工程机械自动变速理论与控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于工程机械作业环境恶劣、作业工况复杂,驾驶员在操纵过程中需要频繁的换挡以满足车辆对动力的要求,这大大提高了驾驶员的劳动强度。由于驾驶员除了换挡操作还需要操纵工作装置,高强度的换挡操纵导致了作业效率的降低。采用自动变速技术是解决这一问题的途径。
     本文结合实际项目开发,以目前装载机使用的液力变矩器串接机械变速箱的传动方案为基础,在前人研究成果基础上进行理论和工程实践研究,研制ZLM50装载机自动变速控制系统,包括控制系统硬件和软件设计、换挡控制理论的研究。全文共七章,以下做简单介绍:
     第一章绪论。简要介绍了车辆自动变速技术的发展历程和工程机械应用自动变速技术的现状,介绍了自动变速技术的原理和系统组成,分析了工程机械实现自动变速的意义,进而确定了本文的研究内容。
     第二章建立“人—车—环境”仿真模型。首先就装载机传动系各组成部分进行了系统的分析,建立了包括发动机、变矩器、变速箱、工作阻力等传动系统各部分的数学模型。
     第三章通过分析装载机操作特点,建立了装载机驾驶员的模型。在分析装载机作业过程和作业环境特点基础上,建立了作业环境模型。作业环境模型用于驱动整体模型的仿真。以上三个模型构成了完整的“人—车—环境”仿真模型。在分析汽车燃油经济性指标基础上,结合现有装载机经济性评价方法,提出了多工况燃油消耗率和组合工况完成时间作为新的经济性和动力性指标。
     第四章换挡品质研究。在自动变速系统开发过程中对提高换挡品质的方法进行了研究,提出了优化的动力换挡变速箱换挡过程离合器油压控制曲线,并且通过平稳结合阀的试验进行了验证。良好的换挡品质不仅可以提高车辆传动部件的使用寿命,而且通过改善驾驶员操纵的舒适性可以更好的发挥自动变速技术的性能。
     第五章在分析国内外自动变速技术的研究和使用现状基础上制定了自动变速控制系统的总体设计方案,拟定了自动变速控制系统采用的换挡策略。
     第六章为控制系统硬件和软件设计以及系统的试验。遵循国际标准,以功能性、安全性和可靠性为目标,完成了以变速器换挡控制单元(TCU)的设计。设计了基于实时操作系统的控制软件架构,完成了基本软件模块的设计和调试。在自行设计和制作的模拟试验平台上对自动变速控制系统进行了基本功能试验,结果表明,TCU硬件电路和软件工作正常,所开发自动换挡控制系统已达到预计的设计目标。
     第七章为全文的总结,阐述了论文主要研究工作的结论并对后续的研究工作作了展望。
The working condition of construction machineries is always bad, and the driver must shift the gear frequently. The shift operation makes the driver tired and reduces the working efficiency. The automatic transmission technology is a way to promote the working efficiency of construction machineries.
     Refers to the achievements the predecessors have attained, the purpose of this Ph.D dissertation is to study the theory and engineering technology of automatic transmission, and implement the automatic control of the hydrodynamic transmission of ZLM50 wheel loader, including the design of hardware and software, the control technique and the simulation technique. The dissertation includes seven chapters:
     In chapter one, the history of automatic transmission and its application on construction machineries are introduced. The general structure and function of automatic transmission are illustrated. And the aim of its application on construction machineries is analyzed in detail.
     In chapter two, the driver-loader-environment model is established. The powertrain system of wheel loader and the parts' characteristics are analyzed. The model of diesel, torque convertor, the gearbox model and environment resistance are established.
     In chapter three, Base on the analysis of wheel loader's operation characteristics, the driver model is established. Base on the analysis of wheel loader's working conditions, the environment model is established. The driver-loader-environment model is the foundation of the shift strategy test, fuel economic estimate.the fuel consumption of Multi-operating-mode-driving-cycle is defined as a new index of fuel economic, and the time consumption of Multi-operating-mode-driving-cycle is defined as a new index of working efficiency and power characteristics.
     In chapter four, the reason of shifting impact is analyzed. For improving the shifting quality, an optimized pressure curve of wet clutch is established. The curve has been validated by test.
     In chapter five, the scheme of the control system of automatic transmission is established, and the shifting strategy is also established.
     In chapter six, the hardware of the TCU is developed and tested. The reliability and safety is considered during the whole design process of TCU. The software structure of the TCU is designed based on Real-Time-Operating-system, and coding of basic software module is finished. The function test of whole automatic transmission control system is carried out on test bed. The result of experiment shows the design of the control system is successful.
     Chapter seven is the summary of the dissertation, the main research achievements are showed, the problems requiring further studies are discussed.
引文
[1] 内部资料.世界变速器先进技术跟踪报告.同济大学机械系自动变速器课题组, 2000.8
    [2] 葛安林.车辆自动变速理论与设计.机械工业出版社,1993.5
    [3] 朱经昌,魏宸官,郑慕侨.车辆液力传动(上、下册).北京:国防工业出版社,1982
    [4] 周大森.汽车自动变速器原理与维修.国防工业出版社,1998.1
    [5] 张泰岭.汽车自动变速器原理与检修.广东科技出版社,1999.8
    [6] 诸文农等.轮式装载机设计.中国建筑工业出版社,1982.11
    [7] 何正忠.装载机.冶金工业出版社,1999.1
    [8] 张光裕,许纯新.工程机械底盘设计.机械工业出版社,1988.11
    [9] S.D.Haddad(美),N.Watson(英),李春泉等译.柴油机原理及运用性能.人民交通出版社,1991.1
    [10] 邱承宗.工程机械用内燃机.电力工业出版社,1981.12
    [11] 罗邦杰.工程机械液力传动.机械工业出版社,1991.10
    [12] 许维达.柴油机动力装置匹配.机械工业出版社,2000.10 -
    [13] B.H.彼得诺夫等(苏).自适应控制系统的构造与设计原理.国防工业出版社,1982.11
    [14] 佟绍成.非线性系统的自适应模糊控制.科学出版社,2006.1
    [15] 王立新.自适应模糊系统与控制.国防工业出版社,1995.10
    [16] Jean Labrosse,邵贝贝译.μCOS-Ⅱ源码公开的实时嵌入式操作系统.中国电力出版社,2001
    [17] 卢新田.履带式推土机自动变速控制技术的研究:[博士学位论文].吉林:吉林工业大学,1999.10
    [18] 张勇.车辆自动变速系统自适应模糊控制研究:[博士学位论文].吉林:吉林工业大学,2000.4
    [19] 王康.自动变速器电液控制系统研究与试验:[博士学位论文].上海:同济大学,2000.7
    [20] 廖承林.车辆动力传动一体化控制系统的研究与开发:[博士学位论文].北京:北京理工大学,2001.6
    [21] 王学峰.工程机械液力机械传动变速系统智能控制研究:[博士学位论文].吉林:吉林大学,2002.3
    [22] 梁树英.国外轮式装载机新产品特点分析.工程机械,2001(4)
    [23] 黄建兵.国内装载机动力的现状与发展趋势.工程机械,2001(5)
    [24] 高梦熊.地下装载机的最新控制系统.微机应用与智能化,2002(4)
    [25] 周松波.工程机械的新结构与新技术.建筑机械,2002(3)
    [26] 宋占伟等.装载机电子控制技术的发展及应用.工程机械,2000(10)
    [27] 黄宗益.工程机械机电一体化、机器人化.中国机械工程,1996(7)
    [28] 赵丁选等.工程车辆液力机械传动系统的动力性分析.中国机械工程,2001(8)
    [29] 王国彪等.轮式装载机发动机功率计算方法的合理分析.建筑机械,1998(1)
    [30] 孔庆华等.牵引车液力自动变速器的研究与设计.东北林业大学学报,2004 Vol 32(1)
    [31] 马鹏飞等.装载机的计算机模拟模型的建立.机械科学与技术,1996.7 Vol 15(4)
    [32] 田力威等.轮式装载机模糊换档策略~*.中国公路学报,1999 Vol 12(1)
    [33] 王卓等.工程车辆自动变速器换挡的神经网络控制系统.西安交通大学学报,2002 Vol 36(3)
    [34] 赵丁选等.改善工程车辆换挡品质的变结构模糊控制系统研究.农业机械学报,2003,Vol 34(1)
    [35] 何忠波等.自动变速车辆挡位决策方法综述.车辆与动力技术,2002(2)
    [36] 龚捷.工程车辆自动变速器换挡规律研究及自动控制仿真.西安交通大学学报,2001(9)
    [37] 王学峰等.工程车辆人工神经网络自动变速控制仿真研究.中国公路学报,2001 Vol 14(3)
    [38] 陈宁等.工程车辆自动变速挡位决策的遗传径向基神经网络方法.吉林大学学报,2005 Vol 35(3)
    [39] 马彪等.车辆综合传动换档离合器结合过程动态特性研究.中国机械工程,2000(6)
    [40] 关景泰.装载机变速箱电操纵动力换档控制模型及试验分析.建筑机械,1995(12)
    [41] Peter Koepf.车辆传动系统在改善轿车驾驶舒适性方面的创新.传动技术,2003 Vol 17(4)
    [42] 王康等.装载机变速器的换挡操纵.工程机械,2000(2)
    [43] 刘景安译.轮式装载机的自动换挡装置.美国专利No4800660
    [44] 张耀宏译.轮式装载机的电子控制自动变速装置.川崎重工技报,1990(10)
    [45] 技术资料.半自动和全自动换挡控制器系统.ZF帕骚有限公司
    [46] 刘溧.ZL50装载机自动变速电控系统的研制.建筑机械,2002(3)
    [47] 刘钊等.变速箱半自动换挡电子控制系统开发.筑路机械与施工机械化,2003(1)
    [48] 杜晓明.ZL50型装载机自动变速电控系统的试验研究.工程机械,2002(10)
    [49] 于秀敏等.装载机铲斗自动复位及动臂限位装置~*.农业机械学报,1997.6 Vol 28(2)
    [50] 池建伟.新型动力换挡变速箱电液换挡控制系统.工程机械与维修,2000(12)
    [51] 杨海波.装载机行驶电气控制系统.工程机械,1998(1)
    [52] 隆志力等.基于CANopen协议的装载机控制系统数据通讯.建筑机械化,2004(6)
    [53] 项婴.装载机整机电气系统的设计.工程机械,1994(4)
    [54] Mathas F Brejcha. Automatic transmissions and transaxles, Third edition. Regnts Prentics Hall, 1993
    [55] Terence Rybak, Mark Steffka. Automotive Electromagnetic Compatibility (EMC), Kluwer Academic Publishers, 2004
    [56] Quan Zheng, et al. Transmission shift controller design based on a dynamic model of transmission response, Control Engineering Practice 7 (1999)
    [57] Bek, M. Runge,W. ZF 5-Speed Automatic Transmission Features and Electronic Control System. ZF Friedrichshafen AG (2000)
    [58] A. Haj-Fraj~*, E Pfei.er. Optimal control of gear shift operations in automatic transmissions. Journal of the Franklin Institute 338 (2001)
    [59] Ichiro Sakai. Vehicle Automatic Transmission Control System. U.S.A Patent 5067374
    [60] Garth H. Bulgrien. User-friendly Electronic Power shift Transmission Control. SAE 911831
    [61] Amphlett, Steven A. And Jason P. March. Studying Low Frequency Vehicle Phenomena Using Advanced Modeling Techniques. SAE 951270
    [62] Fluga, Eric C. Modeling of the Complete Vehicle Powertrain Using ENTERPRISE. SAE 931179
    [63] Eiichi Kato, et al. Electronic Applications to the Powertrain of Japanese Trucks and Buses. SAE 861969
    [64] Hiromu Shiga. Electronic Transmission Control. SAE 861032
    [65] Bernhard Wust, et al. Advanced Electronic Control and Diagnostic System for Automatic Transmission. SAE 942330
    [66] Tadashi Kondo, et al. Toyota "ECT-i" A New Automatic Transmission with Intelligent Electronic Control System. SAE 900550
    [67] J.G. Bender, et al. Advanced Controls for Heavy Duty Transmission Applications. SAE 901157
    [68] Kurt Neuffer, et al. Electronic Transmission Control-From Stand Alone Components to Mechatronic Systems. SAE 960430
    [69] K.Kishii, et al. Study of Clutch of Transmission and Clutch on Off-highway Dumptruck. SAE 961764
    [70] Kohei Kusaka and Yasunori Ohkura. A Transmission system for Construction Machinery. SAE901557
    [71] Keum-Shik Hong and Kyung-Jinn Yang. An Object-Oriented Modular Simulation Model for Integrated Gasoline Engine and Automatic Transmission Control. SAE99PC-59
    [72] Masato Kuchita, et al. Development of Virtual Powertrain Model. Mitsubish Motor Technical Review. 2002 No. 14
    [73] Zachary J. Rubin, et al. The Development of Vehicular Powertrain System Modeling Methodologies: Philosophy and Implementation. SAE971089
    [74] Hiroshi Ohnishi, et al. A study on road slope estimation for automatic transmission control. JSAE Review 21 (2000)
    [75] Kazumi Hoshiya, et al.A new automatic transmission shift control method reflecting the road conditions JSAE Review 16 (1995)
    [76] Fuyuku Katsu, Toshio Matsumura. Consideration of a simulation system to calculate the shitting performance of automatic transmission. JSAE Review 23 (2002)
    [77] Kenji Hagiwara, et al. Development of automatic transmission control system using hardware-in-the-loop simulation system. JSAE Review 23 (2002).
    [78] Yoshinobu Mofimoto, et al. Technologies for Gasoline Engine Control and ECU Miniaturization, Mitsubishi Electric Technical Reports, March 1997
    [79] Powertrain Control Technology. Southwest Research Institute, San Antonio, Texas.JCN196621
    [80] S.Sakaguchi, et al. Application of Fuzzy Logic to Scheduling Method for Automatic Transmission. Proc. of 1993 IEEE SMC. 94—100
    [81] Datta Godbole and Sinnan Karahan. Automotive Powertrain Modeling, Simulation and Control Using Integrated System's CASE tools. SAE940180
    [82] Young Herb Kim and Jinseung Yang. A Study on the Transient Characteristics of Automatic Transmission with Detailed Dynamic Modeling. SAE941014
    [83] Chung-hung Pan and John Moskwa. Dynamic modeling and Simulation of the Ford AOD Automobile Transmission. SAE950899
    
    [84] N.Nrumi, H.Suzuki and R-Sakakiyama. Trends of Powertrain Control. SAE 901154
    [85] H.S.Jcong and K.I.Lee. Shift Transient Torque Control of a Vehicle Power Transmission System. SAE 945031
    [86] Koji Hasunaka, et al. A Study on Electro—hydraulic Control for Automatic Transmission.SAE 892000
    [87] Leo f. Schwa. Development of a Shift Quality Metric for an Automatic Transmission. SAE 941009
    [88] Hiroshi Yamaguchi et al. Automatic Transmission Shift Schedule Control Using Fuzzy Logic. SAE 930674
    [89] Andrew W. Philips, et al. Assanis Development and Use of a Vehicle Powertrain Simulation for Fuel Economy and Performance Studies. SAE 900619
    [90] Che—wun Hong. A fuzzy Throttle Controller for Dynamic Driving Pattern Simulation Int. J. Of Vehicle Design. Vol.16, Nos2/3,1995
    [91] D.M.Kuzak, et al. Powertrain Control Strategy Determination for Computer-controlled Transmission. Int. J. Of Vehicle Design, vol. 8, no. 1 ,1987
    [92] Chris R. Ciesla, et al. A Modular Approach to Powertrain Modeling and Shift Quality Analysis. SAE 950419
    [93] K.L. Tang, et al, Comparing Fuzzy Logic with Classical Controller Designs, IEEE on SMC,Vol.l2,No.6, 1987.