在役钢管混凝土拱桥吊杆损伤与系统可靠性分析方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土拱桥作为一种颇具中国特色且在大、中跨桥梁领域具有一定优势的桥型,在我国有着十分广阔的应用前景。但由于钢管混凝土拱桥的历史较短,以致目前国内尚未出台完整的钢管混凝土拱桥设计规范,更无成熟的使用与养护经验可供借鉴,使得在役钢管混凝土拱桥的病害现象十分复杂、桥梁事故时有发生。为了有计划地改善此类桥梁结构的服役状态,确保其安全运营,最大限度地延长桥梁的使用寿命,需要系统地研究钢管混凝土拱桥的主要病害与典型损伤的类型、关键构件的实际受力特征以及主要构件及系统的可靠性分析方法。上述研究不仅是保证我国已建成的三百余座钢管混凝土拱桥不再发生垮塌等工程事故的需要,也是保证该类具有中国特色的桥型长远发展的需要。故此,针对钢管混凝土拱桥的上述相关问题,本文主要研究了如下内容:
     (1)研究钢管混凝土拱桥的常见病害及其成因。分析了钢管混凝土拱桥与传统拱桥之间的差异,指出二者在结构体系、材料性能和受力特点三个方面的差异是导致钢管混凝土拱桥的病害现象、病害特征与检测方法等诸多方面有别于传统拱桥的主要原因。通过整理多座在役钢管混凝土拱桥的检测结果与病害资料,将钢管混凝土拱桥的常见病害划分为主要结构构件的病害、桥面系统的病害及附属结构的病害。进而指出,上部结构病害中的主拱肋内混凝土缺陷、吊杆与系杆的各种常见病害是钢管混凝土拱桥的典型病害,也是本文的主要研究对象。
     (2)研究吊杆车辆荷载效应随机性的特征以及相应的建模方法。介绍了拱桥吊杆车辆荷载效应健康监测系统。通过分析监测数据,发现吊杆车辆荷载效应具有概率密度函数形状较为复杂等特征。针对在概率密度函数较为复杂的情况下,传统方法无法建立吊杆车辆荷载效应及其极值的概率模型的问题,分别基于非参数统计学与随机过程极值理论,提出了建立吊杆车辆荷载效应概率模型的非参数统计方法和建立车辆荷载效应极值概率模型的方法。工程应用结果显示,上述方法能够很好地解决相关的建模问题。
     (3)研究吊杆疲劳荷载效应的特征及疲劳累积损伤的计算方法。采用雨流计数法与线性疲劳累积损伤理论,分析了吊杆疲劳荷载效应与疲劳累积损伤的特征。指出较重车辆荷载是导致吊杆疲劳累积损伤的主要荷载,其疲劳应力幅与平均应力具有近似呈线性的特点。并在此基础上,引入车辆荷载效应的概率模型,提出了非监测时段内疲劳累积损伤程度的计算方法和剩余服役期内疲劳累积损伤程度预测方法。
     (4)研究钢丝损伤的演化规律、吊杆抗力的衰减过程及服役可靠度的计算方法。分析钢丝的损伤演化过程,将其综合为防护失效、均匀腐蚀、裂纹扩展三个阶段。通过分析钢丝各种损伤的机理,基于损伤力学与断裂力学的基本理论,提出了钢丝名义剩余强度的计算公式。分析了吊杆抗力的衰减过程,进而采用脆性钢丝模型作为吊杆剩余承载能力的计算模型,借鉴纤维束强度计算理论给出了吊杆在抗力衰减各阶段的剩余承载能力的计算方法。将服役构件抗力的不确定性归结为构件损伤的不确定性,提出了改进的服役构件抗力衰减独立增量随机过程模型并将其应用于吊杆。
     (5)研究钢管混凝土拱桥的系统可靠性分析方法。通过分析现有失效模式搜索方法的优缺点及其在桥梁结构工程中的适用性,提出了适用于桥梁结构的改进的阶段临界强度分枝-约界法,解决了大型桥梁结构主要失效模式搜索的问题。比较了系统可靠度计算的区间估计法、PENT及FORM方法的适用范围,指出区间估计法主要适用于对系统可靠度区间的估计;FORM方法与PENT法分别适合系统的失效模式分组特征不明显和明显两种情况。最终,将上述系统可靠度分析方法应用于某在役钢管混凝土拱桥,分析了拱肋典型病害对钢管混凝土拱桥系统可靠性的影响。结果表明:拱顶位置处的混凝土缺陷对钢管混凝土拱桥系统可靠性的影响不容忽视。
Concrete filled steel tubular (CFST) arch bridges as a type of arch bridges with Chinese characteristics have many advantages in covering middle and large spans and have a broad promising prospect in China. However, due to the short history of their development, there is no published national design standard for this bridge type, or mature maintenance techniques to refer to. This fact leads to their complicated damage phenomenon and frequent engineering accidents. In order to systematically improve the service condition and safe operation of CFST arch bridges, and maximize the bridge lifespan, it is needed to study on the main and typical damage, real mechanics characteristic of key components and reliability analysis method of main members and the system about CFST arch bridge systematically. This study will help to ensure the safety of the 300 existing bridges of the same type in China and benefit the long-term development of these bridges. Under this background, following contents of CFST arch bridges are studied in this thesis
     (1) Research on the commonly encountered damages and their causes in the CFST arch bridge. A comparison study was conducted to analyze the difference between CFST and the traditional arch bridges. It was found that the differences in structure system, material properties and mechanical behaviors between the CFST and the traditional arch bridge are the main reasons leading to the different damage properties and examine method in the CFST arch bridges. After a comprehensive study of the damage on some existing CFST arch bridges and the related references, the damage of CFST arch bridges is summarized and classified to three types, which are damage of the main structural components, damage of the deck system and damage of the subsidiary structures. Finally concrete defects in arch rib and commonly encountered damages in cable members are identified as typical damages in the CFST arch bridges and they are the studied objective in this thesis.
     (2) Research on the characteristic of the randomness of suspender traffic-load effect and its modeling method. By analyzing the monitoring data, it's found that the probability density function (PDF) of traffic load effect is complicated. Due to the limit that traditional method couldn't set up the probability model of traffic load effect and its extreme value when its PDF is complicated; a new method is raised based on the nonparametric statistical theory and the extreme value theory of stochastic process. The new methods are proved practical and efficient in applications for solving the modeling problem.
     (3) Research on the characteristic of the fatigue load effect in the suspender and its cumulative damage calculation method. The characters of fatigue load effects and cumulative damage are analyzed based on the rain flow algorithm and linear damage cumulative theory. It is found that heavy trucks are the main causes of fatigue damages of the suspenders and their fatigue stress amplitude and mean value appear to have a linear relationship with each other. Based on this, the calculation method of the damage level of suspenders in the non-monitoring period and the prediction method for their fatigue cumulative damage are raised by introducing the probabilistic model of traffic load effect.
     (4) Research on the damage evolution process of steel wires, the resistance deterioration process of the suspenders and the reliability calculation method for existing suspenders. The damage evolution process is divided into three stages, which are protection measure inactivation stage, uniform corrosion stage and crack propagation stage. Based on the damage mechanism of steel wire, continuum damage mechanics and fracture mechanics, the calculation method for residual strength of steel wire is raised. The resistance deterioration process analysis for suspender is analyzed. Based on the strength model of fiber bundle and brittle steel wire model, the residual load carrying capacity calculation method for suspender at different deterioration stages is proposed. By accrediting the resistance uncertainty of existing structural members to the uncertainty of components damage or fatigue, an improved independent increment process mode for resistance deterioration is presented and applied to existing suspender
     (5) Research on system reliability analysis method for concrete filled steel tubular arch bridge. By analyzing the advantages and disadvantages of existing failure mode searching approaches, as well as their feasibility in bridge projects, an improved branch and bound method suitable for bridges is proposed, which solves the problem on finding the main failure modes of bridge structures. With comparison of the validation range of the bound estimation method, the PNET method and the FORM method, it is pointed out that the bound estimation method applies to estimating system reliability bound while the PNET and the FORM methods are respectively appropriate for the situations with and without obvious group characteristics. Finally, all the system reliability analysis methods are applied to an existing CFST arch bridge., in which the influence of typical arch rib damage to the system reliability of bridge is analyzed. The result of the analysis showers that influence of concrete imperfection to the system reliability of the bridge is not neglected.
引文
[1]万明坤.桥梁漫笔[M].北京:中国铁道出版社, 1997:215-216.
    [2]陈宝春.拱桥技术的回顾与展望[J].福州大学学报(自然科学版), 2009, 37(01):94-106.
    [3]陈宝春.钢管混凝土拱桥应用与研究进展[J].公路, 2008(11):1-66.
    [4]罗世勋,谢邦珠.当代四川公路桥梁(续集1987-1995)[M]:四川科学技术出版社, 1996:36-37.
    [5]陈宝春.钢管混凝土拱桥发展综述[J].桥梁建设, 1997(2):8-13.
    [6]蔡绍怀.我国钢管高强混凝土结构技术的最新进展[J].建筑科学, 2002(04):1-7.
    [7]陈宝春,杨亚林.钢管混凝土拱桥调查与分析[J].世界桥梁, 2006(02):73-77.
    [8]陈宝春.钢管混凝土拱桥(第二版) [M].北京:人民交通出版社, 2007:1-25.
    [9]陈宝春.钢管混凝土拱桥设计与施工[M].北京:人民交通出版社, 1999:1-93.
    [10]宋勤.重庆市綦江县虹桥特大垮塌事故的原因和教训[J].施工技术, 1999, 28(10):54.
    [11]陈思甜.钢管砼拱桥吊杆更换施工控制技术[J].重庆交通学院学报, 2005, 24(2):12-17.
    [12]郑强,孙国安.佛陈大桥缺陷原因分析及加固[J].中国铁道科学, 2000, 21(04):21-29.
    [13]张长青.峡门口乌江二桥加固方案探讨[J].公路交通技术, 2003(3):72-74.
    [14]季文刚.山西漪汾桥加固设计方案比选[J].山西建筑, 2009, 35(32):301-303.
    [15]张秀成,谢奎,任毅勇.浅析"宜宾市小南门金沙江大桥"桥塌原因与修缮方案[J].河南城建高等专科学校学报, 2002, 11(02):15-17.
    [16]陈莘,张其云,王洁.寿春路桥吊杆维修更换的方案设计与施工[J].华东公路, 2002(06):13-14.
    [17]刘道宣.三岸邕江大桥吊杆的早期病害与养护[J].广西交通科技, 2003,28(06):100-101.
    [18]张挺.广西邕宁邕江大桥短吊杆更换施工[J].山西交通科技, 2004, 165(03):47-49.
    [19]王福敏,杨世聪.应用病理解剖学基本原理揭示钢管混凝土拱桥主要病害本质[C]//第十七届全国桥梁学术会议.中国重庆, 2006:776-784.
    [20]交通部. JTJ041—2000公路桥涵施工技术规范[S].北京:人民交通出版社, 2000.
    [21]交通部,公路科学研究所. JTGF80/1-2004公路工程质量检验评定标准[S].人民交通出版社, 2005.
    [22] Haight R Q, Billington D P, Khazem D. Cable Safety Factors for Four Suspension Bridges[J]. Journal of Bridge Engineering, 1997, 2(4):157-167.
    [23] Fu G, Moses F, Khazem D A. Strength of Parallel Wire Cables for Suspension Bridges[C]// 8th ASCE Speciality Conference on Probabilistic Mechanics and Structural Reliability. Notre Dame, 2000.
    [24] Takena K, Miki C, Shimokawa H, et al. Fatigue Resistance of Large‐Diameter Cable for Cable‐ Stayed Bridges[J]. Journal of Structural Engineering, 1992, 118:701.
    [25]李先立,宋显辉,刘禹钦.高强镀锌钢丝疲劳可靠性研究[J].土木工程学报, 1995(02):36-43.
    [26] Matteo J, Deodatis G, Billington D P. Safety Analysis of Suspension-Bridge Cables: Williamsburg Bridge[J]. Journal of structural engineering New York, N.Y., 1994, 120(11):3197-3211.
    [27] Onishi H, Matsui S. Influence of Corrosion Rate on Tensile Strength of Pc Strands[J]. Technology Reports of the Osaka University, 1999, 49(2348):165-170.
    [28] Nakamura S, Furuya K, Kitagawa M, et al. Corrosion Performance of New Suspension Bridge Cable Protection[C]// 16th Conference of IABSE. Lucerne, 2000:169-173.
    [29] Nakamura S-I, Suzumura K, Tarui T. Mechanical Properties and Remaining Strength of Corroded Bridge Wires[J]. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2004, 14(1):50-54.
    [30] Mayrbaurl R M, Camo S. Cracking and Fracture of Suspension BridgeWire[J]. Journal of Bridge Engineering, 2001, 6(6):645-650.
    [31] Toribio J, Ovejero E. Failure Analysis of Cold Drawn Prestressing Steel Wires Subjected to Stress Corrosion Cracking[J]. Engineering Failure Analysis, 2005, 12(5 SPEC. ISS.):654-661.
    [32] Betti R, West a C, Vermaas G, et al. Corrosion and Embrittlement in High-Strength Wires of Suspension Bridge Cables[J]. Journal of Bridge Engineering, 2005, 10(2):151-162.
    [33] Toribio J, Gonzalez B, Matos J C. Fatigue Crack Propagation in Cold Drawn Steel[J]. Materials Science and Engineering A, 2007, 468-470(SPEC. ISS.):267-272.
    [34] Sih G C, Tang X S, Li Z X, et al. Fatigue Crack Growth Behavior of Cables and Steel Wires for the Cable-Stayed Portion of Runyang Bridge: Disproportionate Loosening and/or Tightening of Cables[J]. Theoretical and Applied Fracture Mechanics, 2008, 49(1):1-25.
    [35] Toribio J, Matos J C, Gonzalez B. Micro- and Macro-Approach to the Fatigue Crack Growth in Progressively Drawn Pearlitic Steels at Different R-Ratios[J]. International Journal of Fatigue, 2009, 31(11-12):2014-2021.
    [36] Jiang J H, Ma a B, Weng W F, et al. Corrosion Fatigue Performance of Pre-Split Steel Wires for High Strength Bridge Cables[J]. Fatigue and Fracture of Engineering Materials and Structures, 2009, 32(9):769-779.
    [37]李富民,袁迎曙,杜健民,等.氯盐腐蚀钢绞线的受拉性能退化特征[J].东南大学学报(自然科学版), 2009(02):340-344.
    [38] Weibull W. A Statistical Theory of the Strength of Materials[R]. Swedish Ing.Vetenskaps Akad.Handl (Royal Swedish Institute Engineering Research Proceedings), 1939:5-45.
    [39] Daniels H E. The Statistical Theory of the Strength of Bundles of Threads. I[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1945, 183(995):405-435.
    [40] Coleman B D. Statistics and Time Dependence of Mechanical Breakdown in Fibers[J]. Journal of Applied Physics, 2009, 29(6):968-983.
    [41] Phoenix S L. Stochastic Strength and Fatigue of Fiber Bundles[J]. International Journal of Fracture, 1978, 14(3):327-344.
    [42] Cappa P. Experimental Study of Wire Strains in an Undamaged andDamaged Steel Strand Subjected to Tensile Load[J]. Experimental Mechanics, 1988, 28(4):346-349.
    [43] Raoof M. Wire Recovery Length in a Helical Strand under Axial-Fatigue Loading[J]. International Journal of Fatigue, 1991, 13(2):127-132.
    [44] Macdougall C. Behavior of Mono Strand Tendons with Broken Wires[D]. London: The University of Western Ontario, 2001:112-114.
    [45]李元兵.拱桥吊杆力学行为及损伤退化研究[D].上海:同济大学, 2008:24-58, 178-181.
    [46] Faber M H, Engelund S, Rackwitz R. Aspects of Parallel Wire Cable Reliability[J]. Structural Safety, 2003, 25(2):201-225.
    [47]张彦玲,戴运良,李运生.钢管混凝土拱肋体系可靠度的研究[J].石家庄铁道学院学报, 1998(02):67-71.
    [48]许福友.可靠度实用算法及其在钢管混凝土拱桥中的应用研究[D].长沙:长沙交通学院, 2002: 100-130.
    [49]肖莉,朱暾.雉山拱桥的系统可靠度分析[J].铁道建筑, 2003(09):6-9.
    [50]许福友,张建仁,郝海霞.钢管混凝土拱桥的拱肋稳定性可靠度分析[J].长沙交通学院学报, 2004(01):6-10.
    [51]张存超.预应力混凝土系杆拱桥结构体系可靠性评估[D].郑州:郑州大学, 2005:34-37.
    [52]余大胜.钢管混凝土拱桥体系可靠度的探索[D].大连:大连理工大学, 2006:63-65.
    [53]徐金龙,郑舟军,向木生.不确定因素对带系梁钢管混凝土拱桥可靠度的影响分析[J].交通与计算机, 2008(05):107-110.
    [54] Nowak a S, Cho T. Prediction of the Combination of Failure Modes for an Arch Bridge System[J]. Journal of Constructional Steel Research, 2007, 63(12):1561-1569.
    [55]张俊芝.在役工程结构和工程系统可靠性理论及应用[D].武汉武汉理工大学, 2001:1-27.
    [56]姚继涛.服役结构可靠性分析方法[D].大连:大连理工大学, 1996:20-98.
    [57]管昌生.随机时变结构可靠度理论及其应用[D].武汉:武汉工业大学, 1997:10-73.
    [58] Ellingwood B R. Reliability-Based Condition Assessment and Lrfd for Existing Structures[J]. Structural Safety, 1996, 18(2-3):67.
    [59] Frangopol D M, Hearn G, University of Colorado B, et al. Structural Reliability in Bridge Engineering: Design, Inspection, Assessment, Rehabilitation and Management[M]: McGraw-Hill New York, 1996:112-135.
    [60] Liu M, Frangopol D M. Time-Dependent Bridge Network Reliability: Novel Approach[J]. Journal of Structural Engineering, 2005, 131(2):329-337.
    [61] Liu M, Frangopol D M, Kim S. Bridge Safety Evaluation Based on Monitored Live Load Effects[J]. Journal of Bridge Engineering, 2009, 14(4):257-269.
    [62] Cornell C A. A Probability Based Structural Systems[J]. Journal of American Concrete Institute, 1969, 66(12):974~985.
    [63] Ditlevsen O. Structural Reliability and the Invariance Problem[R]. Waterloo, Canada: University of Waterloo, 1973:69-73.
    [64] Hasofer, Lind. Exact and Invariant Second Moment Code Format[J]. Jornal of Engineering Mechanics, 1974, 100(EM1):111-121.
    [65] Melchers R E. Structural Reliability Analysis and Prediction[M]. Chichester ; New York: John Wiley, 1999:184-192.
    [66] Rackwitz R, Fiessler B. Structural Reliability under Combined Random Load Sequences[J]. Computers and Structures, 1978, 9(5):489-494.
    [67] Ditlevsen. Generalized Second Moment Reliability Index[J]. Jornal of Structural Engineering, 1979, 7(4):435-451.
    [68] Fiessler B, Neumann H-J, Rackwitz R. Quadratic Limit States in Structural Reliability[J]. 1979, 105(4):661-676.
    [69] Hohenbichler M, Gollwitzer S, Kruse W, et al. New Light on First- and Second- Order Reliability Methods[J]. Structural Safety, 1987, 4(4):267-284.
    [70] Rackwitz R. Reliability Analysis--a Review and Some Perspectives[J]. Structural Safety, 2001, 23(4):365-395.
    [71] Kameda H, Koike T. Reliability Analysis of Deteriorating Structures[C]// Reliability Approach in Structural Engineering. Tokyo: Maruzen Co., 1975:61–76.
    [72] Ise. Appraisal of Existing Structures[M]. London: The Institution of Structural Engineers, 1980:144-156.
    [73] Oswald G F, Schu?ller G I. Reliability of Deteriorating Structures[J]. Engineering Fracture Mechanics, 1984, 20(3):479-488.
    [74] Nowak a S. Bridge Evaluation, Repair, and Rehabilitation[M]: Kluwer Academic Pub, 1990:235-247.
    [75]王光远.结构服役期间的动态可靠度及其维修理论初探[J].哈尔滨建筑工程学院学报, 1990(02):1-9.
    [76] Mori Y, Ellingwood B R. Reliability-Based Service-Life Assessment of Aging Concrete Structures[J]. Journal of Structural Engineering, 1993, 119(5):1600-1621.
    [77]欧进萍,刘学东,王光远.现役结构安全度评估的环境荷载标准研究[J].工业建筑, 1995, 25(08):11-16.
    [78]贡金鑫,赵国藩.考虑抗力随时间变化的结构可靠度分析[J].建筑结构学报, 1998, 19(05):43-51.
    [79] Vu K a T, Stewart M G. Structural Reliability of Concrete Bridges Including Improved Chloride-Induced Corrosion Models[J]. Structural Safety, 2000, 22(4):313-333.
    [80] Mori Y, Nonaka M. Lrfd for Assessment of Deteriorating Existing Structures[J]. Structural Safety, 2001, 23(4):297-313.
    [81]姚继涛,赵国藩,浦聿修.结构抗力的独立增量过程概率模型[C]//中国土木工程学会第九届年会.中国浙江杭州:中国土木工程学会, 2000:21-24.
    [82]姚继涛,赵国藩,浦聿修.拟建结构和现有结构的抗力概率模型[J].建筑科学, 2005, 21(03):15-17+9.
    [83] Czarnecki a A, Nowak a S. Time-Variant Reliability Profiles for Steel Girder Bridges[J]. Structural Safety, 2008, 30(1):49-64.
    [84]董聪.现代结构系统可靠性理论及其应用[M].北京:科学出版社, 2001:1-16, 186-225.
    [85] Rashedi R, Moses F. Application of Linear Programming to Structural System Reliability[J]. Computers & Structures, 1986, 24(3):375-384.
    [86] Quek S T. Structural System Reliability by the Method of Stable Configuration[D]. United States -- Illinois: University of Illinois at Urbana-Champaign, 1987:113-123.
    [87] Kam. A Review of Structural Sysytem Reliability Analysis for Offshore Structures[C]// MAE-1995, 1995:1-12.
    [88] Shao S, Murotsu Y. Approach to Failure Mode Analysis of LargeStructures[J]. Probabilistic Engineering Mechanics, 1999, 14(1-2):169-177.
    [89]杜进生秦刘.系统可靠度及其在桥梁工程中的应用前景[J].公路交通科技, 1999, 16(04):21-24.
    [90] Moses F. System Reliability Developments in Structural Engineering[J]. Structural Safety, 1982, 1:3-13.
    [91] Moses F. New Directions and Research Needs in System Reliability Research[J]. Struct . Safety, 1990, 7:93-100.
    [92]姚卫星,顾怡.用自动矩阵力法枚举结构的主要失效模式[J].计算力学学报, 1996(01):13-16.
    [93]张小庆.结构体系可靠度分析方法研究[D].大连:大连理工大学, 2003:13-25.
    [94]张利宁.统计方法分析桥梁冲击系数的研究[J].公路交通科技, 2004, 12(05):23-25.
    [95]董聪,冯元生.枚举结构主要失效模式的一种新方法[J].西北工业大学学报, 1991, 9(3):284-289.
    [96]冯元生,董聪.枚举结构主要失效模式的一种方法[J].航空学报, 1991, 12(9):537-541.
    [97] Thoft-Christensen P, Murotsu Y. Application of Structural Systems Reliability Theory[M]. Berlin: Springer-Verlag, 1986:62-67.
    [98] A C C. Bounds on the Reliability of Structural Systems[J]. Journal of Structural Division, 1967, 93(ST1):112-119.
    [99] Ditlevsen O. Narrow Reliability Bounds for Structural Systems[J]. Journal of Structural Mechanics, 1979, 7(4):453-472.
    [100] G K E. Bounds for the Probability of a Union with Applications[J]. Annual of Mathematical Statistics, 1968, 339(1):68-76.
    [101] Ang a H S, Chaker a A, Abdelnour J. Analysis of Activity Networks under Uncertainty[J]. Journal of the Engineering Mechanics Division, 1975, 101(4):373-387.
    [102] Hohenbichler M, Rackwitz R. First-Order Concepts in System Reliability[J]. Structural Safety, 1983, 1(3):177-188.
    [103] Tang L K, Melchers R E. Improved Approximation for Multinormal Integral[J]. Structural Safety, 1986, 4(2):81-93.
    [104] Gollwitzer R. An Efficient Numerical Solution to the Multinormal Integral[J].Probabilistic Engineering Mechanics, 1988, 3(2):98-101.
    [105] Youn B D, Wang P. Bayesian Reliability-Based Design Optimization Using Eigenvector Dimension Reduction (Edr) Method[J]. Structural and Multidisciplinary Optimization, 2008, 36(2):107-123.
    [106] Head P R. Performance of Bridge 'Systems'. The Next Frontier for Design and Assessment[J]. Structural Engineer, 1991, 69(17):310-316.
    [107] Ghosn M, Hang Y, Moses F. Development of Design Factors for Redundant Concrete Bridges[C]. Worcester, MA, USA: ASCE, New York, NY, USA, 1996:716-719.
    [108] Dan M F, Kai-Yung L, Allen C E. Life-Cycle Cost Design of Deteriorating Structures[J]. Journal of Structural Engineering, 1997, 123:1390-1401.
    [109] Gharaibeh E S, Frangopol D M, Onoufriou T. Reliability-Based Importance Assessment of Structural Members with Applications to Complex Structures[J]. Computers & Structures, 2002, 80(12):1113-1131.
    [110] Nowak a S. System Reliability Models for Bridge Structures[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2004, 52(4):321-328.
    [111] Allen C E, Dan M F. Updating Bridge Reliability Based on Bridge Management Systems Visual Inspection Results[J]. Journal of Bridge Engineering, 2003, 8(6):374-382.
    [112] Yang S-I, Frangopol D M, Kawakami Y, et al. The Use of Lifetime Functions in the Optimization of Interventions on Existing Bridges Considering Maintenance and Failure Costs[J]. Reliability Engineering & System Safety, 2006, 91(6):698-705.
    [113] Liu M, Frangopol D M, Kim S. Bridge System Performance Assessment from Structural Health Monitoring: A Case Study[J]. Journal of Structural Engineering, 2009, 135:733.
    [114] Biondini F, Frangopol D M. Lifetime Reliability-Based Optimization of Reinforced Concrete Cross-Sections under Corrosion[J]. Structural Safety, 2009, 31(6):483-489.
    [115] Furuta H, Kameda T, Frangopol D M. Life-Cycle Cost Design Using Improved Multi-Objective Genetic Algorithm[C]. St. Louis, M0, United States: American Society of Civil Engineers, Reston, VA 20191-4400, United States, 2006:23-27.
    [116] Bucher C, Frangopol D M. Optimization of Lifetime Maintenance Strategies for Deteriorating Structures Considering Probabilities of Violating Safety, Condition, and Cost Thresholds[J]. Probabilistic Engineering Mechanics, 2006, 21(1):1-8.
    [117] Liu M, Frangopol D M. Optimizing Bridge Network Maintenance Management under Uncertainty with Conflicting Criteria: Life-Cycle Maintenance, Failure, and User Costs[J]. Journal of Structural Engineering, 2006, 132(11):1835-1845.
    [118] Petoberdchoo A, Neves L C, Frangopol D M. Optimizing Lifetime Condition and Reliability of Deteriorating Structures with Emphasis on Bridges[C]. St. Louis, M0, United States: American Society of Civil Engineers, Reston, VA 20191-4400, United States, 2006:24-28.
    [119] Neves L a C, Frangopol D M, Petcherdchoo A. Probabilistic Lifetime-Oriented Multiobjective Optimization of Bridge Maintenance: Combination of Maintenance Types[J]. Journal of Structural Engineering, 2006, 132(11):1821-1834.
    [120] Neves L a C, Frangopol D M, Cruz P J S. Probabilistic Lifetime-Oriented Multiobjective Optimization of Bridge Maintenance: Single Maintenance Type[J]. Journal of Structural Engineering, 2006, 132(6):991-1005.
    [121] Biondini F, Bontempi F, Frangopol D M, et al. Probabilistic Service Life Assessment and Maintenance Planning of Concrete Structures[J]. Journal of Structural Engineering, 2006, 132(5):810-825.
    [122] Liu M, Frangopol D M. Probability-Based Bridge Network Performance Evaluation[J]. Journal of Bridge Engineering, 2006, 11(5):633-641.
    [123]李广慧.高速公路桥梁结构体系可靠性评估[D].中国地震局地球物理研究所, 2003:20-65.
    [124]吕颖钊,宋一凡,贺拴海.基于等待梁法的在用梁桥承载力可靠度[J].长安大学学报(自然科学版), 2004(04):73-78.
    [125] Tao Z, Stearman B J. Reliability Concept and Application in Bridge Management System[C]. Worcester, MA, USA: ASCE, New York, NY, USA, 1996:442-445.
    [126]廖渭扬,黄福伟,周海龙.钢管混凝土拱桥拱肋混凝土缺陷及检测方法简介[J].甘肃科技, 2005(10):161-163.
    [127]周水兴,陈山林.桥道系对钢管混凝土拱桥吊杆受力影响的研究[J].桥梁建设, 2007(02):28-31.
    [128]邓海泉.钢管混凝土拱桥典型病害分析研究[J].城市道桥与防洪, 2010(6):135-138.
    [129]傅斌,许晓锋,黄福伟.对钢管混凝土拱桥病害的调研及分类[J].交通标准化, 2008, 176(04):220-223.
    [130]童林,夏桂云,吴美君,等.钢管混凝土脱空的探讨[J].公路, 2003(05):16-20.
    [131]林春姣,郑皆连,秦荣.钢管混凝土拱肋混凝土脱空研究综述[J].中外公路, 2004(06):54-58.
    [132]杨世聪.核心混凝土脱空对钢管混凝土构件力学性能的影响[J].重庆交通大学学报(自然科学版), 2008, 27(3):360-365.
    [133]蔡镇生.钢管混凝土拱桥服役状态评估技术研究[D].广州:华南理工大学, 2009:22-69.
    [134]邱麟.钢管混凝土拱桥服役状态评估技术研究[D].重庆:重庆交通大学, 2008:23-58.
    [135]涂光亚.脱空对钢管混凝土拱桥受力性能影响研究[D].长沙:湖南大学, 2008:1-35.
    [136]乔墩,刘思孟,郑志明,等.大跨径钢管混凝土拱桥结构检查及病害成因分析[C]//第十七届全国桥梁学术会议.重庆, 2006:785-792.
    [137]廖碧海.拱桥评估与加固的理论和实践研究[D].武汉:华中科技大学, 2009:1-42.
    [138]董晓博.三山西大桥系杆病害研究及养护策略[J].公路, 2008(4):90-94.
    [139]华仁庆.拱桥吊杆的常见病害分析[J].安徽建筑工业学院学报(自然科学版), 2010, 18(01):17-22.
    [140]鹿建阁.钢管混凝土拱桥吊杆的破损行为分析[D].天津:天津大学, 2005:10-55.
    [141]姜维成,余波,邢世玲.在役钢管混凝土拱桥吊杆疲劳可靠性分析[J].中外公路, 2007, 27(04):131-134.
    [142]赵洪平,李元兵.拱桥吊杆损伤退化机理及寿命评估研究进展[J].城市道桥与防洪, 2010(01):119-124+12.
    [143]顾安邦,徐君兰.中、下承式拱桥短吊杆结构行为分析[J].公路, 2002, 27(05):8-10.
    [144]李立军.钢管混凝土吊杆拱桥运营10年后索力变化及病害分析[J].公路交通科技(应用技术版), 2009, 51(03):55-57.
    [145]雷俊卿,钟厚冰.中下承拱桥悬吊桥面结构的分析与对策研究[C]//中国公路学会桥梁和结构工程学会2003年全国桥梁学术会议论文集.中国成都, 2003:643-648.
    [146]高崇威.潮白河大桥病害分析及监测对策研究[D].北京:北京工业大学, 2008:12-63.
    [147]施红卫.新安江大桥健康检测及维修加固[J].市政技术, 2008, 26(5):450-455.
    [148]刘奕.钢管混凝土拱桥检测加固及荷载试验研究[D].长沙:湖南大学, 2008:23-37.
    [149]祁家全.钢筋混凝土拱桥检测评定与加固技术研究[D].成都:西南交通大学, 2003:12-49.
    [150]郭玉民.浅谈桥面铺装的作用与病害防治[J].交通科技与经济, 2006, 8(6):18-19.
    [151]孙长庚.公路桥头跳车的防治措施[J].中外公路, 2006, 26(6):20-21.
    [152]刘澜涛.桥头跳车成因及预防措施[J].交通世界(建养机械) , 2010(6):178-179.
    [153]黄德耕.公路拱桥常见病害处治技术[J].西部交通科技, 2007(5):18-21.
    [154]汤国栋,杨弘,朱正刚,等.桥梁吊杆及拉索的健康诊断[J].公路, 2002(09):36-41.
    [155] Bergamini A, Christen R. A Simple Approach to the Localization of Flaws in Large Diameter Steel Cables[C]. San Diego, CA, United states: SPIE, 2003:243-251.
    [156] Wang G, Wang M L, Zhao Y, et al. Application of Em Stress Sensors in Large Steel Cables[C]. San Diego, CA, United states: SPIE, 2005:395-406.
    [157]李冬生,欧进萍.声发射技术在拱桥吊杆损伤监测中的应用[J].沈阳建筑大学学报(自然科学版), 2007, 23(01):6-10.
    [158] Russell J C, Lardner T J. Experimental Determination of Frequencies and Tension for Elastic Cables[J]. Journal of Engineering Mechanics, 1998, 124(10):1067-1072.
    [159]郝超.斜拉桥索力测试新方法-磁通量法[J].公路, 2000(11):30-31.
    [160] Cooper K R, Elster J, Jones M, et al. Optical Fiber-Based Corrosion SensorSystems for Health Monitoring of Aging Aircraft[C]. Valley Forge, PA, United states: Institute of Electrical and Electronics Engineers Inc., 2001:847-856.
    [161]邓年春,欧进萍,周智,等.一种新型平行钢丝智能拉索[J].公路交通科技, 2007, 24(03):82-85.
    [162]李冬生,邓年春,周智,等.拱桥吊杆的光纤光栅监测与健康诊断[J].光电子.激光, 2007, 18(01):81-84.
    [163] Caprani C C, Obrien E J. The Use of Predictive Likelihood to Estimate the Distribution of Extreme Bridge Traffic Load Effect[J]. Structural Safety, 2010, 32(2):138-144.
    [164]李扬海、鲍卫刚、郭修武、程翔云.公路桥梁结构可靠度与概率极限状态设计[M]:人民交通出版社, 1997:1-137.
    [165]伊洪建,张艳萍,张锋.公路旧桥车辆荷载的评估模型研究[J].交通标准化, 2008(05):200-204.
    [166] Nowak a S. Live Load Model for Highway Bridges[J]. Structural Safety, 1993, 13(1-2):53-66.
    [167] Miao T J, Chan T H T. Bridge Live Load Models from Wim Data[J]. Engineering Structures, 2002, 24:1071.
    [168]中华人民共和国交通部. Gb/T 50283-1999公路工程结构可靠度设计统一标准[S].北京:中国计划出版社, 1999.
    [169]欧进萍.土木工程结构用智能感知材料、传感器与健康监测系统的研发现状[J].功能材料信息, 2005(05):11-22.
    [170]孙利民,孙智,淡丹辉,等,我国大跨度桥梁结构健康监测系统研究与应用现状,第十七届全国桥梁学术会议论文集(下册):重庆, 2006.
    [171] Karoumi R, Wiberg J, Liljencrantz A. Monitoring Traffic Loads and Dynamic Effects Using an Instrumented Railway Bridge[J]. Engineering Structures, 2005, 27:1813.
    [172] Strauss A, Frangopol D M, Kim S. Use of Monitoring Extreme Data for the Performance Prediction of Structures: Bayesian Updating[J]. Engineering Structures, 2008, 30(12):3654-3666.
    [173] Frangopol D M, Strauss A, Kim S. Use of Monitoring Extreme Data for the Performance Prediction of Structures: General Approach[J]. Engineering Structures, 2008, 30(12):3644-3653.
    [174]韩大建,杜江.工程结构作用极值分析方法研究[J].建筑科学与工程学报, 2008, 25(2):68-71.
    [175]李继华,林忠民.建筑结构概率极限状态设计[M].北京:中国建筑工业出版社, 1990:123-249.
    [176]李扬海,鲍卫刚,郭修武,等.公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社, 1997:1-137.
    [177]郭彤,李爱群,赵大亮.用于公路桥梁可靠性评估的车辆荷载多峰分布概率模型[J].东南大学学报(自然科学版), 2008(05):763-766.
    [178] John W V D L, Fu G, Zhou Y, et al. Locality of Truck Loads and Adequacy of Bridge Design Load[J]. Journal of Bridge Engineering, 2005, 10(5):622-629.
    [179] Laman J A, Nowak a S. Site-Specific Truck Loads on Bridges and Roads[J]. Proceedings of the Institution of Civil Engineers, Transport, 1997, 123(2):119-133.
    [180] Ou J P, Li H. Structural Health Monitoring in Mainland China: Review and Future Trends[J]. Structural Health Monitoring-an International Journal, 2010, 9(3):219-231.
    [181] Todd M D, Johnson G A, Vohra S T. Deployment of a Fiber Bragg Grating-Based Measurement System in a Structural Health Monitoring Application[J]. Smart Materials and Structures, 2001, 10(3):534-539.
    [182]兰成明.平行钢丝斜拉索全寿命安全评定方法研究[D].哈尔滨:哈尔滨工业大学, 2008:63-68.
    [183]《现代应用数学手册》编委会.现代应用数学手册[M].北京:清华大学出版社, 2000:123-132.
    [184] Khuri a E I. Advanced Calculus with Applications in Statistics[M]: John Wiley and Sons, 2003.
    [185]吴喜之.非参数统计方法[M].北京:高等教育出版社, 1996:1-78.
    [186]李裕奇,刘海燕,赵连文.非参数统计分析[M].成都:西南交通大学出版社, 1998:1-85.
    [187]牛君.基于非参数密度估计点样本分析建模的应用研究[D].济南:山东大学, 2007:1-86.
    [188]王志刚.非参数核密度估计在我国非寿险公司偿付能力额度计算中的应用[D].天津:天津财经大学, 2009:16-38
    [189]贡金鑫,李文杰,赵君黎,等.公路桥梁车辆荷载概率模型研究(一)——非治超地区[J].公路交通科技, 2010(06):40-45+57.
    [190]朱干江.非参数密度估计在判别分析中的应用[D].南京:南京信息工程大学, 2007:62-69.
    [191] Kotz S, Nadarajah S. Extreme Value Distributions: Theory and Applications[M]: World Scientific Publishing Company, 2000:231-245.
    [192] Davison a C, Smith R L. Models for Exceedances over High Thresholds[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1990, 52(3):393-442.
    [193] Balkema a A, De H. Residual Life Time at Great Age[J]. Annals of Probability, 1974, 2(1):792–804.
    [194] Pickands Iii J. Statistical Inference Using Extreme Order Statistics[J]. the Annals of Statistics, 1975, 3(1):119-131.
    [195]段忠东,周道成.极值概率分布参数估计方法的比较研究[J].哈尔滨工业大学学报, 2004, 36(12):1605-1609.
    [196] Chan T H T, Li Z X, Ko J M. Fatigue Analysis and Life Prediction of Bridges with Structural Health Monitoring Data - Part Ii: Application[J]. International Journal of Fatigue, 2001, 23(1):55-64.
    [197] Snyder D L. Random Point Process[M]. New York: Wiley, 1975:44-49.
    [198]南开大学数学系统计预报组.概率与统计预报及在地震与气象中的应用[M].北京:科学出版社, 1978:23-35.
    [199]张辉,曹锡,张海彦.钢管混凝土拱桥柔性吊杆破损分析[J].交通科技与经济, 2009(02):15-17.
    [200]陈兵,赵雷,杨弘,等.拉萨柳梧大桥吊杆疲劳寿命研究[J].铁道建筑, 2007(04):6-8.
    [201]吴冲,杨国涛,张磊.多跨系杆拱桥吊杆疲劳性能研究[M], 2009:24-27.
    [202]王滢,李兆霞,吴佰建.润扬悬索桥钢箱梁结构疲劳应力监测及其分析[J].东南大学学报(自然科学版), 2007(02):280-286.
    [203] Li Z X, Chan T H T, Ko J M. Fatigue Analysis and Life Prediction of Bridges with Structural Health Monitoring Data - Part I: Methodology and Strategy[J]. International Journal of Fatigue, 2001, 23(1):45-53.
    [204]郑蕊,李兆霞.基于结构健康监测系统的桥梁疲劳寿命可靠性评估[J].东南大学学报(自然科学版), 2001(06):71-73.
    [205]荣振环.芜湖长江大桥主桥长期实时监控疲劳损伤及寿命评估系统研究[D].北京:铁道部科学研究院, 2005.
    [206]何旭辉.南京长江大桥结构健康监测及其关键技术研究[D].长沙:中南大学, 2004:82-84.
    [207] Li Z X, Chan T H T, Zheng R. Statistical Analysis of Online Strain Response and Its Application in Fatigue Assessment of a Long-Span Steel Bridge[J]. Engineering Structures, 2003, 25(14):1731.
    [208]王莹,吴佰建,李兆霞.特大跨缆索桥钢箱梁疲劳应力特性对比性研究[J].振动与冲击, 2009, v.28;No.130(02):86-91+202-203.
    [209]李顺龙.基于健康监测技术的桥梁结构状态评估和预警方法研究[D].哈尔滨:哈尔滨工业大学, 2008:62-67.
    [210]余波,邱洪兴,王浩,等.江阴长江大桥钢箱梁疲劳应力监测及寿命分析[J].公路交通科技, 2009(06):69-73.
    [211] Asce. Committee on Fatigue and Fracture Reliability of the Committee on Structural Safety and Reliability of the Structural Division.[J]. Journal of the Structural Division, 1982, 108(ST!):3~88.
    [212]董乐义,罗俊,程礼.雨流计数法及其在程序中的具体实现[J].航空计测技术, 2004(03):38-40.
    [213] Karolczuk A, Macha E. A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials[J]. International Journal of Fracture, 2005, 134(3-4):267-304.
    [214]马林.国产1860级低松弛预应力钢绞线疲劳性能研究[J].铁道标准设计, 2000(05):21-23.
    [215] Alampalli S, Lund R. Estimating Fatigue Life of Bridge Components Using Measured Strains[J]. Journal of Bridge Engineering, 2006, 11(6):725-736.
    [216] Schilling C G, Klippstein K H, Barsom J M, et al. Fatigufatigue of Welded Steel Bridge Members under Variable-Amplitude Loading[J]. 1978(188).
    [217]叶其孝,沈永欢.实用数学手册[M].北京:科学出版社, 2008:33-35.
    [218]罗小勇,李政.无粘结预应力钢绞线锈蚀后力学性能研究[J].铁道学报, 2008(02):108-112.
    [219]杨世聪,王福敏.钢管混凝土拱桥吊杆高强钢丝力学试验研究[J].公路交通技术, 2007(S1):80-84.
    [220]龚志刚,党志杰.奥尔顿克拉克大桥斜拉索的疲劳强度[J].国外桥梁,1997(01):37-41.
    [221]刘亚平,李晖,魏绪玲.高密度聚乙烯户外自然老化的力学性能研究[J].山东化工, 2007(08):5-7.
    [222]徐宏.桥梁拉(吊)索损伤后力学分析及安全评价[D].西安:长安大学, 2008:66-78.
    [223]李富民.氯盐环境钢绞线预应力混凝土结构的腐蚀效应[D].北京:中国矿业大学, 2008:112-135.
    [224]楚南.中国材料的自然环境腐蚀[M].北京:化学工业出版社, 2005:12-16.
    [225]楼志文.损伤力学基础[M].西安:西安交通大学出版社, 1991:22-25.
    [226] Gao Z T, Fei B J, Fu H M, et al. Two-Dimensional Stress-Strength Interference Model for Reliability-Based Design[C]. Kyoto, Jpn: Publ by Pergamon Press Inc, 1992:601-601.
    [227]刘建伟.疲劳累积损伤理论发展概述[J].山西建筑, 2008(23):76-78.
    [228]杨晓华,姚卫星,段成美.确定性疲劳累积损伤理论进展[J].中国工程科学, 2003(04):81-87.
    [229]李荣,邱洪兴,淳庆.疲劳累积损伤规律研究综述[J].金陵科技学院学报, 2005(03).
    [230]左景伊.应力腐蚀破裂[M].西安:西安交通大学出版社, 1985:62-64.
    [231]李仲,吕国志,葛森.一种预测蚀坑腐蚀疲劳寿命的概率模型[J].机械强度, 2004(S1):226-228.
    [232]肖纪美.腐蚀与防护全书:应力作用下的金属腐蚀?应力腐蚀?氢致开裂?腐蚀疲劳?摩耗腐蚀[M].北京:化学工业出版社, 1990:112-125.
    [233]徐俊.拉索损伤演化机理与剩余使用寿命评估[D].上海:同济大学, 2006:11-23.
    [234]王荣.金属材料的腐蚀疲劳[M].西安:西安工业大学出版社, 2001:22-26.
    [235]尹双增.断裂损伤理论及应用[M].背景:清华大学出版社, 1992:94-97.
    [236]胡明敏,魏平,唐静静.由剩余强度全域测试建立的疲劳可靠性估算模型[J].机械强度, 2003(01):102-104+20.
    [237]谢里阳,林晨,平安.疲劳过程中强度退化与平均应力修正[J].机械强度, 1996(03):66-69.
    [238]贡金鑫,王海超,赵国藩.结构疲劳累积损伤与极限承载能力可靠度[J].大连理工大学学报, 2002(06):714-718.
    [239] Oehlers D J. Deterioration in Strength of Stud Connectors in Composite Bridge Beams[J]. Journal of structural engineering New York, N.Y., 1989, 116(12):3417-3431.
    [240]段忠东,欧进萍.金属材料的非线性疲劳累积损伤模型及强度衰减分析[J].应用力学学报, 1998(03):82-85.
    [241]欧进萍,段忠东,肖仪清.海洋平台结构安全评定--理论、方法与应用[M], 2003:66-78.
    [242] Camo S. Probabilistic Strength Estimates and Reliability of Damaged Parallel Wire Cables[J]. Journal of Bridge Engineering, 2003, 8(5):297-311.
    [243]李桂青,李秋胜.工程结构时变可靠性理论及其应用[M].北京:科学出版社, 2001:33-35.
    [244]张俊芝.服役工程结构可靠性理论及其应用[M].北京:中国水利水电出版社, 2006:23-55.
    [245]贡金鑫.钢筋混凝土结构基于可靠度的耐久性分析[D].大连:大连理工大学, 1999:32-39.
    [246]姚继涛,刘金华,吴增良.既有结构抗力的随机过程概率模型[J].西安建筑科技大学学报(自然科学版), 2008, 40(04):6-10.
    [247]王光远.论不确定性结构力学的发展[J].力学进展, 2002(02):205-211.
    [248] Ferhat A, Dan M F. Lifetime Performance Analysis of Existing Reinforced Concrete Bridges. Ii: Application[J]. Journal of Infrastructure Systems, 2005, 11:129-141.
    [249] Michael P E, Dan M F. Service-Life Prediction of Deteriorating Concrete Bridges[J]. Journal of Structural Engineering, 1998, 124:309-317.
    [250] Dey A, Mahadevan S. Reliability Estimation with Time-Variant Loads and Resistances[J]. Journal of structural engineering New York, N.Y., 2000, 126(5):612-620.
    [251] Stewart M G, Rosowsky D V. Time-Dependent Reliability of Deteriorating Reinforced Concrete Bridge Decks[J]. Structural Safety, 1998, 20(1):91-109.
    [252] Genz A. Numerical Computation of Rectangular Bivariate and Trivariate Normal and T Probabilities[J]. Statistics and Computing, 2004, 14(3):251-260.
    [253] Genz A, Bretz F. Comparison of Methods for the Computation ofMultivariate T Probabilities[J]. Journal of Computational and Graphical Statistics, 2002, 11(4):950-971.
    [254] Somerville G. The Design Life of Structures[M]: Routledge, 1992.
    [255]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社, 2003:73-77.
    [256] Daniels H E. The Maximum Size of a Closed Epidemic[J]. Advances in Applied Probability, 1974, 6(4):607-621.
    [257] Gollwitzer S, Rackwitz R. On the Reliability of Daniels Systems[J]. Structural Safety, 1990, 7(2-4):229-243.
    [258]武电坤.基于桥梁远程监测信息的剩余寿命预测模式研究[D].重庆:重庆交通大学, 2009:62-68.
    [259] Andrzej S Nowak M M S. Structural Reliability as Applied to Highway Bridges[J]. Progress in Structural Engineering and Materials, 2000, 2(2):218-224.
    [260]贡金鑫仲赵.工程结构可靠性基本理论的发展与应用(1)[J].建筑结构学报, 2002(04).
    [261]贡金鑫仲赵.工程结构可靠性基本理论的发展与应用(2)[J].建筑结构学报, 2002(05).
    [262]贡金鑫仲赵.工程结构可靠性基本理论的发展与应用(3)[J].建筑结构学报, 2002(06).
    [263]董聪,杨庆雄.冗余桁架结构系统可靠性分析理论与算法[J].计算力学学报, 1992, 9(04):394-398.
    [264]王建民,陈龙珠,徐格宁.结构失效模式识别中失效元漂移问题的分析[J].计算力学学报, 2003, 20(05):611-615.
    [265]严蔚敏.数据结构(C语言版)[M].北京:清华大学出版社, 2000:35-39.
    [266]何水清,王善.结构可靠性分析与设计[M].北京:国防工业出版社, 1993:62-69.
    [267]董聪.现代结构系统可靠性理论[D].西安:西北工业大学, 1993:33-38.
    [268] Ang a H S, Ma H F. On the Reliability of Structural Systems[C]. Trondheim, Norw: Elsevier Sci Publ Co (Dev in Civ Eng, 4), Amsterdam, Neth, 1981:295-314.
    [269]孙芳垂等译.工程规划与设计中的概率概念[M].北京:冶金工业出版社, 1991:112-123.
    [270]钢管混凝土拱桥设计规范编制组.钢管混凝土拱桥设计规范(校审稿)[S].北京: 2004.
    [271] Melchers R E, Frangopol D M. Probabilistic Modelling of Structural Degradation[J]. Reliability Engineering & System Safety, 2008, 93(3):363-363