沙苑子、狗脊、肉苁蓉和韭菜子对去卵巢大鼠骨质疏松症治疗作用的机理探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     探讨具有温补肾阳作用的单味中药-沙苑子、狗脊、肉苁蓉和韭菜子对去卵巢所致大鼠骨质疏松症的治疗作用,并从破骨细胞分化调控因子、与骨代谢密切相关的激素和细胞因子等角度,揭示它们治疗的作用机理以及作用特点,为中医药防治骨质疏松症提供进一步实验依据。
     方法
     选用雌性Wistar大鼠94只,随机分为3组:空白对照组12只,假手术组12只,造模组70只。在术后1个月,将造模组大鼠随机分为6组,即模型组、阳性对照组、沙苑子组和狗脊组,每组各12只,肉苁蓉组和韭菜子组,每组各11只。然后,开始灌胃给药:各中药组给予浓度为1g生药/mL的水煎剂,给药体积为5.6mL/kg体重,即给药剂量均为5.6 g生药/kg体重;阳性对照组给予0.008 mg/mL的己烯雌酚,给药体积为5.6 mL/kg体重,即给药剂量为0.0448mg/kg体重。以上给药1d 1次,连续6 d,休息1 d后,如此给药3个月。空白对照组、假手术组、模型组按同法灌服等体积的蒸馏水。
     各组大鼠于处死前15 d和前3 d分别腹腔注射盐酸四环素30 mg/kg体重,对骨进行荧光标记。给药结束后,将大鼠以45mg/kg剂量的戊巴比妥钠腹腔注射麻醉,股动脉取血,用于检测外周血清中IL-1、IL-6、BGP、CT、PTH的含量。然后,将各组大鼠处死,取右侧胫骨制作不脱钙骨切片,用于骨组织形态计量学指标的检测;取左侧胫骨制作冰冻切片,用于成骨细胞和骨髓基质细胞OPG和RANKL蛋白及其mRNA表达的检测。
     统计学处理方法:实验结果皆以均数±标准差(x±s)表示,采用单因素方差分析(ANOVA)进行处理,组间两两比较,采用q检验。
     结果
     1沙苑子、狗脊、肉苁蓉和韭菜子对去卵巢大鼠胫骨骨组织形态计量学指标的影响
     1.1沙苑子、狗脊、肉苁蓉和韭菜子对去卵巢大鼠胫骨TBV%的影响
     模型组大鼠胫骨TBV%较假手术组明显降低。与模型组比较,沙苑子组、狗脊组和阳性对照组的大鼠胫骨TBV%显著增加:而肉苁蓉组和韭菜子组则无显著性差异。狗脊组、肉苁蓉组和韭菜子组大鼠胫骨TBV%明显低于假手术组;沙苑子组、阳性对照组较假手术组则无显著性差异。见表1。注:与假手术组比较:*P<0.05,**P<0.01:与模型组比较:△P<0.05,△△P<0.01。下同。
     1.2沙苑子、狗脊、肉苁蓉和韭菜子对去卵巢大鼠胫骨TRS%的影响
     与假手术组相比,模型组大鼠胫骨TRS%明显增高。沙苑子组、狗脊组和阳性对照组较模型组大鼠胫骨TRS%明显降低;肉苁蓉组和韭菜子组较模型组无显著性变化。狗脊组、肉苁蓉组和韭菜子组大鼠胫骨TRS%较假手术组显著增高;沙苑子组和阳性对照组较假手术组则无显著性差异。见表2。
     1.3沙苑子、狗脊、肉苁蓉和韭菜子对去卵巢大鼠胫骨TFS%和MAR的影响
     模型组大鼠胫骨TFS%和MAR均明显高于假手术组。与模型组相比,沙苑子组和阳性对照组大鼠胫骨TFS%和MAR显著降低;狗脊组、肉苁蓉组和韭菜子组无显著性差异。与假手术组相比,沙苑子组、狗脊组、肉苁蓉组和韭菜子组大鼠胫骨TFS%均显著增高;阳性对照组无明显差异。狗脊组、肉苁蓉组和韭菜子组大鼠胫骨MAR高于假手术组;沙苑子组和阳性对照组则无明显差异。见表3。
     1.4沙苑子、狗脊、肉苁蓉和韭菜子对去卵巢大鼠胫骨mAR和OSW的影响
     与假手术组相比,模型组大鼠胫骨mAR显著升高。与模型组相比,沙苑子:组和阳性对照组大鼠胫骨mAR明显降低:狗脊组、肉苁蓉组和韭菜子组无明显差异。狗脊组、肉苁蓉组和韭菜子组大鼠胫骨mAR明显高于假手术组;沙苑子组和阳性对照组较假手术组无显著性差异。
     模型组大鼠胫骨OSW较假手术组明显升高。沙苑子组、狗脊组、肉苁蓉组和韭菜了组大鼠胫骨OSW较模型组和假手术组均无显著性差异。阳性对照组大鼠胫骨OSW低于模型组,与假手术组无显著性差异。见表4。
     2沙苑子、狗脊、肉苁蓉和韭菜子对去卵巢大鼠胫骨成骨细胞和骨髓基质细胞oPG和RANKL蛋白及其mRNA表达的影响
     2.1沙苑子、狗脊、肉苁蓉和韭菜子对去卵巢大鼠胫骨成骨细胞和骨髓基质细胞OPG和RANKL蛋白表达的影响
     2.1.1沙苑子、狗脊、肉苁蓉和韭菜了对去卵巢大鼠胫骨成骨细胞和骨髓基质细胞OPG蛋白表达的影响
     与假手术组相比,模型组大鼠胫骨成骨细胞和骨髓基质细胞OPG蛋白表达均明显下调。与模型组相比,沙苑子组、狗脊组和阳性对照组大鼠胫骨成骨细胞和骨髓基质细胞OPG蛋白表达明显上调;肉苁蓉组和韭菜了组无显著差异。狗脊组、肉苁蓉组和韭菜了组较假手术组明显下调;沙苑子组和阳性对照组与假手术组相比,无明显差异。见表5。
     2.1.2沙苑了、狗脊、肉苁蓉和韭菜子对去卵巢大鼠胫骨成骨细胞和骨髓基质细胞RANKL蛋白表达的影响
     模型组大鼠胫骨成骨细胞和骨髓基质细胞RANKL蛋白表达明显高于假手术组。沙苑子组、阳性对照组大鼠胫骨成骨细胞和骨髓基质细胞RANKL蛋白表达较模型组显著下调;狗脊组、肉苁蓉组和韭菜子组无显著性变化。与假手术组相比,狗脊组、肉苁蓉组和韭菜子组大鼠胫骨成骨细胞RANKL蛋白表达上调;沙苑了组、狗脊组、肉苁蓉组和韭菜子组大鼠胫骨骨髓基质细胞RANKL蛋白表达上调;沙苑子组大鼠胫骨成骨细胞RANKL蛋白表达较假手术组无显著性差异。阳性对照组大鼠胫骨成骨细胞和骨髓基质细胞RANKL蛋白表达与假手术相比,均无明显差异。见表6。
     2.2沙苑子、狗脊、肉苁蓉和韭菜子对去卵巢大鼠胫骨成骨细胞和骨髓基质细胞oPG和RANKL mRNA表达的影响
     2.2.1沙苑子、狗脊、肉苁蓉和韭菜子对去卵巢大鼠胫骨成骨细胞和骨髓基质细胞OPG mRNA表达的影响
     与假手术组相比,模型组大鼠胫骨成骨细胞和骨髓基质细胞OPG mRNA表达均明显下调。与模型组相比,沙苑子组、狗脊组和阳性对照组大鼠胫骨成骨细胞和骨髓基质细胞OPG mRNA表达明显上调;肉苁蓉组和韭菜了组无显著差异。狗脊组、肉苁蓉组和韭菜子组较假手术组明显下调;沙苑子组和阳性对照组与假手术组相比,无明显差异。见表7。
     2.2.2沙苑子、狗脊、肉苁蓉和韭菜子对去卵巢大鼠胫骨成骨细胞和骨髓基质细胞RANKL mRNA表达的影响
     模型组大鼠胫骨成骨细胞和骨髓基质细胞RANKL mRNA表达明显高于假手术组。沙苑了组以及阳性对照组大鼠胫骨成骨细胞和骨髓基质细胞RANKL mRNA较模型组显著下调;狗脊组、肉苁蓉组和韭菜子组无显著性变化。与假手术组相比,狗脊组、肉苁蓉组和韭菜子组大鼠胫骨成骨细胞和骨髓基质细胞RANKL mRNA表达上调;沙苑子组、阳性对照组无明显差异。见表8。
     3沙苑子、狗脊、肉苁蓉和韭菜子对去卵巢大鼠外周血清中IL-1、IL-6含量的影响
     与假手术组相比,模型组大鼠外周血清中IL-1含量显著增高。与模型组相比,沙苑子组及阳性对照组大鼠外周血清中IL-1含量明显降低;其它各给药组则无显著性变化。沙苑子组、狗脊组、肉苁蓉组以及韭菜子组大鼠外周血清中1L-1含量较假手术组均显著升高;阳性对照组无明显差异。
     模型组大鼠外周血清中IL-6含量高于假手术组。与模型组相比,沙苑子组、狗脊组及阳性对照组大鼠外周血清中IL-6含量较模型组明显降低;肉苁蓉组和韭菜子组则无显著性差异。与假手术组相比,狗脊组、肉苁蓉组以及韭菜子组大鼠外周血清中IL-6含量明显增高;沙苑了组和阳性对照组无明显差异。见表9。
     4沙苑子、狗脊、肉苁蓉和韭菜子对去卵巢大鼠外周血清中BGP、CT和PTH含量的影响
     模型组大鼠外周血清中BGP含量较假手术组明显增高。沙苑子组和阳性对照组大鼠外周血清中BGP含量显著低于模型组;其余各给药组较模型组无显著性的变化。沙苑子组、狗脊组、肉苁蓉组以及韭菜子组较假手术组均显著升高;阳性对照组无明显差异。
     模型组大鼠外周血清中CT含量较假手术组明显降低。与模型组相比,沙苑子组及阳性对照组CT含量明显增加;其余各组药组则无显著性变化。与假手术组相比,狗脊组、肉苁蓉组以及韭菜子组大鼠外周血清中CT含量显著降低;沙苑了组和阳性对照组无明显差异。
     与假手术组相比,模型组及各给药组大鼠外周血清中PTH含量均无显著性变化;各给药组大鼠外周血清中PTH含量较模型组亦无显著性变化。见表10。
     假手术组与空白对照组相比,以上各项指标均未发生显著性变化,从而排除了手术本身对实验的影响。
     结论
     沙苑子和狗脊能在一定程度上使去卵巢所致的大鼠高转换型骨质疏松症恢复到一种骨形成大于骨吸收的相对平衡的状态,从而防止骨量的丢失,达到治疗作用;而肉苁蓉、韭菜子则无明显的治疗作用。沙苑子和狗脊的具体作用环节和作用特点如下:
     (1)沙苑子不仅能提高成骨细胞和骨髓基质细胞OPG的蛋白及其mRNA表达,抑制RANKL的蛋白及其mRNA表达,而且还能降低外周血中IL-1、IL-6的水平,并且提高CT的水平,从而达到对骨质疏松症的治疗作用;
     (2)狗脊能提高成骨细胞和骨髓基质细胞OPG的蛋白及其mRNA表达,使之与RANKL结合增多,进而抑制破骨细胞的分化、成熟及活性,并且对IL-6的也有一定地抑制作用,从而防止骨的过度吸收。
Objective
     This study is to estimate the therapeutic effect of kidney yang-supplementing Chinese medicines, including Semen Astragali Complanati decoction (SACD), Rhizoma Cibotii decoction (RCD), Herba Cistanches decoction (HCD), and Semen Allii Tuberosi decoction (SATD), on ovariectomized (OVX) rats. The effective mechanism of the four Chinese medicine on OVX rats is revealed by focusing on the osteoclast differentiation and regulatory factors and hormones and cytokines related to bone metabolism closely, which provide further experimental evidence for osteoporosis and the traditional Chinese medicine theory of" The kidney dominating bone"
     Material and Methods
     Ninety-four virgin Wistar clean grade female rats (weight 250±20.0g) were randomly divided into three groups, including a normal control group (n=12), a sham control group (n=12), and a bilaterally ovariectomized (OVX, n=70) group. OVX rats were randomly divided into six groups, including OVX group (n=12), positive control group (n=12), SACD group (n=12), RCD group (n=12), HCD group (n=11), and SATD group (n=11). Diethylstilbestrol 0.008mg/mL dissolved in distilled water was administered intragastrically to the rats in the positive control group. The rats of the SACD group, the RCD group, the HCD group, and the SATD group were treated with SACD 5.6mL/(kg body weight day), RCD 5.6mL/(kg body weight day), HCD 5.6mL/(kg body weight day), and SATD 5.6mL/(kg body weight day), respectively. At the same time, the rats of the normal control group, the sham control group, and the OVX group were administered with the same volume of distilled water. The treatment started four weeks after the surgery and continued for 12 weeks.
     On the fifteenth and third days before sacrifice all the rats received tetracyclin 30mg/kg by intraperitoneal injection in order to mark the bone with fluorescence. Then all of them were taken blood for testing the serum contents of IL-1,1L-6, BGP, CT, and PTH by means of enzyme linked immunosorbent. After sacrifice, we estimated the proximal right tibiae by measuring TBV%, TRS%, TFS%, MAR, mAR, and OSW of the undecalcified tibia slides. Proximal left tibiae were sliced into 5μm sections by freezing microtome. Frozen sections were prepared for immunohistochemistry and in situ hybridization.
     All values were expressed as means±standard(x±s) deviations. The difference between the groups regarding the evaluated parameters was tested using the ANOVA test followed by the q test.
     Results
     1. In contrast to the OVX group, TBV% in both SACD and RCD groups increased significantly, while TRS%, TFS%, MAR, and mAR decreased significantly in the SACD group, and only TRS% decreased significantly in the RCD group. No changes of these parameters above had been observed in either HCD or SATD group.
     2. Compared with the OVX group, the protein expression of OPG in OB and MSC of the SACD group and the RCD group significantly increased, but that of the HCD group and the SATD group was not significantly different compared to the OVX group. The protein expression of OPG in the RCD group, the HCD group, and the SATD group was below the sham control group, but there were no significant changes in the SACD group.
     The protein expression of RANKL in the SACD group was significantly lower than that of the OVX group. However, there were no significant changes in the RCD group, the HCD group, the SATD group, and the OVX group. Compared with the sham control group, the protein expression of RANKL in OB of the RCD group, the HCD group, and the SATD group significantly increased, and the protein expression of RANKL in MSC of the SACD group, the RCD group, the HCD group, and the SATD group also significantly increased, but there was no significant difference in the protein expression of RANKL in OB of the SACD group.
     3. Compared with the OVX group, OPG mRNA expression in OB and MSC of the SACD group and the RCD group significantly increased, but that of the HCD group and the SATD group was not significantly different compared to the OVX group. OPG mRNA expression in OB and MSC of the RCD group, the HCD group, and the SATD group was below the sham control group, but there were no significant changes in the SACD group.
     RANKL mRNA expression in OB and MSC of the SACD group was significantly lower than that of the OVX group. However, there were no significant changes in the RCD group, the HCD group, the SATD group, and the OVX group. Compared with the sham control group, RANKL mRNA expression in OB and MSC of the RCD group, the HCD group, and the SATD group was significantly increased. There were no significant changes in the SACD group and sham control group.
     4. In contrast to the OVX group, the level of IL-1 in the peripheral blood of the SACD group decreased significantly, but that of RCD group, the HCD group, and the SATD group was not significantly different compared to the OVX group. However, IL-1 in the SACD group, the RCD group, the HCD group, and the SATD group was higher than that in the sham control group.
     The level of IL-6 in the SACD group, and the RCD group was significantly lower than that of the OVX group. However, there were no significant changes in the HCD group, the SATD group, and the OVX group. Compared with the sham control group, IL-6 in the RCD group, the HCD group, and the SATD group was significantly increased. There were no significant changes in the SACD group and sham control group.
     5. The level of BGP in the peripheral blood of the SACD group was below the OVX group, but there were no significant changes in the RCD group, the HCD group, and the SATD group. However, BGP of the SACD group, the RCD group, the HCD group, and the SATD group was higher than that in the sham control group.
     Compared with the OVX group, CT of the SACD group significantly increased, but that of the RCD group, the HCD group and the SATD group was not significantly different compared to the OVX group. CT of the RCD group, the HCD group, and the SATD group was below the sham control group, but there were no significant changes in the SACD group.
     No changes of PTH had been observed in the SACD group, the RCD group, the HCD group, the SATD group, the OVX group, or the sham control group.
     Conclusions
     The effective mechanism of the four kidney yang-supplementing Chinese medicines on OVX rats is revealed by focusing on the osteoclast differentiation and regulatory factors and hormones and cytokines related to bone metabolism closely. We found that the OVX rat was a high-transformational model of osteoporosis, and SACD and RCD enhanced overall bone quality of OVX rats significantly
     Our experiments implied that the protein expression of OPG in OB and MSC was promoted by SACD, and the protein expression of RANKL in OB and MSC was inhibited by SACD. At the same time, SACD could reduce the level of IL-1, IL-6 and enhance the level of CT in the peripheral blood. We also found that the protein expression of OPG in OB and MSC was promoted by RCD, and the level of IL-6 was inhibited by RCD. However, no change of RANKL had been observed in the RCD group.
引文
[1]李恩,薛延,王洪复,等.骨质疏松鉴别诊断与治疗[M].北京:人民1i生出版社,2005:56.
    [2]Nguye TV. Association between brest cancer and bone mineral density:the Dubbo Osteporosis Epidemiology Study[J]. Maturitas,2007,36(1):27-34.
    [3]何成奇.骨质疏松症的康复治疗技术[M].北京:人民l生出版社,2008:5-6.
    [4]Acconcia F, Barnes CJ, Kumar R. Estrogen and tamoxifen induce cytoskeletal remodeling and migration in endometrial cancer cells[J]. Endocrinology,2006,147(3):1203-1212.
    [5]The Writing Group for the Women's Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal Woman:principle results from the Woman's Health Initiative randomized controlled trial. JAMA,2002,288:321-333.
    [6]徐相健,汀付,尹思源,等.绝经后妇女原发性骨质疏松症辨证分型与症候特征的探讨[J].中医正骨,2008,11(20):815-816.
    [7]陈晚娇,曾娟.绝经后骨质疏松症的中医病机及治则探讨[J].辽宁中医杂志,2006,33(9):1105-1106.
    [8]Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin a novel secrected protein involved in the regulation of bone density [J]. Cell,1997,89(2):309-319.
    [9]Mizuno A, Amizuka N, Irie K, et al. Severe osteoporosis in mice lacking osteo- clastogenesis inhibitory factor/osteoprotegerin[J]. Biochem Biophys Res Commun,1998,247(3):610-615.
    [10]Nagaim, Sato N. Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation [J]. Biochem Biophys Res Commun,1999,25(7):719-723.
    [11]LIU Jundong, GU Jianhong, ZHAI Bihua, et al. Effect of osteoprotegerin on rat osteoclasts formation and activation invitro[J]. Scientia Agricultura Sinica,2008,41(2):581-586.
    [12]Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin Ligand is a cytokine that regulates osteoclast differentiation and activation[J]. Cell,1998(93):3597-3620.
    [13]Miyamoto N, Higuchi Y, Mori K, et al. Human osteosarcoma-derived cell lines produce soluble factor(s) that induces differentiation of blood monocytes to osteoclast- like cells[J]. Int Immunopharmacol,2002(2):25-38.
    [14]Lam J, Nelson CA, Ross FP, Teitelbaum SL, et al. Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor ligands pecif- icity[J]. J Clin Invest,2001(108):971.
    [15]Nagai M, Kyakumoto S, Sato N. Cancer cells responsible for humoral hypercalcemia express mRNA encoding a secreted form of ODF/TRANCE that induces osteoclast formation[J]. Biochem Biophys Res Commun,2000(269):532.
    [16]廖二元,谭利华.代谢性骨病学.北京:人民卫生出版社.2002.209-241.
    [17]叶超群,纪树荣,钟兴明RANKL-RANK-OPG骨调节轴[J].首都体育学院学报,2006,11(6):61-64.
    [18]Gravallese EM, Goldring SR. Cellular mechanisms and the role of cytokines in bone erosions in rheumatoid arthritis[J]. Arthritis Rheum,2000,43(10):2143-2151.
    [19]Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor B ligand and osteoprotegerin regulation of bone remodeling in health and disease[J]. Endocr Rev,2008,29(2): 155-192.
    [20]Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling[J]. Arch Biochem Biophys,2008,473(2):139-146.
    [21]Schneeweis LA, Willard D, Milla ME. Functional dissociation of osteoprotegerin and its interaction with receptor activator of NF-kB ligand[J]. J Biol Chem,2005,280(50): 41155-41164.
    [22]Nakamichi Y, Udagawa N, Kobayashi Yasuda H, et al. Osteoprotegerin reduces the serum level of receptor activator of NF-kB ligand derived from osteoblasts[J]. J Immunol,2007,178(1): 192-200.
    [23]Kim JH, Jin HM, Kim K, et al. The mechanism of osteoclast differentiation induced by IL-1[J]. J Immunol,2009,183(3):1862-1870.
    [24]Hofbauer LC, Khosla S, Dunstan CR, et al. Estrogen stimulates gene expression and protein production of psteoprotegerin in human osteoblastic cells [J]. Endo- crinology,1999,140(9): 4367-4370.
    [25]葛月宾,王丽君.小鼠去卵巢骨质疏松模型的建立及OPG/RANKL的表达[J].中国中医骨伤科杂志,2008,16(12):33-35.
    [26]苏欣,廖二无,朱旭萍,等.雌二醇对人成骨细胞护骨素、护骨素配体及其相关因子的调书[J].中华老年医学杂志,2004,23(3):153-156.
    [27]Mezquita Raya P, Higuera M, Garcia DF, et al. The contribution of serum osteoprotegerin to bone mass and vertebral fractures in postmenopausal women [J]. Osteoporosis Int,2005,16(11): 1368-1374.
    [28]Bekker PJ, Holloway D, Nakanish A, et al. The effect of a single dose of osteoprotegerin in postmenopausal women[J]. J Bone Miner Res,2001,16(2):348-360.
    [29]Hofbauer LC, Heufelder AE. The role of receptor activator of nuclear factor- kappa B ligand and osteoprotegerin in the pathogenesis and treatment of meta-bolic bone diseases[J]. J Clin Endocrinol Metab,2000,85(7):2355-2363.
    [30]罗南萍,刘恒国.骨质疏松症与相关细胞因子的研究[J].放射免疫学杂志,2007,20(2):132-136.
    [31]刘风英,任伟,张素华.白细胞介素.6与骨质疏松[J].重庆医学,2005,34(5):779.781.
    [32]魏合伟,侯书丽,龚钰,等.白细胞介素-6在绝经后骨质疏松发病机制中作用的临床研究[J].广州中医药大学学报,2002,19(2):94251.
    [33]Scheidt- Nave C, Bismar H, Leidig-Bruckner G, et al. Serum interleukin 6 is a major predictor of bone loss in women specific to the first decade past menopaus[J]. J Clin Endocrinol Metab, 2001,86(5):203-242.
    [34]Kimble RB, Srivastava S, Ross PF, et al. Estrogen deficiency increases the ability of stromal cell to supportmurine osteoclastogenesis via an interleukin-1 and tumor necrosis factor-mediated stimulation of macrophage colony stimulating factor production[J]. J Biol Chem,1996,271(46): 28890-28897.
    [35]Kwantat S, Padrines M, Thedeyre S, et al. IL-6, RANKL, TNF-alpha/IL-1:interrelations in bone resorption pathophysioloyg[J]. Cytokine Growth Factor Rev,2004,15(1):492-521.
    [36]Ros AC, Gao Y, Cenci S, et al. Upregulation of TNF-producting T cells in the bone mallow; A key mechanism by which estrogen deficiency induces bone loss in vivo[J]. Proc Natl Acad Sci USA,2001,98(24):13960.
    [37]Strand V, Kavanaugh AF. The role of interleukin-1 in bone resorption in rheumatoid arthritis[J]. Rheumatology (Oxford),2004,43(Supp 1-3):11110-11116.
    [38]Pfeilschifter J, Koditz R, PfohlM, et al. Changes in proinflammatory cytokine activity after menopause[J]. Endocr Rev,2002,23(1):90-119.
    [39]罗南萍,李金花,王瑞山,等.IL-4、IL-6、IL-10及骨代谢指标与老年l男性骨质疏松症的关系[J].中国老年学杂志,2004,24(1):32.
    [40]Zallone A. Direct and indirect estrogen actions on osteoblasts and osteoclasts [J]. Ann N Y Acad Sci,2006,1068:173-179.
    [41]Eichner SF, Lloyd KB, Timpe EM. Comparing therapies for postmenopausal osteoporosis prevention and treatment[J]. Ann Pharmacother,2003,37(5):711-724.
    [42]Gong YS, Chen J, Zhang QZ, et al. Effect of 17beta- oestradiol and ginsenoside on osteoporosis in ovariectomised rats[J]. J Asian Nat Prod Res,2006,8(7):649-656.
    [43]Brodowska A, Starczewski A, Brodowski J, et al. The bone mass density in postmenopausal women using hormonal replacement therapy in relation to polymorphism in vitamin D receptor and estrogen receptor genes [J]. Gynecol Endocrinol,2009,25(5):315-323.
    [44]Binkley N, Krueger D, Lensmeyer G, et al.25-hydroxyvitamin D measurement,2009:a review forclinicians[J]. J Clin Densitom,2009,12(4):417-427.
    [45]Uehida M, Shima M, Chikazu D. Transcriptional induction of matrix metallop- roteinase-13 (collagenase-3) by lalpha,25-dihydroxy vitamin D3 in mouse osteoblastic MC3T3-E1 cells[J]. J Bone Miner Res,2001,16(2):221-230.
    [46]Fili S, Karalaki M, Schaller B, et al. Therapeutic implications of osteoprote- gerin[J]. Cancer Cell Int,2009,12(9):26-33.
    [47]Wang KX, Denhardt DT. Osteopontin:role in immune regulation and stress responses[J]. Cytokine Growth Factor Rev,2008,19(5-6):333-345.
    [48]刘建民,许曼音.甲状旁腺激素的成骨作用[J].国外医学内科学分册,1999,26(8):330-340.
    [49]Fox J, Miller MA, Newman MK, et al. Daily treatment of aged ovariectomized rats with human parathyroid hormone (1-34) for 12 months reverses bone loss and enhances trabecular and cortical bone strength[J]. Calcif Tissue Int,2006,79(4):262-272.
    [50]Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteo- porosis[J]. N Engl J Med,2001, 344(19):1434-1441.
    [51]黄延玲,石凤英.葛根素对去卵巢大鼠骨密度和骨代谢生化指标的影响[J].中国临床康复,2004,8(12):2307-2309.
    [52]王新祥,张允岭,吴坚,等.葛根对骨质疏松模型小鼠骨密度和骨组织构造的作用[J].中国骨质疏松杂志,2008,14(5):349-353.
    [53]李妮,赵正煜,徐峰.葛根提取物对去卵巢大鼠血液指标的影响[J].实用药物与临床,2010,13(2):88-90.
    [54]齐传汾,宋社吾,刘道芳,等.葛根异黄酮对去卵巢大鼠骨质疏松症的影响[J].生物学杂志,2007,8(1):56-59.
    [55]贾朝娟,鞠大宏,刘梅洁,等.山药对卵巢切除大鼠骨质疏松症的治疗作用及其机理探讨[J].中国中医基础医学杂志,2009,15(4):268-271.
    [56]潘胜利,程丹华,杨瑞萍,等.生萝卜对人参药理作用影响的研究[J].中药材,2000,23(6):336-338.
    [57]刘晓青,崔燎,吴铁,等.人参水煎剂防治去卵巢大鼠骨量丢失的骨形态计量学观察[J].中国骨质疏松杂志,2003,9(4):304-307.
    [58]王俊俊,江洋珍,梁继超,等.人参皂苷Rbl对大鼠成骨细胞增殖、分化及OPG/RANKL mRNA表达的影响[J].中华中医药杂志,2010,25(6):939-942.
    [59]王彦明,王一农.枸杞多糖对去势雌性大鼠骨质疏松的作用[J].中国骨质疏松杂志,2008,14(8):576-578,542.
    [60]鲍君杰,谢梅林,周佳,等.蛇床子总香豆素对去卵巢大鼠骨质疏松的影响[J].苏州大学学报,2005,25(3):387-390.
    [61]罗小玲,梁晓萍,文锦丽.蛇床子总香豆素对骨质疏松大鼠骨密度、骨形态计量学影响[J].中国中医急症,2008,17(3):368-369.
    [62]张巧艳,秦路平,田野苹,等.蛇床子总香豆素对成骨细胞产生NO、IL-1及IL-6的影响[J].中国药学杂志,2003,38(5):345-348.
    [63]王艳,潘永梅.蛇床子素对新生大鼠颅骨成骨细胞中OPG、RANKL mRNA表达的影响[J].山西中医学院学报,2008,9(3):12-14.
    [64]刘峰,梁翔,彭太平.中医药辨证治疗骨质疏松症128例[J].实用中西医结合临床,2005,4(5):52.
    [65]金甬.辨证施治骨质疏松症43例[J].浙江中两医结合杂志,2008,18(6):368-369.
    [66]鞠大宏,刘梅洁,赵宏艳,等.左归丸含药血清对成骨细胞OPG、RANKL mRNA表达的影响[J].北京中医药大学学报,2008,31(5):312-315.
    [67]刘梅洁,吕国红,邹军,等.左归丸含药血清对成骨细胞分泌骨钙素的影响[J].中国中医基础医学杂志,2007,13(8):581-582.
    [68]王冬梅,董亚琳,潘龙,等.补肾壮骨颗粒对原发性骨质疏松症大鼠生化指标和骨密度的影响[J].交徽中医学院学报,2004,23(6):23-25.
    [69]应栩华,陈明显,戴蕾,等.健骨胶囊含药血清对体外培养破骨细胞活性和骨吸收作用的影响[J].浙江中医杂志,2011,46(1):19-21.
    [70]郭郡浩,张永文,赵智明,等.补肾抗松丸对绝经后骨质疏松症患者骨密度的影响[J].安徽中医学院学报,2008,27(5):14-16.
    [71]凌家艳,刘庆.补肾壮骨方治疗绝经后骨质疏松症的临床研究[J].中国中医骨伤杂志,2008,16(4):22-23.
    [72]张晓君,聂晶.补肾活血胶囊治疗高龄男性骨质疏松症疼痛的临床观察[J].药学进展,2009,33(6),274-278.
    [73]金肖青,詹红生,方剑乔.电针为主防治骨质疏松症机理探索[J].浙江中医杂志,2003, 38(7):303-305.
    [74]赵英侠,王静,秦逸人,等.经针刺去除卵巢大鼠血清对体外培养破骨细胞骨吸收功能的影响[J].中国康复医学杂志,2008,23(5):420-422.
    [75]赵英侠,王静,秦逸人,等. 针刺血清对体外培养破骨细胞凋亡的影响[J].中国老年学杂志,2007,27(6):515-517.
    [76]魏玉芳,刘钰林,张姗红,等.针刺对去势大鼠骨质疏松模型雌激素及骨密度作用的研究[J].针刺研究,2007,32(1):38-41.
    [77]王长海,田立民,冯文,等.针刺对绝经后骨质疏松症骨密度及血.液流变性的影响[J].中国中医急症,2004,13(5):284-285.
    [78]周晓莉,鲍圣涌,王华.“双固一通”针法治疗绝经后骨质疏松症的临床研究[J].医学综述,2007,13(23):1852-1854.
    [79]王东岩,徐小梅,欧阳钢.口俐.针灸刈刃性骨质疏松症患者骨代谢的影响[J].中医杂志,2011,52(3):211-213.
    [80]阮彩莲,白弧军,刘运磊.不同有氧运动时间对衰老大鼠骨质成分的影响[J].中国组织工程研究与临床康复,2009,28(13):5500-5504.
    [81]王颖捷,卜淑敏,季刚.中等强度跑台运动对去卵巢大鼠腰椎骨量、骨髓脂肪细胞数量和血脂水平的影响[J].中国运动医学杂志,2011,30(1):48-52.
    [82]戴闽,昌军.骨科运动康复[M].北京:人民卫生出版社,2008:243.
    [83]徐哲,史绍蓉,郭远盘.骨质疏松症及其运动疗法[J].四川体育科学,2010,6(2):23-26.
    [84]十灵,王晓靖.某地中老年妇女对运动预防骨质疏松的认知现状[J].实用医药杂志,2007,24(11):1359-1360.
    [85]张林.不同强度运动对骨质疏松大鼠生物力学性能的影响[J].体育科学,2000,20(5):72-76.
    [1]中华医学会骨科学分会.骨质疏松骨折诊疗指南[J].中华骨科杂志,2008,28(10):875-878.
    [2]Brandstrom H, Jonsson KB, Ohlsson C, et al. Regulation of osteoprotegerin mRNA levels by prostaglandin E2 in human bone marrow stroma cells[J]. Biochem Biophys Res Commun,1998, 247(2):338-341.
    [3]Marie P, Halbout P. OPG/RANK:role and therapeutic target inosteoporosis[J]. Med Sci (Paris), 2008,24(1):105-110.
    [4]Erban RG. Embedding of bone samples in methylmethacrylate:an improved method suitable for bone histomorphometry, histochemistry, and immunohistoche- mistry. The Journal of Histochemistry & Cytochemistry.1997,45(2):308-309.
    [5]章明放,张乃鑫,谭郁彬.运动对雌性大鼠去势后骨质疏松症的作用[J].中华骨科杂志,1994,14(6):365-369.
    [6]陈树清,周厚明,孙保国,等.补肾方对去卵巢大鼠血清中PICP、ICTP的影响[J].中国中医骨伤科杂志,2009,17(3):13-14.
    [7]蔡玉霞,张剑宇.补骨脂水煎剂对去卵巢骨质疏松大鼠骨代谢的影响[J].中国组织工程研究与临床康复,2009,13(2):269-271.
    [8]黄崇刚,李恒华,梅小利,等.沙苑子补肾固精的作用研究[J].2011,17(1): 123-126.
    [9]王成永,时军,桂双英,等.韭菜子提取物的温肾助阳作用研究[J].中国中药杂志,2005,13(7):1017-1018.
    [10]Silvestrini G, Ballanti P, Sebastiani M, et al. OPG and RANKL mRNA and protein expressions in the primary and secondary metaphyseal trabecular bone of PTH-treat- ed rats are independent of that of SOST[J]. J Mol Hist,2008,39(2):237-242.
    [11]Nagaim, Sato N. Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation [J]. Biochem Bio-phys Res Commun,1999,25(7):719-723.
    [12]Hofbauer, Lorenz C, Heufelder, et al. The role of receptor activator of nuclear factor-[kappa]B ligand and osteoprotegerin in the pathogenesis and treatment of metabolic bone disease [J]. Clin Endocrinol Metab,2000,85(7):2355.
    [13]LIU Jundong, GU Jianhong, ZHAI Bihua, et al. Effect of osteoprotegerin on rat osteoclasts formation and activation invitro[J]. Scientia Agricultura Sinica,2008,41(2):581-586.
    [14]廖二元,谭利华.代谢性骨病学.北京:人民卫生出版社.2002.209-241.
    [15]Gravallese EM, Goldring SR. Cellular mechanisms and the role of cytokines in bone erosions in rheumatoid arthritis[J]. Arthritis Rheum,2000,43(10):2143-2151.
    [16]Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator osteoclastogenesis, lymphocyte development and Lymph-node organogenesis]J]. Nature,1999,397(6717):315.
    [17]Tomoki Nakashima, Teiji Wada, Josef M. Penninger. RANKL and RANK as novel therapeutic targets for arthritis. Curr Opin Rheumatol,2003,15:280-287.
    [18]Munay GR, Boyce BF, yoneda T, et al. Cytokines and bone remodling[A]. In:Marcus Red, Osteoporosis[C]. Academe Press,1996:301-313.
    [19]Mannolagas Sc, Jilka RL. Bone marrow, cytokines and bone remodeling. Emerging insights into the pathophysiology of osteoporosis [J]. N Engl Med,1995,332(5):305.
    [20]Griffin MG, Kimble R, Hopfer W, et al. Dual-energy x-ray absorptiometry of the rat:accuracy, precision, and measurement of bone loss[J]. J Bone Miner Res,1993,8(7):759-800.
    [21]Horowitz MC. Cytokinees and estrogen in bone:Antiosteoporotic ettects[J]. Scien- ce,1993, 260:626-629.
    [22]刘风英,任伟,张素华.白细胞介素-6与骨质疏松[J].重庆医学,2005,34(5):779-781.
    [23]Na K yung Lee, Hideaki Sowa, Eiichi Hinoi, et al. Endocrine Regulation of Energy Metabolism by the Skeleton[J]. Cell,2007(130):456-469.
    [24]郭晓强.骨钙素:一种重要的能量代谢调节激素生命科学[J].2011,23(1): 102-105.
    [25]周鹏,张艳军,贾媛.骨的内分泌作用与中医肾主骨理论再探[J].中华中医药学刊,2011,29(1):70-71.
    [26]Huang CL, Sun L, Moonga BS, et al. Molecular physiology and pharmacology of calcitonin[J]. Cell Mol Biol,2006,52(3):33-43.
    [27]Chesnut CH, Silverman S, Andriano K, et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis:the pre- vent recurrence of osteoporotic fractures study[J]. AmJ Med,2000,109(4):167-176.
    [28]Brixen KT, Christensen B, Ejersted C, et al. Teriparatide (biosynt hetic human parat hyroid hormone 1-34):a new paradigm in the treatment of osteoporosis [J]. Basic Clin Pharmacol Toxicol,2004,94(4):260-270.
    [29]刘建民,许曼音.甲状旁腺激素的成骨作用[J].国外医学内科学分册,1999,26(8):330-340.