos S, et al.. Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine [J]. Am J Pathol, 2001, 158 (4):1491~1502.
    [127] Paweletz C P, LiottaL A, Petricoin EF, et al.. New technologies for biomarker analysis of prostate cancer progression: Laser capture microdissection and tissue proteomics [J]. Urology, 2001, 57(4Suppl 1):160~163.
    [128] Portyanko V A, Sharopova N R, Sozinov A A. Characterisation of European goat germ plasm: allelic variation at complex aven loci detected by acid polyacrylamide gel electrophoresis. Euphyica, 1998, 102:15~27.
    [129]董诚明,苏秀红,李增光等.两种冬凌草种子的生物学特性及蛋白质电泳的比较研究.河南科学, 2008, 26 (1): 39~41
    [130] Li Shu-hong, Han-Wen, Ma Hai-fei. Application of mRNA differential display to the identification of genes related to embryonic development [J].Chin Dev & Reprod Biol Socs.1997,6(2): 67~75.
    [131] Oliveira A T, Lopes, R. F, Rodrigues J L. Gene expression developmental competence of bovine embryos produced in vitro under varying embryo density conditions[J]. Theriogenology, 2005, 64 (7), 1559~1572.
    [132] Atef A, Sirard, M A. Protein kinases influence bovine oocyte competence during short term treatment with recombinant human follicle stimulating hormone [J]. Reproduction, 2005, 130: 303~310.
    [133] Mondadori R G, Neves J P, Gonc P B D. Protein kinase C (PKC) role in bovine oocyte maturation and early embryo development [J].Animal Reproduction Science, 2007, 6 (15) :10~25
    [134] Toshiya T, Kenji M, Junko I.An optimized immunohistochemical method for detection of phosphorylated mitogen-activated protein kinases [J].Journal of Immunological Methods , 2008, 330: 34~43
    [135] Dickinson R J, Keyse S M. Diverse physiological functionsfor dual-specificity MAP kinase phosphatases [J]. Cell Sci , 2006,119:4607~4615
    [136]陈雅隽,冯秀清,钟淑琦等.激光共聚焦显微镜观察小鼠早期胚胎中蛋白激酶Cα的表达[J].哈尔滨医科大学学报, 2007, 39(3): 523~529.
    [137] Calzone FJ, Theze N, Thiebaud P, et al. Developmental appearance of factors that bind specifically to cis-regulatory sequences of a gene expressed in the sea urchin embryo[J]. Genes Dev, 1988, 2(9):1074~1088.
    [138] Karki S, Holzbaur E L, Cytoplasmic dynein and dynactin in cell division and intracellular transport [J].Curr Opin Cell Biol, 1999,11(1):45~53
    [139] Sharp D J, Rogers G C, Scholey J M. Microtubule motors in mitosis.[J]. Nature, 2000, 407(68): 41~47
    [140] DUAN Jia-Zhong, ZHANG Jing-Pu, ZHU Shao-Xia. mED2 A Novel Gene Involved in Mouse Embryonic Development[J]. Acta Genetica Sinica.Aug 2006, 33 (8): 692~701
    [141] Izquierdo L, Lopez T, Marticorena P. Cell membrane regions in preimplantation mouse embryos [J]. J. Embryol. Exp. Morph, 1980, 59: 89~102.
    [142]张文昌,徐国正,庄益芬等.自然孵化与换壳培养鸭胚胎碱性磷酸酶活性的研究[J].畜牧兽医科学, 2007, 23(9): 36~39
    [143] Bukowskaa A, Lendeckela U, Hirleb D, et al.. Activation of the calcineurin signaling pathway induces atrial hypertrophy during atrial fibrillation [J]. Cell Mol Life Sci. 2006, 63 (3): 333~339
    [144] Barrientos A, Barros MH, Valnot I, et al. Cytochrome oxidase in health and disease[J].Gene,2002,286:53~63
    [145] Kadenbach B, Arnold S, Lee I, et al.. The possible role of cytochrome coxidase in stress-induced apoptosis and degenerative diseases [J]. Biochimicaet Biophysica Acta-Bioenergetics, 2004, 1665: 40~408
    [146] Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development [J]. Science, 2001, 293:1089~1093.
    [147]杨立新,郁卫东,陈清轩.小鼠2-细胞胚胎ATP合成酶6基因特异表达分析及鉴定[J].中国生物化学与分子生物学报.2003,19(2):201~204.
    [148] Cohn S. Purification of a nerve-growth promoting protein from the mouse salivary gland and its neuro-cytotoxic antisetum [J].Proc Natl Acad Sci USA,1960,46:302~311.
    [149] Wiley LM, Wu JX, Harari I, et al.. Epidernal growth factor receptor mRNA and protein increase after the four-cell preimplantation stage in murine development [J]. Dev Biol, 1992, 149:247~260.
    [150]姜群英,陈士岭,邢福祺.表皮生长因子受体在植入前胚胎细胞中的表达[J].中华妇产科杂志,2000,35(8): 468~ 469.
    [151] Paria B C, Dey S K. Preimplantion embryo development in vitro: Cooperatiove interactions among embryos and role of growth factors [J].Dev Biol, 1990, 87: 4756~4760.
    [152]李拥军.山羊早期胚胎发育基因表达的研究[M].甘肃农业大学博士学位文.2005
    [153] Vonder K, kuhl U. Laminin and its receptor [J]. Biochim Biophys Acta, 1985, 823: 14~20
    [154] Choi Y S, Gumbiner B. Expression of cell adhesion molecule E-cadherin in Xenopus embryos begins at gastrulation and predominates in the ectoderm [J].J Cell Biol. 1989, 108 (6):2449~2458.
    [155]张文昌,徐国正,庄益芬等.自然孵化与换壳培养鸭胚胎碱性磷酸酶活性的研究[J].畜牧兽医科学,2007,23(9):36-39
    [156]Stewart L, Kaspar P, Brunet j, et al..Blastocyst implantation depends on maternal expression of leukemia inhibitory factor [J].Nature, 1992, 359: 76~79.
    [157] Pantaleon M. Functional growth hormone (GH) receptors and GH are expressed by preim plantation m ouse em bryos:A role for GH in early embryogenesis [J]. Proc Natl Acad ScI USA, 1997, 94: 5125~5130.
    [158] Varadary C. The cosequense of alter somatotropic system on reproduction [J]. Biology of Reproduction, 2004, 71:17~27.
    [159] Kiapekou E, Loutrcedis D, Drukakis P, et al.. Effects of GH and IGF-Ⅰon the in-vitro maturation in morse oocytes[ J]. Hormones (Athens), 2005, 4(3):155~160.
    [160] Bachelot A, Monget P, Imbert Bollore P, et al.. Growth hormone is required for ovarian follicular growth [J].Endocrinology, 2002, 143: 4104~4112.
    [161] Mazerbourg S, Bondy C A, Zhou J, et al.. The insulin-like growth factor system: A key determinant role in the growth and selection of ovarian follicles? A comparative species study Men [J]. Reprod Domest Anim, 2003, 38: 247~258.
    [162] Mencloza C, Cremades N, Ruiz-Requena E, et al..Relationship between fertilization results after intracytoplasmic sperm injection and intrafollicular steroid, pituitary hormone and cytokine concentration [J].Human Reproduction, 1999, 14:628~635.
    [163] Gonzalez A P, Gonzalez B A, Veiga L A, et al.. Effect of growth hormone andgonadotrophin releasing hormone antagonists on ovarian follice growth in sheep [J]. Vet Pharmacol Ther, 2006, 29(5):373~377.
    [164] Can E, Svechnikov K V, Carlsson S, et al.. Stimulation of steroidogenesis in immature rat leyding cells evoked by Interleukinia is potentiated by growth hormone and insulin like growth factor [J].Endocrionology, 2005,146(1): 221~230.
    [165] Pantaleon M, Whiteside EJ, Harvey MB, et al.. Functional growth hormone (GH) receptors and GH are expressed by preimplantation mouse embryos: a role for GH in early embryogenesis [J].Proc Natn Acad Sci USA, 1997, 94: 5125~5130.
    [166] Gluckman PD, Pinal CS. Maternal-placental-fetal interactions in the endocrine regulation of fetal growth [J].Endocrine, 2002, 19: 81~89.
    [167] Drakasis P, Loutradis D, Milingos S, et al.. A preliminary study of the effect of growth hormone on mouse preimplantation embryo development in vitro [J].Gynecologic and Obstetric Investigation, 1995, 40: 222~226.
    [168] Zhang Y, Proenza R, Maffei M, et al.. Positional cloning of the mouse obese gene and its human homologue [J].Nature, 1994, 372: 425~432
    [169] Chehab F F, Mounzih K, Lu R, et al.. Early onset of reproduetive function in Normal femal mice treated with Leptin [J]. Seienee, 1997, 275(5296): 88~90.
    [170] Barash I A, Cheung C C, Weigle D S, et al.. Leptin is a metabolic signal to the reproductive system [J].Endocrinology, 1996, 137: 3144~3153
    [171] Georgios A, Eleni K, Ioannis S, et al.. Serum and fallicular fluid leptin levels are correlated with human embryo quality [J]. Reproduction, 2005, 130(6): 917~921.
    [172] Dayi A, Bediz C S, Musal B, et al.. Comparison of Leptin levels in serum and follicular fluid during the oestrous cycle in cows [J]. Acta Vet Hung, 2005, 53(4): 457~467.
    [173]张文杰,冯玉昆,王珏等.卵泡液中Leptin与体外受精-胚胎移植结局的关系.中国优生与遗传杂志, 2006 , 14(7):106~107.
    [174] Kawamura K, Sato N, Fukuda J, et al.. Leptin promotes the development of mouse preimplantation embryos in vitro [J].Endocrinology, 2002, 143(5):1922~ 1930.
    [175] Antczak M, Van Blerkom JV. Oocyte influences on early development: the regulatory proteins Leptin and STAT3 are polarized in mouse and human oocytes and differentially distributed within the cells of the preimplantation stage embryo [J]. Mol Hum Reprod, 1997; 2(4): 1067~1074.
    [176]陈骞,李尚为,唐海峰等.瘦素对小鼠着床前胚胎发育影响的体外研究[J].四川大学学报(医学版) , 2004; 35 (6): 806~808
    [177] Yang F Q, Ito Y, Liq J. Epidermal growth factor receptor function in early mammalian development [J]. Chroma Rel Tech, 2004, 27: 2979~2991.
    [178] Huang F, Hedman E. Developmentally regulated expression of Fibroblast Growth Factor Receptor genes and splicing variants by murine embryonic stem and embryo nalcarcinoma cells[J]. MolCellProteomics, 2004, 3: 586~597.
    [179] Shen Shi hua, Yu Xiang jing, Ting yun kuang. New roles for old protein in adult CNS axonalre generation [J]. Proteomics, 2003, 3: 527-525.
    [180]张子金.胚胎发育过程中基因的调节与控制[J].甘肃科技, 2005,21(7):102~103.
    [181] Katz-Jaffe MG, Linck DW, Schoolcraft WB, et al.. Gardner DK. Aproteomic analysis of mammalian preimplantation embryonic development [J]. Reproduction, 2005, 130: 899~905.
    [182] Akkoyunlu G, Ustunel I, Demir R, et al..The distribution of transglutaminase in the rat oocytes and embryos [J].Theriogenology, 2007, 68: 834~841.
    [183] Sawadaa H, Yamahamab Y, Yamamotoc T, et al.. A novel RNA helicase-like protein during early embryonic development in silkworm Bombyx mori: Molecular characterization and intracellular localization [J]. Insect Biochemistry andMolecular Biology , 2006, 36: 911~920
    [184] Simon LA, Katherine J, Pam A, et al..A spatial and temporal map of FGF/Erk1/2 activity and response repertoires in the early chick embryo [J]. Developmental Biology, 2007, 302: 536~552
    [185] Kim JS, Cho YS, Song B S, et al..Exogenous dibutyryl cAMP affects meiotic maturation via protein kinase A activation; it stimulates further embryonic development including blastocyst quality in pigs [J].Theriogenology , 2008, 69: 290~301
    [186] Hossein B, Mohsen H, Roseata Z, et al.. Comparative proteomic analysis of mouse embryonic stem cells and neonatal-derived cardiomyocytes [J]. Biochemical and Biophysical Research Communications, 2006, 349:1041~1049.
    [187] Vitale AM, Calvert ME, Mallavarapu M, et al.. Proteomic profiling of murine oocyte maturation [J]. MolReprod Dev , 2007, 74: 608~616.
    [188] Katz-Jaffe M G, Gardner D K. Embryology in the era of proteomics [J]. Theriogenology, 2007, 68:125~130
    [189] Gardner DK, Sheehan CB, Rienzi L, et al.. Analysis of oocyte physiology to improve cryopreservation procedures [J].Theriogenology , 2007; 67: 64~72.
    [190] Katz-Jaffe M G, Gardner D K, Schoolcraft W B et al.. Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability [J]. Fertil Steril, 2006, 85: 101~107.
    [191] Mandy G, Katz-Jaffe, William B, et al..Analysis of protein expression (secretome) by human and mouse preimplantation embryos [J].Fertility and Sterility, 2006, 86(3): 678~685.
    [192] Kilsoo Jeon, Eun Young, Cheol T, et al.. Survivin protein expression in bovine follicular oocytes and their in vitro developmental competence [J]. Animal Reproduction Science, 2007, 9:1~15
    [193] Dode M A, Dufort I, Massicotte L, et al.. Quantitative expression of candidate genes for developmental competence in bovine two-cell embryos [J].Mol. Reprod. Dev, 2006, 73: 288 ~ 297.
    [194] Navarette Santos A, Tonack S, Kirstein M, et al.. Two insulin-responsive glucose transporter isoforms and the insulin receptor are developmentally expressed in rabbit preimplantation embryos [J].Reproduction , 2004, 128:503 ~516.
    [195] Wang Y, Puscheck EE, Lewis JJ, et al.. Increases in phosphorylation of SAPK/JNK and p38 MAPK correlate negatively with mouse embryo develop- pment after culture in different media [J]. Fertil Steril, 2005, 83: 1144~1154 .
    [196] Katz-Jaffe MG, Schoolcraft WB, Gardner DK. Analysis of protein expression (secretome) by human and mouse preimplantation embryos [J].Fertil Steril 2006, 86: 678~685.
    [197] Torres-Padilla ME, Parfitt DE, KouzaridesT, et al..Histone arginine methylation regulate pluripotency in the early mouse embryo [J].Nature, 2007, 445: 214~218.
    [198] Begon A, Jimenez M, Dolors I, et al..Effect of oocyte diameter on meiotic competence, embryo development, p34 (cdc2) expression and MPF activity in prepubertal goat oocytes [J].Theriogenology, 2007, 67: 526~536
    [199] Augustin R, Pocar P, Wrenzycki C, et al..Mitogenic and anti-apoptotic activity of insulin on bovine embryos produced in-vitro [J]. Reproduction, 2003, 126: 91~99.
    [200] Lonergan P, Rizos D, Gutieirrez-Adain, et al..Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns [J].Reprod Domest Anim, 2003, 38: 259~267.
    [201] Wilkins M. Government backs proteome proposal [J].Nature, 1995, 378: 653~664.
    [202] Gupta A, Bazer F W, Jaeger L A. Immunolocalization of acidic and basic fibroblast growth factors in porcine uterine and conceptus tissues [J]. Biol Reprod, 1997, 56: 1527~1536.
    [203] Buyalos R P, Cai X. Preimplantation embryo development enhanced by epidermal growth f actor [J]. Assist Reprod Genet, 1994, 11: 33~37
    [204] Yue Z P, Yang Z M, Li S J, et al.. Epidermal growth factor family in rhesus monkey uterus during the menstrual cycle and early pregnancy [J]. Mol Reprod Dev, 2000, 55 (5): 146~151.
    [205] Eliyahu E, Shalgi R. A role for protein kinase C during rat egg activation [J]. Biol Reprod , 2002, 67(1): 189-195