振动压路机作用下高等级公路中圆管涵动力性能理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合湖南省交通厅批准立项的钢筋混凝土圆管涵合理设计与施工方法研究课题,从工程实用的角度出发,对高等级公路中圆管涵在振动压路机作用下的受力性能进行了研究,主要内容包括:
     1.通过对安装在振动压路机上振动器工作原理的详细说明,解释了振动压路机产生振动的原因以及与静力压路机的区别。
     2.详细分析了目前针对振动压路机设计而建立起来的各种压路机——土壤力学模型,并对振动压路机设计中普遍采用的Tai-SungYoo模型建立微分方程组,运用Matlab进行求解,得到振动轮对土壤的作用。
     3.通过相应的假设,本文提出将振动压路机激振力与前轮分配重量之和作为压路机对土壤的作用荷载,并将该荷载用于有限元的计算中,通过对计算结果与实测数据的比较认为本文提出的对作用荷载的模拟较为合理。
     4.现场试验测试了不同填土高度时振动压路机作用下涵管的各项响应值,观察到振动压路机对涵管作用随填土高度增大而减小的趋势。
     5.本文将涵管及其周围土体作为整体研究对象,考虑土体参与结构的相互作用,采用大型有限元分析软件ANSYS对其进行了三维动力弹性分析,并将计算结果与实测结果进行了比较。认为运用ANSYS所建立的三维模型符合实际情况。
     6.通过横轴向不同填土高度强弱振的计算与对比,经回归分析得到了管顶内侧拉应变与填土高度、振动压路机激振力以及自重有关的计算公式。在此基础上,对振动压路机在不同激振力的情况下进行组合与计算,得到不同组合情况下的临界填土高度。
     7.以强弱振幅值作为静力荷载对涵管进行分析,并将结果与相应动力进行比较,得到动力冲击系数。在与各相关规范的比较中,本文认为现行公路规范中的动力冲击系数偏小,建议采用本文提供的动力冲击系数
In this thesis, the following contents about the response of the circular culvert, which is buried in the highway and under the action of vibratory roller, have been studied. The main contents are as follows:
    1. Through describing the vibrator's working principles, the vibratory function is demonstrated. Also dose the distinction between vibratory roller and static one.
    2. Lot kinds of models about the vibratory roller-soil are analyzed considering the roller design. Among them, the Tai-SungYoo' model is adopted ordinarily as the standard one in vibratory roller's design. According to the model, the dynamic differential equations are established. With the application of software MatLab, the solutions of the equations are achieved, then the dynamic load which roller applies to the soil is determined.
    3. By corresponding assumptions, another dynamic load is presented by this thesis. The load's numerical value equals to the sum of vertical centrifugal force and the weight supported by the front drum. Using it the calculation in the chapter back indicates the load is in accord with the actual conditions.
    4. In the field test, the response of the culvert under the action of vibratory roller and different soil height are measured. It is found with the rise of the soil height the response of the culvert becomes weaker and weaker.
    5. Considering the interaction of soil and structure, the soil is taken as part of the whole 3D model with culvert. The FEM analysis of the whole model has been completed by using the analytic software-ANSYS. The rationality of the whole model is confirmed by the result comparison of calculate conclusion and field test.
    6. The expression of the strain on top culvert is achieved through regression analysis and the comparison of different soil heights and load grades in the culvert axis-upright direction. Based on the expression, the critical soil heights under the combination of different load grades
    and roller's weights are achieved.
    7. Corresponding with the vibratory action, the static analysis is processed, and the impact factor is got through the comparison of the two calculated conclusion. The same time, the impact factors given by the corresponding codes are smaller comparatively. The factor presented in the thesis is recommended.
引文
[1] 熊辉.层状场域内上、下部结构动力相互作用分析及其优化设计:[湖南大学博士学位论文].长沙:湖南大学土木工程学院,2003,2-27
    [2] 张楚汉.水利水电科学前沿.北京:清华大学出版社,2002,266-281
    [3] Reissner E. Stationare axialsymmetrische durch eine Schuttelnde Massee rtregte Schwinguugen eines homeogenen Elstischen Halbraumes. Ingenieur-Arch, 1936, 7(6):381-396
    [4] 林皋.土—结构动力相互作用.世界地震工程,1991,(2):4-21
    [5] 熊建国.土—结构动力相互作用的新进展.世界地震工程,1992,(3):22-29;(4):17-25
    [6] Chopra A K, Dasgupta G. Dynamic Stiffness Matrix for Visoelastic Halfplane Foundation. ASCE, 1976, 102(EM3):497-514
    [7] Haskell N A. The Dispersion of Surface Wave on Multilayered Media. Bulletin of Seismological Society of America, 1953, 1(43):17-34
    [8] Wong H B. Dynamic Soil Structure Interaction by Combining FEM with Trial Function Method and Application to Underground Structure:[dissertation]. OKAYAMA: Univ. of OKAYAMA, 1994, 125-130
    [9] 王复明.层状地基分析的样条半解析法及其应用:[大连理工大学硕士学位论文].大连:大连理工大学,1987,54-58
    [10] Gupta S, Penzien J. Hybrid Modeling of Soil-Structure Interaction. Report No. UCB/EERC-80/09, Univ. of California, Berkeley, 1980
    [11] 赵崇斌,张楚汉,张光斗.用无穷元模拟半无限平面弹性地基.清华大学学报,1986,26(3):76-79
    [12] Wolf J P, Song Ch. Dynamic Stiffness of Unbounded Medium based on Damping-Solvent Extraction. Earthquake Engineering and Structural Dynamics, 1994, 23:169-181
    [13] Wolf J P, Meek J W. Rotational Cone Models for a Soil Layer on Flexible Rock Halfspace. Earthquake Engineering and Structural Dynamics, 1994, 23:909-925
    [14] 张楚汉.结构—地基动力相互作用问题.结构与介质相互作用理论及应用.南京:河海大学出版社,1993,243-266
    [15] 梁青槐.土—结构动力相互作用数值分析方法的评述.北方交通大学学报,1997,21(6):690-694
    [16] N M Newmark. A method of computation for structural dynamics. ASCE, 1959, 85(EM3):67-94
    [17] 廖振鹏.法向透射边界条件.中国科学(E辑),1996,26(2):185-192
    
    
    [18] Lysmer J, Kulemeyer R L. Finite dynamic model for infinite media. ASCE, 1969, 95(EM4):859-877
    [19] Lysmer J, Wass G. Shear waves in plane infinite structures. ASCE, 1972, 98(1):85-105
    [20] Smith W D. A nonreflecting plane boundary for wave propagation problems. Comp. Phys, 1974, 15(4):492-503
    [21] Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seism. Soc. Amer., 1977, 67(6):1529-1540
    [22] Liao Z P, Wong H L. A transmitting boundary for the numerical simulation of elastic wave propagation. Soil Dyn. Earthq. Engng., 1984, 3(4), 174-183
    [23] 赵崇斌,张楚汉,张光斗.用映射动力无穷元求解地基中的三维波动问题.中国科学(A辑),1998,28(10):1109-1120
    [24] Kausel E. Local transmitting boundaries. Engng. Mech., 1988, 114(6):1011-1027
    [25] Wolf P J. A comparison of time-domain transmitting boundaries. Earthq. Engng. Struct. Dyn., 1986, 14:655-673
    [26] Underwood P, Geers T L. Doubly asymptotic, boundary element analysis of dynamic soil-structure interaction. Solids Structures, 1981, 17(7):687-697
    [27] Schmid G. Soil-foundation interaction under harmonic excitation. Aero. Soci. of India, 1985, 37(4):337-346
    [28] 郭胜利.强震作用下土埋地下结构动力反应分析的研究:[清华大学博士学位论文].北京:清华大学,1997,64-69
    [29] Gupta S, Penzien J. Three-dimensional hybrid modeling of soil structure interaction. Earthq. Eng. Struc. Dyn., 1982, 10:69-89
    [30] Toki K, Sato T. Seismic response analysis of surface layer with irregular boundaries. In: Proc. 6th world conf. on earthquake eng. New Dehli, India, 1977, 409-415
    [31] Toki K, Sato T. Vibrations approach for the elimination temporary of boundary from finite element method. Mum. Mrth. Geomechanics, Wittke, W. eds, 1979, 889-897
    [32] Karabalis D L, Berkos D E. Dynbamic response of 3D Flexible foundations by time domain BEM and FEM. Soil Dyn. Earthq. Eng., 1985, 4:91-101
    [33] Antes H. A boundary element procedure for transient wave propagation in two dimensional isotropic elastic media. Finite Elements in Analysis and Design, 1985, 1:313-323
    [34] 曹三平,曹志远.爆炸波在非均匀介质中传播以及地下防护结构与围岩非线性动力相互作用分析:[同济大学博士学位论文].上海:同济大学土木工程学院,1992,36-38
    [35] 李冰,焦生杰.振动压路机与振动压实技术.北京:人民交通出版社,2001,1-54
    
    
    [36] 王春晖.小型压实机的动态特性研究:[西安公路交通大学硕士学位论文].西安:西安公路交通大学,1999,14-61
    [37] 肖刚.双频振动压实机的设计及性能研究:[长安大学硕士学位论文].西安:长安大学,2001,36-45
    [38] 张永波.基于ADAMS技术的振动压路机动态性能优化与仿真:[长安大学硕士学位论文].西安:长安大学,9-53
    [39] 秦四成,陈龙珠.振动压路机振动轮减振支撑系统动力分析.筑路机械与施工机械化,2000,17(84):4-5
    [40] 张义民,闻邦椿.振动压路机振动轮的随机压振力研究.中国机械工程,2003,14(1):59-61
    [41] 冯众绪,贺钊,王西京.振动压路机数学模型初探.西安公路交通大学学报,1996,16(3):102-104
    [42] 严世榕,闻邦椿.振动压路机的一种非线性动力仿真.福州大学学报,2000,28(5):64-67
    [43] 严世榕,闻邦椿.考虑塑性变形的振动压路机非线性动力学仿真.筑路机械与施工机械化,1999,16(81):13-16
    [44] 秦四成,陈龙珠.振动压路机振动轮—土壤系统模态分析.筑路机械与施工机械化,1999,16(83):10-12
    [45] 秦四成.振动压路机振动压实及其系统动力学研究:[吉林工业大学博士学位论文].长春:吉林工业大学,1998,5-44
    [46] 陈元基,仝建中,陈国兰.压实机械与路面机械设计.北京:机械工业出版社,1987,11-14
    [47] 秦丽芳,乌天烽.振动压实机械结构原理与使用维修.北京:人民交通出版社,1989,114-123
    [48] J Grabe und G Gudehus, Karlsruhe. Zur optimalen Anpassung von Vibrationswalzen an den boden. Bauingenieur, 1993, 69:207-213
    [49] Tai-Sung Yoo and Ernest T Selig. Dynamics of Vibratory-Roller Compaction. ASCE, 1979, 105(10):1210-1231
    [50] 吴国梁,程序,张思.振动压路机乘坐舒适性的试验研究.建筑机械,1987,(12):25-29
    [51] 石来德,靳晓雄,周宏.振动压路机舒适性能的研究.中国公路学报,1994,23(1):77-83
    [52] 靳晓雄,石来德.振动压路机最优乘坐舒适性的研究.同济大学学报,1990,19(3):381-388
    [53] 于玉兰,石来德.振动压路机座椅安装点的优化设计.同济大学学报,1993,22(1):99-105
    [54] 张仲甫.振动压实过程中的土壤—机械系统相似模型的试验研究.武汉工学院学报,1986,1(3):1-15
    
    
    [55] 张仲甫,赵燕.铰结式振动压路机的结构模态分析及模型试验研究.武汉工学院学报,1990,4(4):31-45
    [56] 何程,张仲甫.振动压路机跳振过程的数字仿真和振动参数选择方法研究.武汉工学院学报,1992,6(4):18-25
    [57] 张世英.关于振动压路机设计中土的参数的确定方法.工程机械,1998,29(1):5-8
    [58] 刘昭培,丁学成.结构动力学.北京:高等教育出版社,1989,8-10
    [59] R.W.Clough,J.Penzien.结构动力学.王光远等译.北京:科学出版社,1981,7-8
    [60] 陈贵红.沉管隧道抗震数值分析:[西南交通大学硕士学位论文].成都:西南交通大学,2002,14-40
    [61] 王玉林.交通荷载作用下道面和软土地基共同作用数值分析:[浙江大学博士学位论文].杭州:浙江大学土木工程系,1999,44-45
    [62] 张璞.列车振动荷载作用下上下近距离地铁区间交叠隧道的动力响应分析:[同济大学博士学位论文].上海:同济大学土木工程学院,2001,36-77
    [63] 王明洋,赵跃堂,钱七虎.用波动有限元法分析土与结构相互作用时设置人工边界的两个问题.岩土工程学报,1995,17(1):92-94
    [64] 刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法.土木工程学报,1998,31(3):55-64
    [65] 严大觉,王贻荪,韩清宇.动力基础半空间理论.北京:中国建筑工业出版社,1981,72-76
    [66] 谭冬莲.高等级公路中钢筋混凝土圆管涵受力性能理论与试验研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2002,52-54
    [67] 中华人民共和国交通部部标准:公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ 023—85).北京:人民交通出版社,2001,3-4
    [68] 深蒲生,邱登莽.混凝土结构(下册).长沙:湖南科学技术出版社,112
    [69] 范立础.桥梁工程.北京:人民交通出版社,2001,41-43
    [70] 铁道部第二设计院.铁路工程设计技术手册·隧道.北京:人民铁道出版社,1978,140-141
    [71] 中华人民共和固交通部部标准:公路桥涵没计通用规范(JTJ021—89).北京:人民交通出版社,1989,23-24