激光选区熔化Ti6Al4V可控多孔结构制备及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可控多孔结构因其具有质量轻、高耐蚀、高熔点、高疲劳和高塑性等优点被广泛用于航空航天领域和生物医学领域。针对常规方法难以制备的Ti6Al4V可控多孔结构,本文采用激光选区熔化技术制备该可控多孔结构并对其成型机理进行研究。机理分析中建立了激光选区熔化Ti6Al4V可控多孔结构温度场模型,系统研究了Ti6Al4V可控多孔结构成型参数优化,着重研究了Ti6Al4V可控多孔结构作为功能材料的表面粗糙度计算模型和作为结构材料的承载能力计算模型。
     论文的主要内容及结果如下:
     1.建立激光选区熔化Ti6Al4V可控多孔结构温度场模型,考虑了等离子体的逆轫致辐射效应对温度场的影响,得到了等离子体作用下熔池吸收激光能量的表达式;分析了激光加热作用下粉末不同物相对激光吸收率的影响,提出了粉末随时间变化的动态吸收率公式;研究了熔池流动对温度的影响,修正了流体方程中的冯卡门解,使得该解适合金属液体计算;阐述了粉末升华对气—液—固界面迁移的影响,得到了气—液—固界面迁移公式;揭示了温度对粉末热物性的影响,获得了热物性参数与温度之间的对应关系。结果表明,所建立的温度场模型与实际情况基本吻合,满足一定实际要求。
     2.优化了激光选区熔化Ti6Al4V可控多孔结构的工艺参数。以田口实验为基础,建立成型参数与致密度之间的回归模型,通过Design-Expert软件得到最佳工艺参数。检测了采用最佳工艺参数成型零件的组织和性能。结果表明影响致密度的成型参数是线能量密度(激光功率/扫描速度),层厚,扫描策略和线间距,其中线间距、扫描策略与致密度呈反比,线能量与致密度呈正比;所有参数中层厚对致密度的影响最为显著。
     3.研究了激光选区熔化Ti6Al4V可控多孔结构支杆的表面粗糙度的影响因素。以单熔道形貌为基础,建立了激光选区熔化Ti6Al4V可控多孔结构支杆表面粗糙度的计算公式。以实际成型零件表面粗糙度为基准,修正了激光选区熔化Ti6Al4V可控多孔结构支杆表面粗糙度计算公式,分析了影响表面粗糙度的主要因素。阐述了提高激光选区熔化成型零件表面粗糙度的方法。研究结果表明,激光选区熔化加工中单熔道形貌近似圆形曲线;采用轮廓最小二乘中线法计算与实际情况最为接近,单熔道宽度和搭接宽度与Ra、Rz和Rsm呈正比;电化学抛光等后续处理手段可大大提高激光选区熔化成型零件的表面粗糙度。
     4.制备了正六面体和正八面体可控多孔结构。研究了正八面和正六面单元体及其组成的可控多孔结构的最大承载能力与形变位移的关系。建立了单元体及其组成的可控多孔结构承载能力和形变位移的计算简化模型,用该模型得到了单元体和由其组成的可控多孔结构断裂载荷和最大形变位移的解析公式并进行理论计算。通过压缩实验得到单元体及其组成的可控多孔结构的实际断裂载荷和实际形变位移。实验结果表明,Ti6Al4V单元体及其组成的可控多孔结构的实际断裂载荷和实际形变位移理论计算值与实验数值相吻合。本文所给出的断裂载荷和形变位移计算公式具有实际应用价值。
     5.研究表明,优化后的成型参数是:激光功率:80W,扫描速度:200mm/s,层厚:0.02mm,扫描策略:正交层错,线间距:0.06mm;成型零件的组织主要由针状马氏体、α相和β相组成。其中初生α相晶粒细小,尺寸为0.5-1.5μm。晶粒的生长方向沿热流密度方向和最接近<100>方向择优生长,显微硬度平均值为492.56HV0.2,最大拉伸强度是987MP,试样的加工方向对试样的拉伸强度有较大影响。成型零件的表面粗糙度是:Ra=7.54μm,Rz=52.26μm,Rsm=187.39μm。正八面单元体最大承载力是218.10N,最大形变位移是0.1570mm,由正八面单元体组成的可控多孔结构最大承载力是21990.7N。正六面单元体最大承载力是612.6N,最大形变位移是0.6895mm,由正六面单元体组织的可控多孔结构最大承载力是1789.9N,最大形变位移是0.3917mm。
Controllable porous structure, possessing merits of light weight, high corrosion resistance, high melting point, high fatigue strength and plasticity, etc., has been widely applied in the fields of aerospace and biomedicine. This article uses Selective Laser Melting (SLM) technology to form the Ti6A14V controlled porous structure which is difficult to form with the conventional method, and then studies its forming mechanism. The mechanism analysis in this paper, which builds the temperature field model of Ti6A14V controlled porous structure processed by SLM, systematic studies the forming parameters optimization of Ti6A14V controlled porous structure, mainly focuses on the surface roughness calculation model of the Ti6A14V controllable porous structure as a functional material, and the bearing capability calculation model of it as a structural material.
     The main content and the results of the paper are as follows:
     1. The experiment in this paper establishes the temperature field model of Ti6A14V controlled porous structure processed by SLM; obtains the expression of laser energy absorption by molten pool with consideration of the influence of the plasma inverse bremsstrahlung on temperature field; analyzes the influence of different phases of powder on the laser absorption rate with laser heating, and so as to put forwards the dynamic absorption rate equation that the powder changes with the time; adjusts the Von Carmen solution of liquid equation to fit the metal liquid calculation by researching the influence of the flow of molten pool on temperature; obtains the formula of migration of gas liquid-solid interface while expounding the influence of powder sublimation on the migration of gas-liquid-solid interface; moreover, obtains the corresponding relationship between the parameters of thermal properties and the temperature through revealing the influence of temperature on the powder thermal properties. To conclude, the temperature field model, close to actual situation, meets actual requirements.
     2. The technological parameters of SLM Ti6A14V controllable porous structure are optimized through Design-Expert software by building the regression model of forming parameters and density on the basis of Taguchi experiment. It proved, through tests of the microstructure and function of parts manufactured with the optimum technological parameters, that the forming parameters affecting the density are linear energy density ((laser power/scanning speed), thickness, scanning strategy and hatching space, in which the hatching space and scanning strategy are inversely proportional to the density; while the linear energy density is direct proportional to the density; moreover, the thickness has the most significant effect on the density among all these parameters.
     3. This paper also studies the influencing factors of surface roughness of SLM Ti6A14V controllable porous structure strut; establishes the calculating formula of it on the basis of single track; then revises this formula with the surface roughness of actual forming parts as criterion so as to analyzes the main factors which affects the strut's roughness; expounds the methods to improve the strut's surface roughness. And the results show that the morphology of single track in SLM processing approximates circular curve; and the calculated results obtained through least square midline method is closest to the actual situation; the width and lap width of single track are direct proportional to Ra、Rz and Rsm; and the post-processing methods such as electrochemical polishing can greatly improve the surface roughness of the parts formed by SLM.
     4. The controllable porous structures of hexahedron and octahedron are manufactured. The relationships between maximum bearing capacity and deformation displacement of hexahedral units, octahedral units and controllable porous structures are researched; the analytic formulas of bearing capacity and deformation displacement of these structures are acquired with the building of their simplified models, with which realizes theoretical calculation of Ti6A14V materials. The actual fracturing load and deformation displacement of units and controllable porous structures are obtained via compression test, which are proved that are close to theoretical ones. Therefore it is safe to draw the conclusion that the fracturing load and deformation displacement formula given in this paper has practical application value.
     5. The studies show that the optimum parameters are:laser power-80W; scanning speed200mm/s; the thickness-0.02mm; scanning strategy-X-Y inter-layer stagger scanning; and hatching space-0.08mm. The microstructure of formed part is mainly composed of acicular martensite, a phase and β phase, in which the grains of primary a phase are fine with the size of0.5-1.5μm. The preferred orientation of primary phase a is along the maximum heat flux direction and the direction closest to<100>. The microhardness is492.56HV0.2; and maximum tensile strength, which is significantly affected by the processing direction, is987MP. The surface roughness of the formed parts are Ra=7.54μm;Rz=52.26μm;RSm=187.39μm. As for octahedral unit, its maximum bearing capacity is218.ION and maximum deformation displacement is0.1570mm; maximum bearing capacity of controllable porous structure composed by it is21990.7N. However, as for hexahedral unit, its maximum bearing capacity is612.6N and maximum of deformation displacement0.6895mm; and the maximum bearing capacity and maximum deformation displacement of controllable porous structure composed by it are1789.9N and0.3917mm respectively.
引文
[1]王先逵.制造技术的历史回顾与面临的机遇和挑战[J].机械工程报,2002(8):1-8
    [2]Habijan T., Haberland C., Meier H. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting[J]. Materials Science&Engineering C-Materials for Biological Applications,2013,33(1):419-26
    [3]Xin X., Xiang N., Chen J. In vitro biocompatibility of Co-Cr alloy fabricated by selective laser melting or traditional casting techniques [J]. Materials Letters,2012,88:101-3
    [4]姜树祥.快速成型技术及材料在新产品开发中的应用[J].材料开发与应用,2010(12):86-7
    [5]Flege C., Vogt F., Hoeges S. Development and characterization of a coronary polylactic acid stent prototype generated by selective laser melting [J]. Journal if Materials Science-Materials in Medicine,2013,24(1):241-55
    [6]Dadbakhsh S., Hao L. Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites [J]. Journal of Alloys and Compounds,2012,541:328-34
    [7]韩霞,杨恩源编著.快速成型技术与应用[M].北京:机械工业出版社,2012
    [8]闵杰,李佳师.3D打印带动变革,国内应用尚未起步[N].中国电子报,2012,07,24(1)
    [9]Sun J., YangY., Wang D. Mechanical properties of a Ti6A14V porous structure produced by selective laser melting[J]. Materials&Design,2013,49:545-52
    [10]Wang S., Song C., Yang Y. Rapid manufacturing technology of digital dental restorations and its progress[J]. Materials Research and Application,2012,6(2):91-5
    [11]李卓,高立洪,叶进.低压管道输水波涌多孔灌溉软管设计与模拟[J].农机化研究2013,04:85-88
    [12]刘培生.多孔材料引论[M].北京,清华大学出版社,2004:1-2.
    [13]Shapovalov V., Boyko L. Gasar-a new class of porous Materials [J]. Advanced Engineering Materials,2004,6(6):407-410.
    [14]周亚军,杨汉嵩,刘建秀.粉末压片制样-波长色散x射线荧光光谱法测定进口铜矿石中的氟[J].岩矿测试,2013,02:254-257
    [15]刘中梅,严彪.多孔铝材料的研究进展及其应用[J].上海有色金属,2012,04(33):188-191
    [16]刘小楠,杨世源,温霞等.冲击波作用下Ti-6A1-4V合金层裂及相变研究[J].稀有金属,2010,03(34):325-30
    [17]宋天虎.我国快速成形制造技术的发展与展望[J].中国机械工程,2000,11(10):1081-3
    [18]陈显松.快速成型制造技术及其系统发展研究[J].现代机械,2005,(2):65-7
    [19]Liu F., Lin X., Yang G., et al. Microstructure and residual stress of laser rapid formed Inconel718nickel-base superalloy[J]. Optics&Laser Technology,2011,43(1):208-13
    [20]Sun J., YangY., Wang D. Mechanical Properties of Ti-6A1-4V Octahedral Porous Material Unit Formed by Selective Laser[J]. Melting Advances in Mechanical Engineering,2012:1-11
    [21]Freitag D., Wohlers T., Philippi T. Rapid Prototyping:State of the Art[DB/OL].http://mtiac.alion science. com/technical_files/Rapid. doc,2005-10-10
    [22]GBT14896.7-2004[EB/OL]. http://www.doc88.com/p-99525403652.html,2004-06-09
    [23]熊光愣.并行工程的理论与实践[M].北京:清华大学出版社,2001
    [24]Wilkes J., Hagedorn Y.-C, Meiners W., Additive manufacturing of ZrO2-Al2O3ceramic components by selective laser melting [J]. Rapid Prototyping Journal,2013,19(1):51-7
    [25]Knowles C.R., Becker T.H., Tait R.B. Residual stress measurements and structural integrity implications for selective laser melted ti-6al-4v[J].South African Journal of Industrial Engineering,2012,23(3):119-29
    [26]ASTM F2792-12a[EB/OL]. http://www.astm.org/Standards/F2792.htm,2013-1-10
    [27]ASTM F2915-12[EB/OL]. http://www.astm.org/Standards/F2915.htm,2013-1-10
    [28]ASTM F2921-11[EB/OL]. http://www.astm.org/Standards/F2921.htm,2013-1-10
    [29]ASTM F2924-12a[EB/OL]. http://www.astm.org/Standards/F2924.htm,2013-1-10
    [30]Doubenskaia M., Pavlov M., Grigoriev S. Comprehensive Optical Monitoring of Selective Laser Melting [J]. Journal of Laser Micro Nanoengineering,2012,7(3):236-43
    [31]Qian B., Shi Y., Wei Q. The helix scan strategy applied to the selective laser melting[J]. International Journal of Advanced Manufacturing Technology,2012,63(5-8):631-40
    [32]Yan C., Hao L., Hussein A. Evaluations of cellular lattice structures manufactured using selective laser melting [J]. International Journal of Machine Tools&Manufactured12,62:32-8
    [33]Van C.K., Bleys P., Craeghs T. A W-band waveguide fabricated using selective laser melting[J]. Microwave and Optical Technology Letters,2012,54(11):2572-5
    [34]Bormann T., Schumacher R., Mueller B. Controlling Mechanical Properties of NiTi Scaffolds built by Selective Laser Melting [J]. Biomedical Engineering-Biomedizinische Technik,2012,57:2012-4356
    [35]Demol J., Lenaerts B., Leuridan S. Bone ingrowth and biological fixation of selective laser melted porous scaffolds for the reconstruction of severe bone defects [J]. Journal of Tissue Engineering and Regenerative Medicine,2012,6:401-401
    [36]刘培生,马晓明.多孔材料检测方法[M].北京,冶金工业出版社,2006:13-122.
    [37]曹立宏,马颖.多孔泡沫金属材料的性能及其应用[J].甘肃科技,2006,22(6):117-121.
    [38]许庆彦,熊守美.多孔金属的制备工艺方法综述[J].铸造,2005,54(9):840-843.
    [39]Merkt S., Hinke C., Schleifenbaum H. Geometric Complexity Analysis in an Integrative Technology Evaluation Model (Item) for Selective Laser Melting (Slm)[J]. South African Journal of Industrial Engineering,2012,2(2):97-105
    [40]Yang Y., Su X., Wang D., et al. Rapid fabrication of metallic mechanism joints by selective laser melting[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2011,225(12):2249-56
    [41]Li G., Shen Q., Gao J. Comparative adaptation of crowns of selective laser melting and wax-lost-casting method[J]. Zhonghua kouqiang yixue zazhi=Chinese Journal of Stomatology,2012,47(7):427-30
    [42]Selective Laser Melting (SLM)[EB/OL]. http://www.custompartnet.com/wu/selective-laser-melting,2011-1-10
    [43]Su X., Yang Y., Liu J. Theoretical Study on Overlapping Mechanism in SLM Based on Interlay er-staggered Scan Strategy [J]. Applied Mechanics and Materials,2011,44-47:1482-6
    [44]Van Bael S., Chai Y.C., Truscello S. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6A14V bone scaffolds[J]. Acta Bio Materialia,2012,8(7):2824-34
    [45]Liu Q., Wu X., Chun-Ge. Microstructure and properties of A12CrFeCoCuTiNix high-entropy alloys prepared by laser cladding [J]. JOURNAL OF ALLOYS AND COMPOUNDS2013,553:216-20
    [46]Wang Q., Zhang Y., Bai S. Microstructures mechanical properties and corrosion resistance of Hastelloy C22coating produced by laser cladding [J]. JOURNAL OF ALLOYS AND COMPOUNDS2013,553:253-8
    [47]黄凤晓.激光熔覆和熔覆成形镍基合金的组织与性能研究[D].长春:吉林大学,2011
    [48]Charest K., Mak-Jurkauskas M. L., Cinicola D. et al. Fused deposition modeling provides solution for magnetic resonance imaging of solid dosage form by advancing design quickly from prototype to final product [J]. Journal of laboratory automation,2012,18(1):63-8
    [49]Fused Deposition Modeling44(FDM)[EB/OL]. http://www.custompartnet.com/wu/fused-deposition-modeling,2011-1-10
    [50]Boschetto A., Giordano V., Veniali F. Modelling micro geometrical profiles in fused deposition process [J]. International Journal of Advanced Manufacturing Technology,2012,1(9-12):945-56
    [51]Shi S., Dong W., Peng X. Evaporation and removal mechanism of phosphorus from the surface of silicon melt during electron beam melting [J]. Applied Surface Science,2013,266:344-9
    [52]颜永年,齐海波,林峰等.三维金属零件的电子束选区熔化成形[J].机械工程学报,2007,43(6):87-92
    [53]姜明,齐海波,林峰等.电子束选区熔化技术的控制系统设计[J].机械设计与制造,2008(1):189-91
    [54]Hiemenz J. Rapid prototypes move to metal components [DB/OL]. http:/www.eetimes.com/design/industrial-control/4013703/Rapid-prototypes-move-to-metal-co mponents,2011-1-10
    [55]Xin X., Xiang N., Chen J. Corrosion characteristics of a selective laser melted Co-Cr dental alloy under physiological conditions [J]. Journal of Materials Science,2012,47(12):4813-20
    [56]Gu D., Hagedorn Y.-C., Meiners W. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia,2012,60(9):3849-60
    [57]Li R., Liu J., Shi Y. Balling behavior of stainless steel and nickel powder during selective laser melting process [J]. International Journal of Advanced Manufacturing Technology,2012,59(9-12):1025-35
    [58]Wang Z., Guan K., Gao M. The microstructure and mechanical properties of deposited-IN718by selective laser melting [J]. Journal of Alloys and Compounds,2012,513:518-23
    [59]Xiang N., Xin X., Chen J. Metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting[J]. Journal of Dentistry,2012,40(6):453-7
    [60]Sasan D., Liang H. In Situ Formation of Particle Reinforced Al Matrix Composite by Selective Laser Melting of Al/Fe2O3Powder Mixture[J]. Advanced Engineering Materials,2012,14(1-2):45-8
    [61]Sun J., Yang Y., Wang D. Parametric optimization of selective laser melting for forming Ti6A14V samples by Taguchi method [J]. Optics&Laser Technology,2013(49):118-124
    [62]Vrancken B., Thijs L., Kruth J.P., et al. Humbeeck Heat treatment of Ti6Al4V produced by Selective Laser Melting:Microstructure and mechanical properties[J]. Journal of Alloys and Compounds,2012(541):177-85
    [63]Leuders S., Thoe M., Riemer A. On the mechanical behaviour of titanium alloy TiA16V4manufactured by selective laser melting:Fatigue resistance and crack growth performance [J]. International Journal of Fatigue,2013(48):300-7
    [64]Song B., Dong S., Liao H. Process parameter selection for selective laser melting of Ti6A14V based on temperature distribution simulation and experimental sintering [J]. Int J Adv Manuf Technol,2012(61):967-74
    [65]Van Bael S., Kerckhofs G., Moesen M., et al. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6A14V porous structures [J]. Materials Science and Engineering A,2011(528):7423-31
    [66]Markus L., Simon H., Wilhelm M. Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique[J] JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A,2011,97A(4):466-71
    [67]Xiao D., Yang Y., Su X., et al. Topology optimization of microstructure and selective laser melting fabrication for metallic biomaterial scaffolds [J]. Trans. Nonferrous Metal. Society.China,2012(22):2554-61
    [68]Yadroitsev I., Thivillon L., Bertrand Ph., et al. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder [J]. Applied surface science,2007,254(4):980-3
    [69]McKowna S., Shena Y., Brookes W.K., et al. The quasi-static and blast loading response of lattice structures [J]. International Journal of Impact Engineering,2008,35(8):795-810
    [70]Yasa E., Kruth J.-P., Deckers J. Manufacturing by combining Selective Laser Melting and Selective Laser Erosion/laser re-melting CIRP Annals [J]. Manufacturing Technology,2011(60):263-6
    [71]Marcu T., Todea M., Gligor I., et al. Effect of surface conditioning on the flowability of Ti6A17Nb powder for selective laser melting applications [J]. Applied Surface Science2012(258):3276-82
    [72]吴伟辉.激光选区熔化快速成型系统设计及工艺研究[D].广州:华南理工大学,2007
    [73]吴伟辉,杨永强.激光选区熔化快速成形系统的关键技术[J].机械工程学报,2007,43(8):175-180
    [74]查奉良.激光选区熔化成形控制系统软件关键技术研究[D].武汉:华中科技大学,2011
    [75]王志阳.激光选区熔化制备多孔316L不锈钢和多孔钛的研究[D].南京:南京航空航天大学,2010
    [76]王建宏.Ti6Al4V激光选区熔化及其与Ti_C_Al系燃烧合成焊接基础研究[D].太原:中北大学,2012
    [77]杨永强,江泽文,冯涛.一种金属零件激光选区熔化快速成型方法及其装置[P].中国:200410052075,2005年4月6日
    [78]杨永强,江泽文,冯涛,一种金属零件激光选区熔化快速成型装置[P].中国:200420094739.5,2005年12月7日
    [79]EOS M280[DB/OL].http://www.eos.info/59d0bfc2b9b65d03/systems-and-equipment,2012-1-10
    [80]Concept Laser [DB/OL]. http://www.concept-laser.de/branchen/medical/maschinen. html,2012-1-10
    [81]Realizer SLM50[DB/OL].http://www.realizer.com/startseite/slm-maschinen/slm-50,2012-1-10
    [82]Realizer SLM100[DB/OL].http://www.realizer.com/startseite/slm-maschinen/slm-100,2012-1-10
    [83]Realizer SLM250[DB/OL].http://www.realizer.com/startseite/slm-maschinen/slm-250,2012-1-10
    [84]SLM125HL [DB/OL]. http://www.slm-solutions.com/en/products/slm-equipment/slm-125-hl/,2012-1-10
    [85]SLM250HL [DB/OL].http://www.slm-solutions.com/en/products/slm-equipment/slm-250-hl/,2012-1-10
    [86]SLM280[DB/OL].http://www.slm-solutions.com/en/products/slm-equipment/slm280-hl,2012-1-10
    [87]SLM500HL [DB/OL].http://www.slm-solutions.com/en/products/slm-equipment/slm-500-hl/,2012-1-10
    [88]Concept Laser [DB/OL]. http://www.concept-laser.de/branchen/medical.html,2012-1-10
    [89]EOS [DB/OL]. http://www.eos.info/13aed39265554dfd/aerospace,2012-1-10
    [90]Yang Y., He X., Wang D., et al. Selective Laser Melting for Rapid Prototyping of Medical Devices[R],4th Pacific International Conference on Applications of Lasers and Optics,Picalo2010, March23-25,2010,Wuhan, China
    [91]张强.金属激光选区熔化系统设计及成型工艺研究[D].北京:北京工业大学,2012
    [92]Wang D., Yang Y., Su X. Hongwei:Rapid manufacturing of customized metal parts based on CT reverse engineering by SLM, Materials Science and Technology, Materials Science and Technology,2011,19(1):41-6
    [93]Figliuzzi M., Mangano F., Mangano C. A novel root analogue dental implant using CT scan and CAD/CAM:selective laser melting technology[J]. International Journal of Oral and Maxillofacial Surgery,2012,41(7):858-62
    [94]Kruth J., Decker J., Yasa E. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture,2012,26(B6):980-91
    [95]Khan., Mushtaq., Dickens., et al. Selective laser melting (SLM) of gold (Au)[J]. RAPID PROTOTYPING JOURNAL,2012,1(18):81-94
    [96]Ramanan N., Korpela S A. Fluid dynamics of a stationary weld pool[J]. Metal. Trans. A,1990,21A(6):45-54.
    [97]苑中显,陈永昌.工程传热学[M].北京:科学出版社.2012
    [98]皮茨D.,西索姆L.著.传热学[M].葛新石等译.北京:科学出版社,2002
    [99]张端明,李智华,种志成.脉冲激光沉积动力学原理[M].北京:科学出版社,2011
    [100]Singh R.K., Narayan J. Pulsed-laser evaporation technique for deposition of thin films; Physics and theoretical model[J]. Phys Rev B,1999(06):138-9,292-8
    [101]Zeleovich Y.B., Raizer Y.P. Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena[M]. New York:Academic Press,1971.
    [102]Lide D.R. CRC Handbook of Chemistry and Physics[M]. Cleveland:CRC Press,1996
    [103]Ready J.F. Effects of High-Power laser Radiation[M]. New York:Academic Press,1971
    [104]Garrelie F., Aubreton J., Catherinot A. Monte Carlo simulation of the laser-induced plasma plume expansion under vacuum:Comparison with experiments[J]. J Appl Phys,1998,83:5075-82.
    [105]Venkatesan T., Ogale S.B., Chang C.C., et al. Pulsed laser etching of Tc superconducting films[J]. Appl Phys Lett,1987,51(14):1112-14
    [106]Harrach R.J. Estimates on the ignition of high-explosives by laser pulses[J]. J Appl Phys,1976,47(3):2473-82.
    [107]Hassan A.F., El-Nicklawey M.M., El-Adawi M.K., et al. A general problem of pulse heating of a slab[J]. Optics and Laser Technology,1993,25(3):155-61
    [108]张甲,石世宏,王永康等.离焦量对环形光光内送粉单熔道熔覆质量的影响[J].苏州大学学报(工科版),2011,1(31):39-42.
    [109]Mumtaz K.A., Erasenthiran P., Hopkinson N. High density selective laser melting of Waspaloy[J], Journal of materials processing technology,2008,(195):77-87
    [110]Rehme O., Emmelmann C. Reproducibility for properties of selective laser melting [R]. Proceedings of the Third International WLT-Conference on Lasers in Manufacturing,2005-6
    [111]Liu J., Yang Y., Lu J., et al. An Object-Oriented Class Library for Scanning Path Generation in SLS/SLM Process[J]. Applied Mechanics and Materials,2011,44-47:3309-13
    [112]付立定,史玉升,章文献等.316L不锈钢粉末选择性激光熔化快速成形的工艺研究[J].应用激光,2008,28(2):108-11
    [113]Gu D.D., Wang Z.Y., Shen Y.F., et al. In-situ TiC particle reinforced Ti-Al matrix composites:powder preparation by mechanical alloying and selective laser melting behavior [J]. Applied Surface Science,2009,255(22):9230-40
    [114]Deng Q.L., Xie A.N., Ge Z.J., et al. Experimental researches on rapid forming full compacted metal parts by selective laser melting [J]. Materials Science Forum,2007,523:428-31
    [115]Sun J., Yang Y., Wang D. Mathematical Model of Ti-6A1-4V Single Track Formed by Selective Laser Melting[J]. Advanced Materials Research,2013,602-604:2074-2077
    [116]Vilaro T., Colinb C., Bartout J.D. Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy[J]. Materials Science and Engineering:A,2012,534:446-51
    [117]Chlebus E., Kuznicka B., Kurzynowski T., et al. Microstructure and mechanical behaviour of Ti-6A1-7Nb alloy produced by selective laser melting[J]. Materials Characterization,2011,62:488-95
    [118]Thijs L., Verhaeghe F., Craeghs T., et al. A study of the microstructural evolution during selective laser melting of Ti-6A1-4V[J]. Acta Materialia2010,58(9):3303-12
    [119]Gu D., Meng G., Li C. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement[J]. Scripta Materialia,2012,67(2):185-188
    [120]Christian J.W. Theory of Transformations in Metals and Alloys[M]. Pergamon, Oxford,2002.
    [121]Flemings F.C. Solidification Processing[M]. New York:M cgraw-Hill,1974.
    [122]Nishiyama Z. Matensitic Transformation, Academic Press[M]. New York,1978
    [123]陈光霞,王泽敏,关凯等.工艺参数对SLM激光快速成型件表面粗糙度的影响[J].工艺与检测,2009,(12):86-89.
    [124]彭昌吻,曾晓雁,王泽敏.基于选择性激光熔化技术的不锈钢零件宏观质量研究[D].华中科技大学,2009,5:34-40.
    [125]GB/T3505-2000,表面结构、轮廓法、表面结构的术语、定义及参数[S].
    [126]Mumtaz K., Hopkinson N. Top surface and side roughness of Inconel625parts processed using selective laser melting[J]. Rapid Prototyping Journal,2009,15(2):96-103.
    [127]Brinksmeier E., Levy G., Meyer D., Spierings A.B. Surface integrity of selective-laser-melted components[J]. Manufacturing Technology,2010,(59):601-606.
    [128]Yasa E., Kruth J. Application of Laser Re-melting on SLM parts[J]. Advances in Production Engineering&Management,2011,6(4):259-270.
    [129]Kruth J.P., Yasa E., Deckers J. Roughness Improvement in Selective Laser Melting[J]. Innovative Developments in Virtual and Physical Prototyping,2011,11:561-5.
    [130]Wang, F. Mechanical property study on rapid additive layer manufacture Hastelloy (R) X alloy by selective laser melting technology [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY,2012,58(5-8):545-51
    [131]Karachalios T., Tsatsaronis C., Efraimis G. The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty:a10-year, prospective, randomized study[J]. The Journal of Arthroplasty,2004,19(4):469-75
    [132]Barbas A., Bonnet A.-s., Lipinski P. Development and mechanical characterization of porous titanium bone substitutes [J]. Journal of the Mechanical Behavior of Biomedical Materials,2012,9(4):34-44
    [133]Niu W., Bai C., Qiu G., Wang Q. Processing and properties of porous titanium using space holder technique[J]. Materials Science and Engineering:A,2009,506(1-2):148-51
    [134]Yook S.-W., Kim H.-E., Koh Y.-H. Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting [J] Materials Letters,2009,63(17):1502-4
    [135]Li J.P., De Wijn J.R., Van Blitterswijk C.A. Ti6A14V scaffold directly fabricating by rapid prototyping:preparation and in vitro experiment J]. Biomaterials,2006,27(8):1223-35
    [136]Parthasarathy J., Starly B., Raman S., Christensen A. Mechanical evaluation of porous titanium (Ti6A14V) structures with electron beam melting (EBM)[J]. Journal of the Mechanical Behavior of Biomedical Materials,2010,3(3):249-59
    [137]Yadroitsev I., shishkovsky I., Bertrand P. Manufacturing of fine-structured3D Porous filter elements by selective laser melting [J]. Applied Surface Science.2009,255:5523-7.
    [138]Xue W., Krishna B.V., Bandyopadhyay A. Processing and biocompatibility evaluation of laser processed porous titanium[J]. Acta Biomaterialia,2007,3(6):1007-8
    [139]Chen Y.J., Feng B., Zhu Y.P. Fabrication of porous titanium implants with biomechanical compatibility [J]. Materials Letters,2009,63(30):2659-61
    [140]Wang D., Yang Y., Su X., et al. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM[J]. Int J Adv Manuf Technol,2012,58(9-12):1189-99
    [141]Wang P. Powder Metallurgy Science[M].3st ed. Beijing:Metallurgical Industry Press,2010:148-57
    [142]Leyens C., Peters M. Titanium and Titanium Alloys[M]. Beijing:Chemical industry press,2005:19-39,140-5,155-7
    [143]Ashby M.F., Evans A.G., Fleck N.A. et al Metal Foams:A Design Guide [M]. Worburn:Butterworth·Heinemann,2000
    [144]Gibson L.J., Ashby M.F. Cellular Solids[M]. Translated by Zuo X. and Zhou Y. Beijing:Chemical Industry Press,2005
    [145]Li H., Zhang Y. Internal Force Analysis of Space Frame Structure with Reinforced Concrete Friction Energy Dissipation Braces [J]. Journal of Southwest Forestry College,2000,20(4):237-42