内皮素激活PI3K/Akt信号通路对恶性黑色素瘤细胞体外生长活性及TGF-beta1表达调节的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分内皮素对黑素瘤细胞TGF-β1表达及体外生长活性的调节
     目的研究内皮素1、3(Endothelin1,3 ET-1、ET-3)对恶性黑素瘤细胞系A375、SK-Mel-1体外生长活性的影响,及对TGF-β1蛋白和mRNA水平的调节,探讨ET-1、ET-3对不同细胞系生长的影响因素以及与TGF-β1表达的关系。
     方法不同浓度的ET对两种MM细胞株进行刺激,MTT法检测体外生长活性,RT-PCR及ELISA技术检测ET-1、ET-3、BQ123、BQ788及LY294002分组干预下,TGF-β1的表达变化。
     结果ET-3对两种MM细胞系均表现促生长效应,且有浓度依赖关系;ET-1对A375细胞表现为浓度依赖性的生长抑制,对SK-Mel-1细胞生长抑制作用不明显;在蛋白和mRNA水平ET-1明显上调MM细胞TGF-β1的表达,ET-3表现为对TGF-β1表达的抑制;BQ123、BQ788、LY294002均可在不同程度上阻断ET-1、ET-3的上述效应。
     结论ET-1通过上调TGF-β1的表达抑制MM细胞的体外生长;ET-3对TGF-β1表达的抑制可能是得益于激活了PI3K/Akt信号通路; TGF-β1对MM细胞生长抑制的作用存在细胞系之间的差异。
     第二部分内皮素诱导Akt蛋白磷酸化对抗细胞凋亡及机制的研究
     目的研究内皮素1,3(ET-1,ET-3)对恶性黑素瘤细胞PI3K/Akt通路的激活效应,以及ETRA、ETRB拮抗剂BQ123、BQ788,PI3K抑制剂LY294002对通路激活效应的不同影响;探讨ET-1,ET-3对顺铂(Cisplatin)诱导的MM细胞凋亡的抵抗作用。
     方法Western Blot(免疫印迹法)检测ET-1、ET-3及联合BQ123,BQ788,LY294002刺激下磷酸化AKT蛋白表达的变化,流式细胞术测定内皮素1,3以及与顺铂联合干预下MM细胞的凋亡率。
     结果ET-1与ET-3均明显上调MM细胞磷酸化Akt蛋白(P-Akt)的表达;ET-3上调P-Akt较ET-1显著;BQ123,BQ788,LY294002可阻断ET-1、ET-3对P-Akt表达的上调;Cisplatin可明显增加MM细胞的凋亡率;ET-1、ET-3可降低MM细胞的基础凋亡;与ET-1比较,ET-3明显抵抗Cisplatin诱导的凋亡
     结论ET通过激活PI3K/Akt通路介导了MM细胞抵抗Cisplatin凋亡的效应。
     第三部分内皮素1诱导黑素瘤细胞磷酸化Smad3蛋白的高表达
     目的研究内皮素1、内皮素3在在黑素瘤细胞中诱导磷酸化Smad3蛋白表达中的作用,以及内皮素受体拮抗剂对其诱导效应的影响。
     方法免疫印迹技术检测不同干预条件下(ET-1、ET-3,或联合应用BQ123、BQ788),黑素瘤细胞磷酸化Smad3蛋白的表达变化。
     结果ET-1明显上调MM细胞磷酸化Smad3的表达,而ET-3对其表达有显著的抑制效应,ETRA拮抗剂BQ123明显阻断ET-1上调磷酸化Smad3的效应,而ETRB拮抗剂BQ788对ET-1的这一效应无明显影响。
     结论ET-1通过ETRA途径诱导磷酸化Smad3蛋白的表达;ET-3对磷酸化Smad3蛋白的表达有抑制作用。
PartⅠThe role of endothelins in TGF-β1 expression and growth effect in malignant melanoma in vitro
     Object To explore the role of endothelin1,3 in TGF-β1 expresssion on protein secretion and mRNA level and the relationship to MM cell growth effect in cell lines A375 and SK-Mel-1.
     Methods MM cells stimulated by endothelin1,3 on different concentration, MTT method measure the growth effect in two MM cell lines;RT-PCR and ELISA technique was used to detect the TGF-β1 expression simulated by ET-1,ET-3, or combination with BQ123,BQ788,and LY294002.
     Results ET-3 promoted cell growth both in A375 and SK-Mel-1 cell lines and show the concentration-dependent. ET-1 inhibits cell growth in A375 but not in SK-Mel-1; ET-1 significantly up-regulates the TGF-β1 expression both on protein and mRNA, ET-3 show oppositely effects. Combination treated with BQ123, BQ788, and LY294002 show block effect of ET stimulation to MM cells
     Conclusion melanoma cells growth was suppress by TGF-β1 induced by ET-1; ET-3 inhibited TGF-β1 expression through activation of PI3K/Akt pathway; the effect of cell growth inhibition induced by TGF-β1 showed a diversity phenomenon between melanoma cell lines. Endothelins;; phosphor-Akt;; PI3K/Akt pathway;; apoptosis;; Cisplatin
     PartⅢEndothelin1 promotes the over-expression of phospho-Smad3 through ETRA pathway in melanoma
     Object To investigate the roles of ET1, ET-3 and combination treatment with BQ123, BQ788 in overepression of phospho-Smad3 protein in melanoma cells.
     Methods Westrn blot technique was applied to detect the expression of phosphor-Smad3 under the ET-1, ET-3stimulation or conjoined treatment with BQ123 and BQ788 .
     Result ET-1 induced phosphor-Smad3 over-expression significantly, and BQ123 but not BQ788 inhibited this phenomenon. Oppositely, ET-3 suppress the expression of it comparing with control.
     Conclusion ETRA but not ETRB mediated the over-expression of phosphor-Smad3 induced by endothelin in MM A375 cell line.
引文
1. Le Monnier de Gouville, A.C., H.L. Lippton, I. Cavero, et al., Endothelin--a new family of endothelium-derived peptides with widespread biological properties. Life Sci, 1989. 45(17): p. 1499-513.
    2. Demunter, A., C. De Wolf-Peeters, H. Degreef, et al., Expression of the endothelin-B receptor in pigment cell lesions of the skin. Evidence for its role as tumor progression marker in malignant melanoma. Virchows Arch, 2001. 438(5): p. 485-91.
    3. Christensen, C. and P. Guldberg, Growth factors rescue cutaneous melanoma cells from apoptosis induced by knockdown of mutated (V 600 E) B-RAF. Oncogene, 2005. 24(41): p. 6292-302.
    4. Kadekaro, A.L., R. Kavanagh, H. Kanto, et al., alpha-Melanocortin and endothelin-1 activate antiapoptotic pathways and reduce DNA damage in human melanocytes. Cancer Res, 2005. 65(10): p. 4292-9.
    5. Javelaud, D., K.S. Mohammad, C.R. McKenna, et al., Stable overexpression of Smad7 in human melanoma cells impairs bone metastasis. Cancer Res, 2007. 67(5): p. 2317-24.
    6. Berking, C., R. Takemoto, H. Schaider, et al., Transforming growth factor-beta1 increases survival of human melanoma through stroma remodeling. Cancer Res, 2001. 61(22): p. 8306-16.
    7. Johnson, J.A. and J. Waller, Transforming growth factor beta-1 attenuates endothelin-1-induced functions in neonatal cardiac myocytes. Life Sci, 2002. 71(1): p. 99-113.
    8. Jain, R., P.W. Shaul, Z. Borok, et al., Endothelin-1 Induces Alveolar EMT Through ET-A-mediated Production of Transforming Growth Factor-{beta}1. Am J Respir Cell Mol Biol, 2007.
    1. Cervar-Zivkovic, M., C. Hu, A. Barton, et al., Endothelin-1 attenuates apoptosis in cultured trophoblasts from term human placentas. Reprod Sci, 2007. 14(5): p. 430-9.
    2. Del Bufalo, D., V. Di Castro, A. Biroccio, et al., Endothelin-1 acts as a survival actor in ovarian carcinoma cells. Clin Sci (Lond), 2002. 103 Suppl 48: p. 302S-305S.
    3. Del Bufalo, D., V. Di Castro, A. Biroccio, et al., Endothelin-1 protects ovarian carcinoma cells against paclitaxel-induced apoptosis: requirement for Akt activation. Mol Pharmacol, 2002. 61(3): p. 524-32.
    4. Spinella, F., L. Rosano, V. Di Castro, et al., Endothelin-1 and endothelin-3 promote invasive behavior via hypoxia-inducible factor-1alpha in human melanoma cells. Cancer Res, 2007. 67(4): p. 1725-34.
    5. Okazawa, M., T. Shiraki, H. Ninomiya, et al., Endothelin-induced apoptosis of A375 human melanoma cells. J Biol Chem, 1998. 273(20): p. 12584-92.
    6. Eberle, J., L.F. Fecker, C.E. Orfanos, et al., Endothelin-1 decreases basic apoptotic rates in human melanoma cell lines. J Invest Dermatol, 2002. 119(3): p. 549-55.
    7. Bagnato, A., L. Rosano, F. Spinella, et al., Endothelin B receptor blockade inhibits dynamics of cell interactions and communications in melanoma cell progression. Cancer Res, 2004. 64(4): p. 1436-43.
    8. Yohn, J.J., C. Smith, T. Stevens, et al., Human melanoma cells express functional endothelin-1 receptors. Biochem Biophys Res Commun, 1994. 201(1): p. 449-57.
    9. Lahav, R., G. Heffner, and P.H. Patterson, An endothelin receptor B antagonist inhibits growth and induces cell death in human melanoma cells in vitro and in vivo. Proc Natl Acad Sci U S A, 1999. 96(20): p. 11496-500.
    10. Kadekaro, A.L.,α-Melanocortin and Endothelin-1 Activate Antiapoptotic Pathways and Reduce DNA Damage in Human Melanocytes Cancer Research, 2005.
    11. Ruth, M.C., Y. Xu, I.H. Maxwell, et al., RhoC promotes human melanoma invasion in a PI3K/Akt-dependent pathway. J Invest Dermatol, 2006. 126(4): p. 862-8.
    12. Oka, M., H. Nagai, H. Ando, et al., Regulation of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway in human G361 melanoma cells. J InvestDermatol, 2000. 115(4): p. 699-703.
    13. Arai, H., S. Hori, I. Aramori, et al., Cloning and expression of a cDNA encoding an endothelin receptor. Nature, 1990. 348(6303): p. 730-2.
    14. Sakurai, T., M. Yanagisawa, Y. Takuwa, et al., Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature, 1990. 348(6303): p. 732-5.
    15. Xu, G., W. Zhang, P. Bertram, et al., Pharmacogenomic profiling of the PI3K/PTEN-AKT-mTOR pathway in common human tumors. Int J Oncol, 2004. 24(4): p. 893-900.
    16. Krasilnikov, M., V.N. Ivanov, J. Dong, et al., ERK and PI3K negatively regulate STAT-transcriptional activities in human melanoma cells: implications towards sensitization to apoptosis. Oncogene, 2003. 22(26): p. 4092-101.
    17. Shi-Wen, X., E.A. Renzoni, L. Kennedy, et al., Endogenous endothelin-1 signaling contributes to type I collagen and CCN2 overexpression in fibrotic fibroblasts. Matrix Biol, 2007. 26(8): p. 625-32.
    18. Lange, K., M. Kammerer, M.E. Hegi, et al., Endothelin receptor type B counteracts tenascin-C-induced endothelin receptor type A-dependent focal adhesion and actin stress fiber disorganization. Cancer Res, 2007. 67(13): p. 6163-73.
    19. Rosano, L., D. Salani, V. Di Castro, et al., Endothelin-1 promotes proteolytic activity of ovarian carcinoma. Clin Sci (Lond), 2002. 103 Suppl 48: p. 306S-309S.
    20. Rosano, L., F. Spinella, G. Genovesi, et al., Endothelin-B Receptor Blockade Inhibits Molecular Effectors of Melanoma Cell Progression. J Cardiovasc Pharmacol, 2004. 44: p. S136-S139.
    21. Demunter, A., C. De Wolf-Peeters, H. Degreef, et al., Expression of the endothelin-B receptor in pigment cell lesions of the skin. Evidence for its role as tumor progression marker in malignant melanoma. Virchows Arch, 2001. 438(5): p. 485-91.
    22. Lahav, R., G. Heffner, and P.H. Patterson, An endothelin receptor B antagonist inhibits growth and induces cell death in human melanoma cells in vitro and in vivo. 1999. p. 11496-11500.
    23. Tang, L., M. Su, Y. Zhang, et al., Endothelin-3 is produced by metastatic melanomacells and promotes melanoma cell survival. J Cutan Med Surg, 2008. 12(2): p. 64-70.
    24. Ziemssen, F., R. Wegner, J. Wegner, et al., Analysis of neovasculature in uveal melanoma by targeting the TGFbeta-binding receptor endoglin: is there prognostic relevance of proliferating endothelium? Graefes Arch Clin Exp Ophthalmol, 2006. 244(9): p. 1124-31.
    25. Arteaga, C.L., R.J. Coffey, Jr., T.C. Dugger, et al., Growth stimulation of human breast cancer cells with anti-transforming growth factor beta antibodies: evidence for negative autocrine regulation by transforming growth factor beta. Cell Growth Differ, 1990. 1(8): p. 367-74.
    26. Glick, A.B., K.C. Flanders, D. Danielpour, et al., Retinoic acid induces transforming growth factor-beta 2 in cultured keratinocytes and mouse epidermis. Cell Regul, 1989. 1(1): p. 87-97.
    27. Akhurst, R.J., TGF-beta antagonists: why suppress a tumor suppressor? J Clin Invest, 2002. 109(12): p. 1533-6.
    28. Hussein, M.R., Transforming growth factor-beta and malignant melanoma: molecular mechanisms. J Cutan Pathol, 2005. 32(6): p. 389-95.
    29. Woodward, J.K., I.G. Rennie, J.L. Burn, et al., A potential role for TGFbeta in the regulation of uveal melanoma adhesive interactions with the hepatic endothelium. Invest Ophthalmol Vis Sci, 2005. 46(10): p. 3473-7.
    1. Ruth, M.C., Y. Xu, I.H. Maxwell, et al., RhoC promotes human melanoma invasion in a PI3K/Akt-dependent pathway. J Invest Dermatol, 2006. 126(4): p. 862-8.
    2. Xu, G., W. Zhang, P. Bertram, et al., Pharmacogenomic profiling of the PI3K/PTEN-AKT-mTOR pathway in common human tumors. Int J Oncol, 2004. 24(4): p. 893-900.
    3. Blanco-Aparicio, C., B. Pequeno, V. Moneo, et al., Inhibition of phosphatidylinositol-3-kinase synergizes with gemcitabine in low-passage tumor cell lines correlating with Bax translocation to the mitochondria. Anticancer Drugs, 2005. 16(9): p. 977-87.
    4. Mirmohammadsadegh, A., R. Mota, A. Gustrau, et al., ERK1/2 is highly phosphorylated in melanoma metastases and protects melanoma cells from cisplatin-mediated apoptosis. J Invest Dermatol, 2007. 127(9): p. 2207-15.
    5. Katso, R., K. Okkenhaug, K. Ahmadi, et al., Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol, 2001. 17: p. 615-75.
    6. Patapoutian, A. and L.F. Reichardt, Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol, 2001. 11(3): p. 272-80.
    7. Shah, B.H., A. Neithardt, D.B. Chu, et al., Role of EGF receptor transactivation in phosphoinositide 3-kinase-dependent activation of MAP kinase by GPCRs. J Cell Physiol, 2006. 206(1): p. 47-57.
    8. Shpakov, A.O., [Role of phosphatidylinositol-3-kinase in the development of cancer]. Vopr Onkol, 2002. 48(6): p. 644-55.
    9. Panomwat Amornphimoltham, V.P. Virote Sriuranpong, 1, C.J.C. Fernando Benavides,
    2, et al., Persistent Activation of the Akt Pathway in Head and Neck Squamous Cell Carcinoma: A Potential Target for UCN-01. 2004.
    10. Park, D., N. Lapteva, M. Seethammagari, et al., An essential role for Akt1 in dendritic cell function and tumor immunotherapy. Nat Biotechnol, 2006. 24(12): p. 1581-90.
    11. Beckner, M.E., G.T. Gobbel, R. Abounader, et al., Glycolytic glioma cells with activeglycogen synthase are sensitive to PTEN and inhibitors of PI3K and gluconeogenesis. Lab Invest, 2005. 85(12): p. 1457-70.
    12. 12. Thomas, W.D., X.D. Zhang, A.V. Franco, et al., TNF-Related Apoptosis-Inducing Ligand-Induced Apoptosis of Melanoma Is Associated with Changes in Mitochondrial Membrane Potential and Perinuclear Clustering of Mitochondria. 2000. p. 5612-5620.
    13. Trisciuoglio, D., A. Iervolino, G. Zupi, et al., Involvement of PI3K and MAPK signaling in bcl-2-induced vascular endothelial growth factor expression in melanoma cells. Mol Biol Cell, 2005. 16(9): p. 4153-62.
    14. Jill M. Stahl1, A.S., Mitchell Cheung1, Melissa Zimmerman1, Jin Q. Cheng4, Marcus W. Bosenberg5, Mark Kester1, Lakshman Sandirasegarane1 and Gavin P. Robertson1,2,3,6 Deregulated Akt3 Activity Promotes Development of Malignant Melanoma Cancer Research, 2004. 64, 7002-7010, October 1, 2004.
    15. Del Bufalo, D., V. Di Castro, A. Biroccio, et al., Endothelin-1 protects ovarian carcinoma cells against paclitaxel-induced apoptosis: requirement for Akt activation. Mol Pharmacol, 2002. 61(3): p. 524-32.
    16. Kadekaro, A.L.,α-Melanocortin and Endothelin-1 Activate Antiapoptotic Pathways and Reduce DNA Damage in Human Melanocytes Cancer Research, 2005.
    17. Krasilnikov, M., V. Adler, S.Y. Fuchs, et al., Contribution of phosphatidylinositol 3-kinase to radiation resistance in human melanoma cells. Mol Carcinog, 1999. 24(1): p. 64-9.
    18. Khaled, M., L. Larribere, K. Bille, et al., Microphthalmia associated transcription factor is a target of the phosphatidylinositol-3-kinase pathway. J Invest Dermatol, 2003. 121(4): p. 831-6.
    19. Lee, J., I. Duk Jung, C. Gyo Park, et al., Autotaxin stimulates urokinase-type plasminogen activator expression through phosphoinositide 3-kinase-Akt-nuclear [corrected] factor kappa B signaling cascade in human melanoma cells. Melanoma Res, 2006. 16(5): p. 445-52.
    20. Yoon, S.O., S. Shin, H.J. Lee, et al., Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9expression. Mol Cancer Ther, 2006. 5(11): p. 2666-75.
    21. Li, G., H. Schaider, K. Satyamoorthy, et al., Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene, 2001. 20(56): p. 8125-35.
    22. Tang, L., M. Su, Y. Zhang, et al., Endothelin-3 is produced by metastatic melanoma cells and promotes melanoma cell survival. J Cutan Med Surg, 2008. 12(2): p. 64-70.
    1. Attisano, L. and J.L. Wrana, Mads and Smads in TGF beta signalling. Curr Opin Cell Biol, 1998. 10(2): p. 188-94.
    2. Whitman, M., Smads and early developmental signaling by the TGFbeta superfamily. Genes Dev, 1998. 12(16): p. 2445-62.
    3. Derynck, R., Y. Zhang, and X.H. Feng, Smads: transcriptional activators of TGF-beta responses. Cell, 1998. 95(6): p. 737-40.
    4. Massague, J., TGF-beta signal transduction. Annu Rev Biochem, 1998. 67: p. 753-91.
    5. Heldin, C.H., K. Miyazono, and P. ten Dijke, TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 1997. 390(6659): p. 465-71.
    6. Attisano, L. and J.L. Wrana, Signal transduction by the TGF-beta superfamily. Science, 2002. 296(5573): p. 1646-7.
    7. Moustakas, A., S. Souchelnytskyi, and C.H. Heldin, Smad regulation in TGF-beta signal transduction. J Cell Sci, 2001. 114(Pt 24): p. 4359-69.
    8. Wu, G., Y.G. Chen, B. Ozdamar, et al., Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science, 2000. 287(5450): p. 92-7.
    9. Abdollah, S., M. Macias-Silva, T. Tsukazaki, et al., TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem, 1997. 272(44): p. 27678-85.
    10. Liu, X., Y. Sun, S.N. Constantinescu, et al., Transforming growth factor beta-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc Natl Acad Sci U S A, 1997. 94(20): p. 10669-74.
    11. Souchelnytskyi, S., K. Tamaki, U. Engstrom, et al., Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem, 1997. 272(44): p. 28107-15.
    12. Chung, Y.J., J.M. Song, J.Y. Lee, et al., Microsatellite instability-associated mutations associate preferentially with the intestinal type of primary gastric carcinomas in a high-risk population. Cancer Res, 1996. 56(20): p. 4662-5.
    13. Izumoto, S., N. Arita, T. Ohnishi, et al., Microsatellite instability and mutated type II transforming growth factor-beta receptor gene in gliomas. Cancer Lett, 1997. 112(2): p.251-6.
    14. Muro-Cacho, C.A., K. Rosario-Ortiz, S. Livingston, et al., Defective transforming growth factor beta signaling pathway in head and neck squamous cell carcinoma as evidenced by the lack of expression of activated Smad2. Clin Cancer Res, 2001. 7(6): p. 1618-26.
    15. Iida, J. and J.B. McCarthy, Expression of collagenase-1 (MMP-1) promotes melanoma growth through the generation of active transforming growth factor-beta. Melanoma Res, 2007. 17(4): p. 205-13.
    16. Javelaud, D., K.S. Mohammad, C.R. McKenna, et al., Stable overexpression of Smad7 in human melanoma cells impairs bone metastasis. Cancer Res, 2007. 67(5): p. 2317-24.
    17. Quereux, G., M.C. Pandolfino, A.C. Knol, et al., Tissue prognostic markers for adoptive immunotherapy in melanoma. Eur J Dermatol, 2007. 17(4): p. 295-301.
    18. Jain, R., P.W. Shaul, Z. Borok, et al., Endothelin-1 Induces Alveolar EMT Through ET-A-mediated Production of Transforming Growth Factor-{beta}1. J Biol Chem 2007. p. 2006-0353OC.
    1. Frontelo, P., M. Gonzalez-Garrigues, S. Vilaro, et al., Transforming growth factor beta 1 induces squamous carcinoma cell variants with increased metastatic abilities and a disorganized cytoskeleton. Exp Cell Res, 1998. 244(2): p. 420-32.
    2. Humble, M.C., C.J. Szczesniak, N.C. Luetteke, et al., TGF alpha is dispensable for skin tumorigenesis in Tg.AC mice. Toxicol Pathol, 1998. 26(4): p. 562-9.
    3. Abolhassani, M. and J.W. Chiao, Antiproliferative effect of a prostatic cell-derived activity on the human androgen-dependent prostatic carcinoma cell line LNCaP. J Interferon Cytokine Res, 1995. 15(2): p. 179-85.
    4. Stalinska, L. and T. Ferenc, [The role of TGF-beta in cell cycle regulation]. Postepy Hig Med Dosw (Online), 2005. 59: p. 441-9.
    5. Trapani, J.A., The dual adverse effects of TGF-beta secretion on tumor progression. Cancer Cell, 2005. 8(5): p. 349-50.
    6. Battegay, E.J., Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J Mol Med, 1995. 73(7): p. 333-46.
    7. Kaminska, B., A. Wesolowska, and M. Danilkiewicz, TGF beta signalling and its role in tumour pathogenesis. Acta Biochim Pol, 2005. 52(2): p. 329-37.
    8. Massague, J., TGF-beta signal transduction. Annu Rev Biochem, 1998. 67: p. 753-91.
    9. Helmy, A., O.A. Hammam, T.R. El Lithy, et al., The role of TGF-beta-1 protein and TGF-beta-R-1 receptor in immune escape mechanism in bladder cancer. MedGenMed, 2007. 9(4): p. 34.
    10. Medicherla, S., L. Li, J.Y. Ma, et al., Antitumor activity of TGF-beta inhibitor is dependent on the microenvironment. Anticancer Res, 2007. 27(6B): p. 4149-57.
    11. Zhu, M.L., J.V. Partin, E.M. Bruckheimer, et al., TGF-beta signaling and androgen receptor status determine apoptotic cross-talk in human prostate cancer cells. Prostate, 2008. 68(3): p. 287-95.
    12. Park, H.J., B.C. Kim, S.J. Kim, et al., Role of MAP kinases and their cross-talk in TGF-beta1-induced apoptosis in FaO rat hepatoma cell line. Hepatology, 2002. 35(6): p. 1360-71.
    13. Nakata, D., J. Hamada, Y. Ba, et al., Enhancement of tumorigenic, metastatic and in vitro invasive capacity of rat mammary tumor cells by transforming growth factor-beta. Cancer Lett, 2002. 175(1): p. 95-106.
    14. Arteaga, C.L., K.M. Koli, T.C. Dugger, et al., Reversal of tamoxifen resistance of human breast carcinomas in vivo by neutralizing antibodies to transforming growth factor-beta. J Natl Cancer Inst, 1999. 91(1): p. 46-53.
    15. Arteaga, C.L., T.C. Dugger, and S.D. Hurd, The multifunctional role of transforming growth factor (TGF)-beta s on mammary epithelial cell biology. Breast Cancer Res Treat, 1996. 38(1): p. 49-56.
    16. Glick, A., N. Popescu, V. Alexander, et al., Defects in transforming growth factor-beta signaling cooperate with a Ras oncogene to cause rapid aneuploidy and malignant transformation of mouse keratinocytes. Proc Natl Acad Sci U S A, 1999. 96(26): p. 14949-54.
    17. Cardillo, M.R., E. Petrangeli, L. Perracchio, et al., Transforming growth factor-beta expression in prostate neoplasia. Anal Quant Cytol Histol, 2000. 22(1): p. 1-10.
    18. Matthews, E., T. Yang, L. Janulis, et al., Down-regulation of TGF-beta1 production restores immunogenicity in prostate cancer cells. Br J Cancer, 2000. 83(4): p. 519-25.
    19. Markowitz, S., J. Wang, L. Myeroff, et al., Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science, 1995. 268(5215): p. 1336-8.
    20. Parekh, T.V., P. Gama, X. Wen, et al., Transforming growth factor beta signaling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition. Cancer Res, 2002. 62(10): p. 2778-90.
    21. Kawate, S., S. Takenoshita, S. Ohwada, et al., Mutation analysis of transforming growth factor beta type II receptor, Smad2, and Smad4 in hepatocellular carcinoma. Int J Oncol, 1999. 14(1): p. 127-31.
    22. Grady, W.M., A. Rajput, L. Myeroff, et al., Mutation of the type II transforming growth factor-beta receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res, 1998. 58(14): p. 3101-4.
    23. Kang, S.H., Y.J. Bang, Y.H. Im, et al., Transcriptional repression of the transforminggrowth factor-beta type I receptor gene by DNA methylation results in the development of TGF-beta resistance in human gastric cancer. Oncogene, 1999. 18(51): p. 7280-6.
    24. Wang, J., W. Han, E. Zborowska, et al., Reduced expression of transforming growth factor beta type I receptor contributes to the malignancy of human colon carcinoma cells. J Biol Chem, 1996. 271(29): p. 17366-71.
    25. Wang, J., L. Sun, L. Myeroff, et al., Demonstration that mutation of the type II transforming growth factor beta receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J Biol Chem, 1995. 270(37): p. 22044-9.
    26. Kim, S.J., Y.H. Im, S.D. Markowitz, et al., Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev, 2000. 11(1-2): p. 159-68.
    27. Bubb, V.J., L.J. Curtis, C. Cunningham, et al., Microsatellite instability and the role of hMSH2 in sporadic colorectalcancer. Oncogene, 1996. 12(12): p. 2641-9.
    28. Tang, B., M. Vu, T. Booker, et al., TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest, 2003. 112(7): p. 1116-24.
    29. Riggins, G.J., S. Thiagalingam, E. Rozenblum, et al., Mad-related genes in the human. Nat Genet, 1996. 13(3): p. 347-9.
    30. Erickson, A.C. and M.H. Barcellos-Hoff, The not-so innocent bystander: the microenvironment as a therapeutic target in cancer. Expert Opin Ther Targets, 2003. 7(1): p. 71-88.
    31. Barcellos-Hoff, M.H., Integrative radiation carcinogenesis: interactions between cell and tissue responses to DNA damage. Semin Cancer Biol, 2005. 15(2): p. 138-48.
    32. Hagan, M., A. Yacoub, and P. Dent, Ionizing radiation causes a dose-dependent release of transforming growth factor alpha in vitro from irradiated xenografts and during palliative treatment of hormone-refractory prostate carcinoma. Clin Cancer Res, 2004. 10(17): p. 5724-31.
    33. Matsuzaki, K. and K. Okazaki, Transforming growth factor-beta during carcinogenesis: the shift from epithelial to mesenchymal signaling. J Gastroenterol, 2006. 41(4): p.295-303.
    34. Giannelli, G., C. Bergamini, E. Fransvea, et al., Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology, 2005. 129(5): p. 1375-83.
    35. Davies, M., M. Robinson, E. Smith, et al., Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem, 2005. 95(5): p. 918-31.
    36. Kulkarni, A.B., C.G. Huh, D. Becker, et al., Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A, 1993. 90(2): p. 770-4.
    37. Friedman, E., L.I. Gold, D. Klimstra, et al., High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer. Cancer Epidemiol Biomarkers Prev, 1995. 4(5): p. 549-54.
    38. Takanami, I., F. Tanaka, T. Hashizume, et al., Roles of the transforming growth factor beta 1 and its type I and II receptors in the development of a pulmonary adenocarcinoma: results of an immunohistochemical study. J Surg Oncol, 1997. 64(4): p. 262-7.
    39. Saito, H., S. Tsujitani, S. Oka, et al., An elevated serum level of transforming growth factor-beta 1 (TGF-beta 1) significantly correlated with lymph node metastasis and poor prognosis in patients with gastric carcinoma. Anticancer Res, 2000. 20(6B): p. 4489-93.
    40. Arrick, B.A., A.R. Lopez, F. Elfman, et al., Altered metabolic and adhesive properties and increased tumorigenesis associated with increased expression of transforming growth factor beta 1. J Cell Biol, 1992. 118(3): p. 715-26.
    41. Glick, A.B., M.M. Lee, N. Darwiche, et al., Targeted deletion of the TGF-beta 1 gene causes rapid progression to squamous cell carcinoma. Genes Dev, 1994. 8(20): p. 2429-40.
    42. Amendt, C., P. Schirmacher, H. Weber, et al., Expression of a dominant negative type II TGF-beta receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene, 1998. 17(1): p. 25-34.
    43. Weeks, B.H., W. He, K.L. Olson, et al., Inducible expression of transforming growthfactor beta1 in papillomas causes rapid metastasis. Cancer Res, 2001. 61(20): p. 7435-43.
    44. Gerdes, M.J., M. Larsen, T.D. Dang, et al., Regulation of rat prostate stromal cell myodifferentiation by androgen and TGF-beta1. Prostate, 2004. 58(3): p. 299-307.
    45. Tuxhorn, J.A., G.E. Ayala, M.J. Smith, et al., Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res, 2002. 8(9): p. 2912-23.
    46. Bhowmick, N.A., A. Chytil, D. Plieth, et al., TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 2004. 303(5659): p. 848-51.
    47. Cheng, N., N.A. Bhowmick, A. Chytil, et al., Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene, 2005. 24(32): p. 5053-68.
    48. Wick, W., M. Platten, and M. Weller, Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol, 2001. 53(2): p. 177-85.
    49. Torre-Amione, G., R.D. Beauchamp, H. Koeppen, et al., A highly immunogenic tumor transfected with a murine transforming growth factor type beta 1 cDNA escapes immune surveillance. Proc Natl Acad Sci U S A, 1990. 87(4): p. 1486-90.
    50. Botti, C., E. Seregni, L. Ferrari, et al., Immunosuppressive factors: role in cancer development and progression. Int J Biol Markers, 1998. 13(2): p. 51-69.
    51. Sosroseno, W. and E. Herminajeng, The immunoregulatory roles of transforming growth factor beta. Br J Biomed Sci, 1995. 52(2): p. 142-8.
    52. Pertovaara, L., A. Kaipainen, T. Mustonen, et al., Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J Biol Chem, 1994. 269(9): p. 6271-4.
    53. Yu, P., Y. Lee, W. Liu, et al., Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med, 2005. 201(5): p. 779-91.
    54. Serra, R. and M.R. Crowley, TGF-beta in mammary gland development and breastcancer. Breast Dis, 2003. 18: p. 61-73.
    55. Moustakas, A., K. Pardali, A. Gaal, et al., Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett, 2002. 82(1-2): p. 85-91.
    56. Tian, F., S.D. Byfield, W.T. Parks, et al., Smad-binding defective mutant of transforming growth factor beta type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res, 2004. 64(13): p. 4523-30.