高功率激光非聚焦型空间低通滤波技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
惯性约束聚变、激光加工以及激光武器等用途,不仅要求激光器输出功率水平高,而且要求光束质量好。空间低通滤波是控制、改善激光器光束质量的关键措施之一。
     按是否对光束聚焦,空间低通滤波器分为聚焦型和非聚焦型。针孔滤波器属于聚焦型,体光栅、薄膜等滤波器属于非聚焦型。前一类滤波器在技术上较为成熟,后一类滤波器正处于研发的初期阶段。
     根据高功率激光空间滤波的特殊需求,本文研究光路中无透镜的新型滤波器――基于体光栅、多层介质薄膜以及Rugate薄膜的空间低通滤波器。
     本文采用Kogelnik耦合波理论、严格耦合波理论以及传输矩阵理论等三种工具,研究周期、准周期光学结构实现非聚焦空间滤波的原理,实验验证用非聚焦型空间滤波器替代针孔滤波器的可行性。研究内容和主要结论如下:
     1.基于体光栅的空间低通滤波技术
     在理论方面,分析了准单色平面波在体光栅中的衍射、传输模型;深入分析了超短脉冲高斯光束在透射型与反射型体光栅中的衍射、传输规律,得出了高效率、无失真衍射的条件,并修正了体光栅对超短脉冲高斯光束的衍射效率计算公式。
     设计体光栅非聚焦型空间低通滤波装置,分析了透射型与反射型体光栅的角谱选择性及滤波器件的优缺点,指出:反射型体光栅较透射型体光栅的工作性能更稳定、滤波波长可调谐等优点。
     制备透射型体光栅(对632.8nm激光相对衍射效率约90%),测量其衍射角谱带宽随光栅周期以及光栅厚度的变化,实验测量结果与修正后的Kogelnik耦合波理论的计算结果相一致。利用光热折变玻璃(Photo-Thermal Refractive Glass, PTR Glass)透射型体光栅,完成了对空域畸变高斯光束的空间低通滤波实验。用针孔滤波与体光栅滤波的对比实验结果,验证了非聚焦器件实现空间低通滤波的实验可行性。实验中,用空间频率分别为7.2 mm~(-1)和3.0 mm~(-1)、占空比为1:1的周期振幅片生成两种畸变He-Ne激光束,经体光栅滤波后,输出的含高频调制(7.2 mm~(-1))的衍射光束的空域光强分布与未畸变光束基本一致,而输出的含低频调制(3.0 mm~(-1))的衍射光束的空域光强分布与未畸变光束相差较大。
     理论分析和实验结果一致表明:体光栅的衍射旁瓣严重影响其空间低通滤波性能。普通体光栅的相对介电常数呈正弦分布,其角谱选择性虽然能达到100μrad量级,然而受限于衍射旁瓣,其低通滤波远达不到100μrad量级的效果。针对体光栅的上述局限性,本文提出了用非倾斜型反射型体光栅相移组合器件改善角谱选择性、用切趾非倾斜反射型体光栅和相移非倾斜反射型体光栅抑制衍射旁瓣,降低体光栅空间截止频率等创新技术。
     2.基于多层介质薄膜的空间低通滤波技术
     用传输矩阵理论研究多层介质薄膜的两种基本类型——高反射膜和带通滤光片的衍射特性,分析了这两种薄膜的衍射效率以及角谱选择性与光谱选择性带宽随薄膜参量的变化规律。计算结果表明:高反射膜具有多级反射旁瓣,且角谱选择性带宽较宽,而带通滤光片无透射旁瓣,且角谱选择性带宽较窄。因此带通滤光片具有较好的空间低通滤波性能。本文提出一种利用串联级联两片四腔带通滤光片的空间低通滤波装置设计方案,并分析其二维空间低通滤波的性能。
     3.基于Rugate薄膜的空间低通滤波技术
     用传输矩阵理论研究Rugate薄膜的三种类型——啁啾Rugate膜系、切趾Rugate膜系以及相移Rugate膜系的衍射特性,分析这三种Rugate薄膜的衍射效率,以及角谱选择性与光谱选择性带宽随薄膜参量的变化规律,得出了切趾和相移Rugate薄膜可有效抑制旁瓣,相移Rugate薄膜较切趾Rugate薄膜具有更窄的角谱选择性带宽等结论。分别利用切趾Rugate薄膜和相移Rugate薄膜,组成空间低通滤波装置,并分析了这两种装置的空间低通滤波效果。综述了制备折射率渐变膜系的共相沉积法和斜向沉积法。
     根据高功率激光系统对空间低通滤波的需求,对以上三种候选技术进行比较,得出如下结论:
     现阶段的全息工艺在记录介质中形成正弦周期性折射率分布,全息法制备的透射型体光栅的角谱选择性可以达到100μrad量级,然而受限于其衍射旁瓣及“散射”,这类体光栅的角谱选择性指标在现阶段不能满足高功率激光器空间低通滤波的需求。切趾和相移反射型体光栅能满足高功率激光系统空间低通滤波的指标要求(≤20~40倍衍射极限)。增大光热折变玻璃的折射率调制度,制备大通光口径切趾、相移体光栅,是使光热折变体光栅满足高功率激光空间低通滤波需求的必要条件。
     基于带通滤光片的空间低通滤波器具有100μrad量级的角谱选择性带宽,适合用于准单色光的空间低通滤波。Rugate薄膜的周期(准周期)性结构具有多样化的特点,利用切趾和相移等膜系,能提高滤波器的角谱选择性。相移型Rugate薄膜具有比带通滤光片更高的抗光损伤阈值、更小膜层应力,以及更好的抑制旁瓣的效果,适合用于大口径、高功率激光空间低通滤波。
     高功率激光器中,针孔滤波器焦平面处光强>>10~(12) W/cm~2,容易诱发等离子体,产生等离子体堵孔等现象。针孔板的材料容易被激光烧蚀,作为硬边光阑,针孔容易形成低频衍射环。透镜与针孔的组合,起到了限制提升激光器输出功率水平的瓶颈作用。在空间低通滤波器中避免使用透镜,是克服针孔滤波技术上述缺点的有效措施。本文取得Rugate薄膜、多层介质薄膜和体光栅等三种新型空间低通滤波器的研究进展,是探索非聚焦型滤波器取代聚焦型滤波器的一次成功尝试。
     非聚焦型空间滤波器在超短脉冲滤波及热稳定性方面存在不足,在制备具有复杂函数分布的周期性光学结构的工艺方面存在困难,论文初步讨论了克服缺点、解决困难的技术措施。
High-power laser with fine beam quality is significant for its applications in inertial confinement fusion system, laser manufacturing, laser weapon, and so on. Low-pass spatial filtering is one of the key techniques to control and refine the beam quality.
     Based on whether the beam must be focused or not, spatial filtering can be classified into two categories. One is the focusing method, and the other is the non-focusing method. The former method is very mature, while the latter one is in the preliminary situation.
     According to the special requirements of spatial filtering for high-power laser beam, three innovative spatial filtering techniques without focusing——volume grating, multilayer dielectric film, and Rugate coating are analyzed.
     Based on Kogelnik’s coupled wave theory, rigorous coupled wave theory, and matrix transfer method, the principles of periodic and quasi-periodic optical structures are investigated. The feasibility of the substitution of the non-focusing spatial filter for pin-hole filter is validated experimentally. The main contents and conclusions are as follows.
     1. non-focusing spatial filtering technique based on volume grating
     The diffraction and propagation characteristics of quasi-monochromatic plane wave by volume grating are analyzed theoretically. And the diffraction and propagation characteristics of ultra-short Gaussian laser pulse by transmitting and reflecting volume grating are investigated intensively. The condition of the diffraction with high efficiency and fidelity is achieved. The diffraction efficiency equation for the ultra-short laser pulse by transmitting volume grating is rectified.
     The configuration of spatial filtering without focusing based on volume grating is designed. The angular spectrum selectivity and filtering performances between transmitting and reflecting volume grating are compared with each other. The results show that reflecting volume grating has the advantages of high stability and wavelength-tunability over transmitting one.
     The transmitting volume grating is fabricated. And it has the relative diffraction efficiency up to 90% at 632.8 nm. The bandwidths of its diffractive angular spectrum with the change of the grating’s period and thickness are measured. The results show that the measured data are in good accordance with those by refined Kogelnik’s coupled wave theory. Using the transmitting volume grating recorded in Photo-Thermal Refractive glass (PTR glass), the low-pass spatial filtering of the spatially-deformed laser is realized. Compared with the results by pin-hole filter, the reliability of the non-focusing spatial filter is validated experimentally. In the experiment, the spatially-deformed laser beams are produced by He-Ne laser modulated by the amplitude plates, which has duty cycle of 1: 1 and the frequency of 7.2 mm~(-1) and 3.0 mm~(-1), respectively. The spatial profile of the deformed beam with the high frequency modulation (7.2 mm~(-1)) diffracted by the volume grating is similar to that of the undeformed one, while that with the low frequency modulation (3.0 mm~(-1)) is not.
     The coincidence between the theoretical analysis and the experimental results show that the diffractive side-lobes of the volume grating may greatly influence its filtering performance. The relative permittivity of the common volume grating is sinusoidally-modulated. Though its angular spectrum bandwidth may be up to 100μrad, its spatial filtering performance can not achieve the fine performance of the 100μrad due to the side-lobes. Aiming at the limitations, the phase-shifted configuration of the combination of two pieces of non-slanted volume grating is conceived to improve the angular selectivity. The apodized and phase-shifted non-slanted reflecting volume grating is put forward to suppress the side-lobes in order to enhance the filtering performance.
     2. non-focusing spatial filtering technique based on multilayer dielectric film
     By the matrix transfer method, the diffraction efficiencies, angular spectrum bandwidths, and the light spectrum bandwidths of two basic categories of multilayer dielectric film——high reflectance film and bandpass filter are analyzed. The results show that high reflectance film has lots of side-lobes and broad bandwidth, while bandpass filter does not. So bandpass filter has better spatial filtering performance than high reflectance film. In this thesis, the configuration of two pieces of four-etalon bandpass filter cascaded is designed. And its two-dimensional spatial filtering performance is studied.
     3. non-focusing spatial filtering technique based on Rugate coating
     By the matrix transfer method, the diffraction characteristics of chirped, apodized and phase-shifted Rugate coatings are investigated. Their diffraction efficiencies, angular spectrum bandwidths and light spectrum bandwidths with the change of the parameters are analyzed. The results show that apodized and phase-shifted Rugate coatings can suppress side-lobes efficiently. And the angular spectrum bandwidth of the phase-shifted coating is narrower than that of the apodized one. Using apodized and phase-shifted Rugate coatings, the configurations of low-pass spatial filter are designed, respectively. And their performances are analyzed. Two kinds of the fabrication of Rugate coating——codoposition and glancing-angle decomposition method are reviewed.
     According to the special requirements of the high-power laser system, three aforementioned techniques are compared with each other. The results are as follows.
     Currently, the holography techniques can fabricate sinusodially-modulated refractive index easily. Though the angular spectrum bandwidth of the transmitting volume holographic gratings may be up to 100μrad, they can not meet the requirements of the high-power system due to their diffractive side-lobes and dispersion. Apodized and phase-shifted reflecting volume grating can meet the requirements (≤20~40 diffraction limit). Improving the refractive index modulation amplitude of the PTR glass, and fabricating apodized and phase-shifted volume grating with large cross section, are the requisite conditions to make the PTR volume grating facilitate its application for high-power laser system.
     The angular spectrum bandwidth of bandpass filter is up to 100μrad. It is very useful for the spatial filtering of the laser with narrow light spectrum. Rugate coating has lots of diversified kinds of periodic and quasi-periodic structures. The angular spectrum selectivity can be improved by the apodized and phase-shifted coating. Phase-shifted Rugate coating has the higher laser-damage threshold, lower stress, and more efficient side-lobe suppression than bandpass filter. So it facilitates the low-pass spatial filtering of high-power laser beam with large cross section.
     In the high-power laser system, the intensity at the focal plane of the pin-hole filter is more than 10~(12) W/cm~2. So the plasma closure may be probably caused. And the material of the pin-hole plate is easily burned. As a hard-edge diaphragm, the low-frequency diffractive rings are likely to appear. The combination of lens and pin-hole has the performance to limit the enhancement of the output power of the laser. Low-pass spatial filtering without focusing can surmount the drawbacks of the pin-hole filter. The low-pass spatial filters based on Rugate coating, multilayer dielectric film, and volume grating are analyzed. And their filtering performances are validated. The non-focusing low-pass spatial filter is successfully explored to substitute for focusing one.
     There are several disadvantages of the non-focusing filter, such as the limitation of its usage for the ultra-short laser pulse and limited thermal stability. And it is difficult to fabricate the periodic optical structure with complex function. The techniques to overcome the drawbacks and solve the problem are discussed preliminarily.
引文
[1] J. T. Hunt, P. A. Renard, and W. W. Simmons. Improved performance of fusion lasers using the imaging properties of multiple spatial filters[J]. Applied Optics, 1977, 16(4): 779~782
    [2] W. W. Simmons, D. R. Speck, and J. T. Hunt. Argus laser system: performance summary[J]. Applied Optics, 1978, 17(7): 999~1005
    [3] J. T. Hunt, J. A. Glaze, W. W. Simmons, et al. Suppression of self-focusing through low-pass spatial filtering and relay imaging[J]. Applied Optics, 1978, 17(13): 2053~2057
    [4] Bruno M. Van Wonterghem, John R. Murray, Jack H. Campbell, and et al. Performance of a prototype for a large-aperture multipass Nd: glass laser for inertial confinement fusion[J]. Applied Optics, 1997, 21(20): 4932~4953
    [5] James E. Murray, David Milam, Charles D. Boley, and et al. Spatial filter pinhole development for the national ignition facility[J]. Applied Optics, 2000, 39(9): 1405~1419
    [6] John T. Hunt. National ignition facility performance review 1999[R]. California: University of California? Livermore, 2000
    [7] J. H. Campbell, R. A. Hawley-Fedder, C. J. Stolz, and et al. NIF optical materials and fabrication technologies: an overview[C]. Proc. of SPIE, 2004, 5341: 84~101
    [8] Liu Daizhong, Lu Fengnian, Cao Jinzhou, et al. Design and application of a laser beam alignment system based on the imaging properties of a multi-pass amplifier[J]. Chinese optics letters, 2006, 4(10): 601~604
    [9] A. K. Potemkin, T. V. Barmashova, A. V. Kirsanov, et al. Spatial filters for high– peak - power multistage laser amplifiers[J]. Applied Optics, 2007, 46(20): 4423~4430
    [10] Tao Peng, Jianlin Zhao, Liangping Xie, et al. Simulation analysis of the restraining effect of a spatial filter on a hot image[J]. Applied Optics, 2007, 46(16): 3205~3209
    [11] Bonghoon Kang, Gi-Tae Joo, and Bum Ku Rhee. Optimization of the input fundamental beam by using a spatial filter consisting of two apertures[J]. Journal of the Korean Physical Society, 2010, 56(1): 325~328
    [12]陈怀新,彭耀昌,程进.振幅调制与位相畸变光束通过空间滤波-像传递系统的传输[J].四川大学学报, 2001, 38(6): 848~851
    [13] William W. Simmons, John T. Hunt, and William E. Warren. Light propagation through large laser systems[J]. IEEE journal of Quantum Electronics, 1981, 17(9): 1727~1744
    [14] John Caird, Vivek Agrawal, Andy Bayramian, and et al. Nd: glass laser design for laser ICF fission energy (LIFE)[J]. Fusion science and technology, 2009, 56: 607~617
    [15] C. A. Haynam, P. J. Wegner, J. M. Auerbach, and et al. National ignition facility laser performance status[J]. Applied Optics, 2007, 46(16): 3276~3303
    [16] S. C. Burkhart, E. Bliss, P. Di Nicola, and et al. National ignition facility system alignment[J]. Applied Optics, 2011, 50(8): 1136~1157
    [17]刘红婕,景峰,左言磊等.高功率激光束波前空间频率划分研究[J].光子学报, 2006, 35(10): 1464~1467
    [18] Olivier Morice. Miró: Complete modeling and software for pulse amplification and propagation in high-power laser systems[J]. Optical Engineering, 2003, 42(6): 1530~1541
    [19]隋展.高功率激光系统中的光束全息控制[D].上海:复旦大学, 2006: 35
    [20]王方,朱启华,蒋东镔等.多程放大系统中自激振荡的分析和抑制[J].激光杂志, 2005, 26(3): 19~20
    [21]张鑫,袁强,赵军普等.高功率激光系统空间滤波小孔等离子体特性[J].强激光与粒子束, 2010, 22(12): 2921~2924
    [22]王方,粟敬钦,王文义等.内腔四程放大高功率激光系统寄生振荡[J].强激光与粒子束, 2009, 21(8): 1183~1186
    [23]张鑫,刘红婕,赵军普等.高功率固体激光系统空间滤波小孔尺寸设计[J].激光与光电子学进展[J]. 2010, 47: 111402-1~111402-5
    [24]刘红婕,景峰,李强等.高功率固体激光装置空间滤波器小孔对输出光束质量的影响[J].云南大学学报, 2005, 27(5A): 184~189
    [25] Yan-Qi Gao, Bao-Qiang Zhu, Dai-Zhong Liu, and et al. Characteristics of beam alignment in high power four-pass laser amplifier[J]. Applied Optics, 2009, 48(8): 1591~1597
    [26] Yan-Qi Gao, Bao-Qiang Zhu, Dai-Zhong Liu, and et al. Influences of the alignment andmisalignment spatial filters on the beam quality in high power laser systems[J]. Journal of Optics, 2010, 12: 095704-1~095704-9
    [27] Peter M. Celliers, Kent G. Estabrook, Russell J. Wallace, and et al. Spatial filter pinhole for high-energy pulsed lasers[J]. Applied Optics, 1998, 37(12): 2371~2378
    [28] Sucharita Sinha, K. Dasgupta, S. Sasikumar, et al. Saturable-absorber-based spatial filtering of high-power laser beams[J]. Applied Optics. 2006, 45(20): 4947~4956
    [1]王三宏.随机并行梯度下降自适应光学技术在光束净化中的应用[D].长沙:国防科学技术大学, 2009. 11~24.
    [2] George B. Venus, Armen Sevian, Vadim I. Smirnov. Stable coherent coupling of laser diodes by a volume Bragg grating in photothermorefractive glass [J]. Optics Letters, 2006, 31 (10): 1453~1455
    [3] Yushi Kaneda, Li Fan, Ta-Chen Hsu, and et al. High brightness spectral beam combination of high-power vertical-external-cavity surface-emitting lasers[J]. IEEE photonics technology letters, 2006, 18(17): 1795~1797
    [4] Armen Sevian, Oleksiy Andrusyas, Igor Ciapurin, et al. Efficient power scaling of laserradiation by spectral beam combining [J]. Optics Letters, 2008, 33 (4): 384~386
    [5] Armen Sevian, Oleksiy Andrusyas, Igor Ciapurin, et al. Efficient power scaling of laser radiation by spectral beam combining: erratum [J]. Optics Letters, 2008, 33 (7): 760
    [6] Oleksiy Andrusyak, Vadim Smirnov, George Venus, and et al. Spectral combining and coherent coupling of lasers by volume Bragg gratings[J]. IEEE Journal of selected topics in quantum electronics, 2009, 15(2): 344~353
    [7] David Brady, Alan G. S. Chen, and George Rodriguez. Volume holographic pulse shaping[J]. Optics Letters, 1992, 17(8): 610~612
    [8] Kent B. Hill and David Brady. Pulse shaping in volume reflection holograms[J]. Optics Letters, 1993, 18(20): 1739~1741
    [9] Wang Chunhua, Liu Liren, Yan Aimin, Liu Dean, Li Dashan, and Qu Weijuan. Pulse shaping properties of volume holographic gratings in anisotropic media[J]. J. Opt. Soc. Am. A, 2006, 23(12): 3191~3196
    [10] Wang Chunhua, Liu Liren, Yan Aimin, Liu Dean, Li Dashan, and Zhou Yu. Three dimensional coupled wave study for finite sized anisotropic volume holographic gratings under ultrashort pulsed beam readout. J. Opt. Soc. Am. A, 2007, 24(6): 1799~1807
    [11] J. Lumeau and L B Glebov. Tunable narrowband filter based on a combination of Fabry-Perot etalon and volume Bragg grating [J]. Optics Letters, 2006, 31 (16): 2417~2419
    [12] Lawrence Domash, Ming Wu, Nikolay Nemchuk, and et al. Tunable and switchable multiple-cavity thin film filters[J]. Journal of lightwave technology, 2004, 22(1): 126~135
    [13]赵磊,隋展,朱启华等.用于补偿增益窄化效应的Rugate滤波器设计[J].物理学报, 2009, 58(6): 3977~3982
    [14] Ondax.Volume holographic gratings [EB/OL]. Http:// www. Ondax. com, 2005
    [15] D. Peri and A. A. Friesem. Image restoration using volume diffraction gratings[J]. Optics Letters, 1978, 3(4): 124~126
    [16] D. Peri and A. A. Friesem. Volume holograms for image restoration[J]. J. Opt. Soc. Am., 1980, 70(5): 515~522
    [17] D. Peri and D. Ritter. Spatial filtering with volume grating[J]. Applied Optics, 1985, 24(10): 1535~1985
    [18] Yu. L. Korzinin, I. V. semenova, N. O. Reinhand, and J. E. Ludman. Holographic nonspatial filter for laser beams: 2D selection[C]. Proc. of SPIE, 1996, 2778, 35~36
    [19] Jacques E. Ludman, Juanita R. Riccobono, Reinhand N O, and et al. Very thick holographic nonspatial filtering of laser beams [J]. Optical Engineering, 1997, 36 (6): 1700~1705
    [20] Michele Henrion, Jacques Ludman, Gennadi Sobolev, and et al. Two-dimensional holographic nonspatial filtering for laser beams[C]. Proc. of SPIE, 1998, 3417: 195~206
    [21] D. Schurig and D. R. Smith. Spatial filtering using media with indefinite permittivity and permeability tensors[J]. Applied Physics Letters, 2003, 82(14): 2215~2217
    [22] Tang Zhixiang, Zhang Hao, Ye Yunxia, et al. Low-pass spatial filtering using optically thinner left-handed photonic crystals[J]. IEEE CNF: Biophonics, Nanophotonics and Metamaterials, 2006, 488~491
    [23]项元江,唐志祥,文双春等.基于人工介质的低通空间滤波器[J].中国激光, 2008, 35(3): 85~89
    [24]李彪,陈怀新,隋展等.基于晶体旋光效应的近场光学空间滤波[J].强激光与粒子束, 2006, 18(1): 41~44
    [25]金国藩,谭峭峰,严瑛白等.二元光学在强激光波面整形中的应用[J].中国工程科学, 2000, 6: 27~32
    [26] John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and et al. Photonic Crystals: Molding the flow of light (second edition)[M]. Princeton: Princeton University Press, 2008: 4
    [27] V. G. Veselago. The electrodynamics of substances with simultaneously negative values ofεandμ[J]. Sov. Phys. Usp., 1968, 10(1): 509~514
    [28] Xiang Yuanjiang, Dai Xiaoyu, Wen Shuangchun, and et al. Omnidirectional and multiple-channeled high quality filters of photonic heterostructures containing single-negative materials[J]. J. Opt. Soc. Am. A., 2007, 24(10): A28~A32
    [29] Xiang Yuanjiang, Dai Xiaoyu, and Wen Shuangchun. Omnidirectional gaps of one-dimensional photonic crystals containing indefinite metamaterials[J]. J. Opt. Soc. Am. B., 2007, 24(9): 2033~2039
    [30] H. Kogelnik. Coupled wave theory for thick hologram gratings [J]. The Bell Syst. Technol. J, 1969, 48 (9): 2909~2947
    [31] M. G. Moharam and T. K. Gaylord. Three-dimensional vector coupled-wave analysis of planar-grating diffraction [J]. J. Opt. Soc. Am, 1983, 73 (9): 1105~1112
    [32] E. N. Glytsis and T. K. Gaylord. Rigorous three-dimensional coupled-wave diffraction analysis of single and cascaded anisotropic gratings[J]. J. Opt. Soc. Am. A., 1987, 4(11):2061~2080
    [33] M. G. Moharam and T. K. Gaylord. Chain-matrix analysis of arbitrary-thickness dielectric reflection gratings[J]. J. Opt. Soc. Am., 1982, 72(2): 187~190
    [34] David J. Mccartney. The analysis of volume reflection gratings using optical thin-film techniques[J]. Optical and quantum electronics, 1989, 21: 93~107
    [35] L. Solymar and C. J. R. Sheppard. A two-dimensional theory of volume holograms with electric polarization in the plane of the grating[J]. J. Opt. Soc. Am., 1979, 69(4): 491~495
    [36] L. Solymar, D. J. Cooke. Volume Holography and Volume Gratings [M]. London: Academic Press, 1981:164~203, 229~253
    [37] R. Alferness. Analysis of Optical Propagation in Thick Holographic Gratings [J]. Applied Physics, 1975 (7): 29~33
    [38] C. Neipp, A. Márque, A. Hernandez, et al. Thin and thick diffraction gratings: Thin matrix decomposition method [J]. Optik, 2004, 115 (9): 385~392
    [39] Kun-Yii Tu, Theodor Tamir, and Hyuk Lee. Multiple-scattering theory of wave diffraction by superposed volume grating[J]. J. Opt. Soc. Am. A., 1990, 7(8): 1421~1435
    [40] Kun-Yii Tu and Theodor Tamir. Wave diffraction by many superposed volume gratings[J]. Applied Optics, 1993, 32(20): 3654~3660
    [41] Kun-Yii Tu and Theodor Tamir. Full-wave multiple-scattering analysis of diffraction by superposed gratings[J]. J. Opt. Soc. Am. A., 1994, 11(1): 181~196
    [42] Shun-Der Wu and Elias N. Glytsis. Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method[J]. J. Opt. Soc. Am. A., 2002, 19(10): 2018~2029
    [43] Shun-Der Wu and Elias N. Glytsis. Volume holographic grating couplers: rigorous analysis by use of the finite-difference frequency-domain method[J]. Applied Optics, 2004, 43(5): 1009~1023
    [44] Leo A. Siiman, Julien Lumeau, Lionel Canioni, and et al. Ultrashort laser pulse diffraction by transmitting volume Bragg gratings in photo-thermo-refractive glass[J]. Optics Letters, 2009, 34(17): 2572~2574
    [45] Ruey-Shi Chu and Theodor Tamir. Bragg diffraction of Gaussian beams by periodically modulated media[J]. J. Opt. Soc. Am., 1976, 66(3): 220~226
    [46] Ruey-Shi Chu and Theodor Tamir. Bragg diffraction of Gaussian beams by periodically modulated media for incidence close to a Bragg angle[J]. J. Opt. Soc. Am., 1976, 66(12): 1438~1440
    [47] M. G. Moharam, T. K. Gaylord, and R. Magnusson. Bragg diffraction of finite beams by thick gratings[J]. J. Opt. Soc. Am., 1980, 70(3): 300~304
    [48] M. G. Moharam, T. K. Gaylord, and R. Magnusson. Diffraction characteristics of three-dimensional crossed-beam volume gratings[J]. J. Opt. Soc. Am., 1980, 70(4): 437~442
    [49] Shun-Der Wu, T. K. Gaylord,E. N. Glytsis, and et al. Three-dimensional converging-diverging Gaussian beam diffraction by a volume grating[J]. J. Opt. Soc. Am. A., 2005, 22(7): 1293~1304
    [50] Y. Ding and D. D. Nolte. Bandwidth study of volume holography in photorefractive InP: Fe for femtosecong pulse readout at 1.5μm[J]. J. Opt. Soc. Am. B., 1998, 15(11): 2763~2768
    [51] N. V. Ionina. Features of the diffraction of pulsed femtosecond radiation at a transmissive holographic volume grating[J]. J. Opt. Technol, 2009, 76(6): 345~349
    [52]周炳琨,高以智,陈倘嵘等.激光原理[M].北京:国防工业出版社, 2000, 69~87
    [53] Igor V. Ciapurin, Leonid B. Glebov, and Vadim I. Smirnov. Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings[J]. Optical Engineering, 2006, 45(1): 015802-1~015802-9
    [54]刘思敏,郭儒,许京军.光折变非线性光学及其应用[M].北京:科学出版社, 2004, 65
    [1] Hung-Te Hsieh. Operation of holographic elements with broadband light sources[D]. California: California institute of technology, 2005: 2
    [2] George B. Venus, Armen Sevian, Vadim I. Smirnov. Stable coherent coupling of laser diodes bya volume Bragg grating in photothermorefractive glass [J]. Optics Letters, 2006, 31 (10): 1453~1455
    [3] Yushi Kaneda, Li Fan, Ta-Chen Hsu, and et al. High brightness spectral beam combination of high-power vertical-external-cavity surface-emitting lasers[J]. IEEE photonics technology letters, 2006, 18(17): 1795~1797
    [4] Oleksiy Andrusyak, Igor Ciapurin, Vadim Smirnov, and et al. Spectral beam combining of fiber lasers with increased channel density[C]. Proc. of SPIE, 2007, 6453: 64531L-1~64531L-7
    [5] Armen Sevian, Oleksiy Andrusyak, Igor Ciapurin, and et al. Ultimate efficiency of multi-channel spectral beam combiners by means of volume Bragg gratings[C]. Proc. of SPIE, 2007, 6453: 64530R-1~64530R-8
    [6] Armen Sevian, Oleksiy Andrusyas, Igor Ciapurin, et al. Efficient power scaling of laser radiation by spectral beam combining [J]. Optics Letters, 2008, 33 (4): 384~386
    [7] Armen Sevian, Oleksiy Andrusyas, Igor Ciapurin, et al. Efficient power scaling of laser radiation by spectral beam combining: erratum [J]. Optics Letters, 2008, 33 (7): 760
    [8] Oleksiy G. Andrusyak. Dense spectral beam combining with volume Bragg gratings in photo-thermo-refractive glass[D]. Florida: University of Central Florida, 2009: 63~79
    [9] Alexei L. Glebov, Akio Sugama, Vadim I. Smirnov, and et al. Angle selective enhancement of beam deflection in high-speed electrooptic switches[J]. IEEE photonics technology letters, 2007, 19(9): 701~703
    [10] David Brady, Alan G. S. Chen, and George Rodriguez. Volume holographic pulse shaping[J]. Optics Letters, 1992, 17(8): 610~612
    [11] Kent B. Hill and David Brady. Pulse shaping in volume reflection holograms[J]. Optics Letters, 1993, 18(20): 1739~1741
    [12] Y. Ding and D. D. Nolte. Bandwidth study of volume holography in photorefractive InP: Fe for femtosecong pulse readout at 1.5μm[J]. J. Opt. Soc. Am. B., 1998, 15(11): 2763~2768
    [13] Karsten Buse and Psaltis. Tunable holographic filter[P]. United States Patent: 6844946, 2005-1-18
    [14] Demetri Psaltis, Christophe Moser, Greg Steckman, and et al. Tunable holographic drop filter with quasi phase-conjugate fiber coupling[P]. United States Patent: 6987907, 2006-1-17
    [15] Ricardo A. Villalaz. Volume grating couplers for optical interconnects: analysis, design, fabrication and testing[D]. Georgia: Georgia institute of technology, 2004: 15~37
    [16] Shun-Der Wu. Thomas K. Gaylord, Eilas N. Glytsis, and et al. Angular sensitivities of volume gratings for substrate-mode optical interconnetcts[J]. Applied Optics, 2005, 44(21): 4447~4453
    [17] George Anthony Rakuljic, Amnon Yariv, Victor Leyva, and et al. Wavelength stabilized laser sources using feedback from volume holograms[P]. United States Patent: 5691989, 1997-11-25
    [18] P(a|¨)r Jelger and Fredrik Laurell. Efficient narrow-linewidth volume-Bragg grating-locked Nd: fiber laser [J]. Optics Express, 2007, 15 (18): 11336~11340
    [19] J. Lumeau and L B Glebov. Tunable narrowband filter based on a combination of Fabry-Perot etalon and volume Bragg grating [J]. Optics Letters, 2006, 31 (16): 2417~2419
    [20] George B. Venus, Armen Sevian, Vadim I. Smirnov, et al. High-brightness narrow-line laser diode source with volume Bragg-grating feedback[C]. Proc. of SPIE, 2005, 5711: 166~176
    [21] Leonid B. Glebov. High brightness laser design based on volume Bragg gratings[C]. Proc. of SPIE, 2006, 6216: 621601-1~621601-11
    [22] T. Chung, A. Rapaport, Y. Chen, et al. Spectral narrowing of solid state lasers by narrow– band PTR Bragg mirrors [C]. Proc. of SPIE, 2006, 6216:03-1~03-10
    [23] Kai-Hsiu Liao, Ming– Yuan Cheng, Emilie Flecher, et al. Large-aperture chirped volume Bragg grating based fiber CPA system [J]. Optics Express. 2007, 15 (8): 4876~4882
    [24] Frank Havermeyer, Wenhai Liu, and Christophe Moser. Volume holographic grating–based continuously tunable optical filter [J]. Optical Engineering, 2004, 43 (9): 2017~2021
    [25] A. Gourevitch, G. Venus, V. Smirnov, and et al. Efficient pumping of Rb vapor by high-power volume Bragg diode laser[J]. Optics Letters, 2007, 32(17), 2611~2613
    [26] Julien Lumeau, Vadim Smirnov, Fabien Lemarchand, and et al. Large aperture tunable ultra narrow band Fabry-Perot-Bragg filter[C]. Proc. of SPIE, 2007, 6469: 64690M-1~64690M-7
    [27] Spilios Riyopoulos, G. Venus, and L. Gleboe. Mode selection and phase locking of sidelobes emitting semiconductor laser arrays using an external cavity with a narrow-bandwidth volume grating[C]. Proc. of SPIE, 2007, 6456: 645613-1~ 645613-5
    [28] George Venus, Leonid Glebov, Vasile Rotar, and et al. Volume Bragg semiconductor lasers with near diffraction limited divergence[C]. Proc. of SPIE, 2006, 6216: 621602-1~621602-7
    [29] Michaёl Hemmer, Yann Joly, Leonid Glebov, and et al. Volume Bragg grating assisted broadband tenability and spectral narrowing of Ti: Sapphire oscillators[J]. Optics Express, 2009, 17(10): 8212~8219
    [30] C. C. Tsai, B. Ya. Zeldovich, L. B. Glebov, and et al. Cross-gratings volume hologram: backward reflection with high angular and spectral selectivity[J]. Optics Express, 2006, 14(21): 9558~9563
    [31] D. Peri and A. A. Friesem. Image restoration using volume diffraction gratings[J]. Optics Letters, 1978, 3(4): 124~126
    [32] D. Peri and A. A. Friesem. Volume holograms for image restoration[J]. J. Opt. Soc. Am., 1980, 70(5): 515~522
    [33] D. Peri and D. Ritter. Spatial filtering with volume grating[J]. Applied Optics, 1985, 24(10): 1535~1985
    [34] Yu. L. Korzinin, I. V. semenova, N. O. Reinhand, and J. E. Ludman. Holographic nonspatial filter for laser beams: 2D selection[C]. Proc. of SPIE, 1996, 2778, 35~36
    [35] Jacques E. Ludman, Juanita R. Riccobono, Reinhand N O, and et al. Very thick holographic nonspatial filtering of laser beams [J]. Optical Engineering, 1997, 36 (6): 1700~1705
    [36] Jacques E. Ludman and Timothy D. Upton. Single-element holographic nonspatial filter[C]. Proc. of SPIE, 2003, 5005, 375~379
    [37]张光勇,章鹤龄。具有空间滤波性能的全息滤波器[J]。首都师范大学学报(自然科学版),1997,18 (3):41~44
    [38]傅恩生.用腔内布拉格光栅改善激光源的空间光束质量[J].激光与光电子学进展, 2003, 40(12): 24~26
    [39]郑浩斌,何焰蓝,谭吉春等.用于实现空间低通滤波的体布拉格光栅的制备[J].光电工程, 2009, 36(1): 125~130
    [40]郑光威,何焰蓝,黄水花等.透射型体相位光栅对连续激光光束空间低通滤波研究[J].光学学报, 2009, 29(4): 863~868
    [41] He Yanlan, Zheng Haobin, Tan Jichun, and et al. Two-dimensional non-spatial filtering baesd on holographic Bragg gratings[J]. Chinese Physics B, 2010, 19(7): 074215-1~074215-6
    [42] Tan Yizhou, Yang Yisheng, Zheng Guangwei, and et al. Spatial filter with volume gratings for high-peak-power multistage laser amplifier[J]. Proc. of SPIE, 7789
    [43]谭吉春.高功率激光衍射型空间滤波器[P].中国发明专利: 200910312157, 2009-12-24
    [44]郑光威,谭吉春,何焰蓝等.反射型体相位光栅对连续激光光束空间低通滤波[J].光学学报, 2010, 30(6): 1554~1559
    [45] Zheng Guangwei, Shen Benjian, Tan Jichun, and et al. Experimental research on spatial filtering of deformed laser beam by transmitting volume Bragg grating[J]. Chinese Optics Letters, 2011, 9(3): 030501-1~030501-3
    [46] Shi Liansheng, Nie Yiran, Liu Xinrong, and et al. Growth and holographic storage properties of Mn:LiNbO3 crystal with vary Li/Nb ratio[C]. Proc. of SPIE, 2002, 4930: 385~388
    [47] Zhao Yequan, Fang Shuangquan, Xu Wusheng, and et al. Growth and holographic storage properties of Mg:Fe:LiTaO3 crystal[C]. Proc. of SPIE, 2003, 5060: 231~234
    [48]许心光,许贵宝,胡大伟等.掺Ce,Fe系列LiNbO3晶体光折变效应光存储特性[J].光学学报, 2004, 24(7): 947~952
    [49]孙军,张玲,孔勇发等.大直径、高掺镁铌酸锂晶体的生长及其紫外光折变性能研究[J].人工晶体学报, 2005, 34(4): 576~580
    [50]王佳,王锐,刘维海等.不同Li/Nb比Mg: In: Fe: LiNbO3晶体的光折变性能研究[J].人工晶体学报, 2006, 35(5): 1012~1015
    [51]赵磊,隋展,朱启华等.用于补偿增益窄化效应的Rugate滤波器设计[J].物理学报, 2009,58(6): 3977~3982
    [52] Wang Chunhua, Liu Liren, Yan Aimin, Liu Dean, Li Dashan, and Qu Weijuan. Pulse shaping properties of volume holographic gratings in anisotropic media[J]. J. Opt. Soc. Am. A, 2006, 23(12): 3191~3196
    [53] Wang Chunhua, Liu Liren, Yan Aimin, Liu Dean, Li Dashan, and Zhou Yu. Three dimensional coupled wave study for finite sized anisotropic volume holographic gratings under ultrashort pulsed beam readout. J. Opt. Soc. Am. A, 2007, 24(6): 1799~1807
    [54] Yan aimin, Liu Liren, Zhi Yanan, and et al. Bragg diffraction of multilayer volume holographic gratings under ultrashort laser pulse readout[J]. J. Opt. Soc. Am. A, 2009, 26(1): 135~141
    [55] A. Yan, L. Liu, L. Wang, and et al. Pulse shaping and diffraction properties of multi-layers reflection volume holographic gratings[J]. Applied Physics B, 2009, 96: 71~77
    [56]程灿,辛国锋,封惠忠等.连续工作的体布拉格光栅外腔半导体激光器的温度特性[J].中国激光,2008,35(1):27~30
    [57]薄报学,高欣,乔忠良等.大功率体光栅外腔半导体激光器的输出特性[J].中国激光,2008,35 (4): 501~504
    [58] Feng Dejun, Kai Guiyun, Dong Xiaoyi, and et al. Numerical study of non-uniform reflection volume holographic grating[J]. Acta Photonica Sinica, 2001, 30(4): 417~421
    [59]占生宝,赵尚弘,胥杰等.基于透射体布拉格光栅频谱组束的研究[J].光电子?激光, 2008, 19(3): 318~321
    [60]楚兴春,赵尚弘,占生宝等.基于级联体光栅的光纤激光阵列谱组束[J].光学学报, 2008, 28(8): 1538~1542
    [61]王二虎,赵建林,李继锋.光折变多重体光栅的制作及应用[J].光子学报, 2005, 34(9): 1229~1232
    [62]宋军,庞冬青,何赛灵.光折变全息光栅扭曲对波分复用应用的影响[J].中国激光, 31(10): 1217~1221
    [63]万玉红,陶世荃,江竹青等.高密度盘式全息存储及其热固定的实验研究[J].中国激光, 2005, 32(3): 361~364
    [64]谢敬辉,张泽明,周元林. FeLiNbO3全息图热定影即H+浓度的影响[J].光子学报, 2003, 32(3): 344~347
    [65]阎晓娜,董良威.光折变铌酸锂晶体电光、压光效应研究[J].上海大学学报, 2005, 11(3): 282~286
    [66]冯国英,周寿桓.激光光束质量综合评价的探讨[J].中国激光, 2009, 36(7): 1643~1653
    [67]夏兰.高功率超短脉冲激光系统中光束传输技术研究[D].绵阳:中国工程物理研究院, 2001
    [68]夏兰,钱列加,王世绩.高能飞秒激光系统中空间滤波器的研究和设计[J].强激光与粒子束, 2003, 15(1): 2~5
    [69]彭翰生,张小民,范滇元等.高功率固体激光装置的发展与工程科学问题[J].中国工程科学, 2001, 3(3): 1~8
    [70]张鑫,袁强,赵军普等.高功率激光系统空间滤波小孔等离子体特性[J].强激光与粒子束, 2010, 22(12): 2921~2924
    [71] Leonid Glebov. Fluorinated silicate glass for conventional and holographic optical elements[C]. Proc. of SPIE, 2007, 6545, 654507-1~654507-9
    [72] Zheng Guangwei, Tan Jichun, He Yanlan, Zheng Haobin. High diffraction efficiency for ultra-short laser pulse by superposed reflection volume phase gratings[C]. Proc. of SPIE, 2009, 7506: 7561J-1~7561J-7
    [73]谭一舟.用于高功率激光二轴空间滤波器的热补偿装置[P].中国专利: 200920319168, 2009
    [74] Hong Shu and Michael Bass. Modeling the reflection of a laser beam by a deformed highly reflective volume Bragg grating[J]. Applied Optics, 2007, 46(15): 2930~2938
    [75] Hong Shu, Sergiy Mokhov, Boris Ya. Zeldovich, and et al. More on analyzing the reflection of a laser beam by a deformed highly reflective volume Bragg grating using iteration of the beam propagation method[J]. Applied Optics, 2009, 48(1): 22~27
    [76] Hong Shu. Split step solution in the iteration of the beam propagation method for analyzing Bragg gratings[J]. Applied Optics, 2009, 24(20): 4794~4800
    [77] Hong Shu. More on the iteration of the beam propagation method for analyzing Bragg gratings[j]. J. Opt. Soc. Am. A., 2010, 27(6): 1424~1431
    [78] Yin Suqin, Zhang Bin, and Dan Youquan. Effects of the deformation of reflection volume Bragg gratings on the M2-factor of super-Gaussian laser beams[J]. Optics Communications, 2010, 283: 1418~1423
    [79] Yin Suqin, Zhang Bin, and Dan Youquan. Propagation characteristics of annular laser beams passing through the reflection Bragg grating with deformation[J]. Optics and Laser Technology, 2010, 43: 787~794
    [80] Yin Suqin, Zhang Bin, and Dan Youquan. Propagation characteristics of the Yb-doped fiber lasers after spectral beam combining by the VBGs[J]. Optics Communications, 2011, 284: 306~311
    [1]唐晋发,顾培夫,刘旭等.现代光学薄膜技术[M].浙江:浙江大学出版社,2007: 107~108
    [2]唐晋发,顾培夫,刘旭等.现代光学薄膜技术[M].浙江:浙江大学出版社,2007: 146~147
    [3] Lawrence Domash, Ming Wu, Nikolay Nemchuk, and et al. Tunable and switchable multiple-cavity thin film filters[J]. Journal of lightwave technology, 2004, 22(1): 126~135
    [4] Gabriel Florin Tempea and Ferenc Krausz. Chirped multilayer mirror[P]. United States Patent: 7180670, 2007–2–20
    [5] Ivan Moreno and J. Jesus Araiza,. Thin-film optical filters for spatial frequencys[C]. Proc. of SPIE, 2004, 5524: 409~416
    [6] Ivan Moreno, J. Jesus Araiza, and Maximino Avendano-Alejo. Thin-film spatial filters[J]. Optics Letters, 2005, 30(8): 914~916
    [7]曹昌胜,罗斌,潘炜等.基于薄膜干涉滤光片的线性调谐滤光器[J].中国激光, 2005, 32(8): 1055~1058
    [8]余侃,刘文,黄德修等.基于薄膜滤光片的新型可重构光分插复用器[J].光学学报, 2008, 28(7): 1247~1251
    [9]顾培夫,李海峰,章岳光等.用于倾斜入射的波分复用薄膜滤光片的特性及改进[J].光学学报, 2003, 23(3): 377~380
    [10]梁冠全,韩鹏,汪河洲.空间与频率双性能的薄膜光学滤波器[J].物理学报, 2004, 53(7): 2197~2200
    [11] Shaoji Jiang, Jianrong Li, Jijia Tang, and et al. Multi-channel and sharp angular spatial filters based on one-dimensional photonic crystals[J]. Chinese Optics Letters, 2006, 4(10): 605~607
    [12]李建荣.光学薄膜多频滤波与空间滤波特性研究[D].广州:中山大学, 2007, 59~80
    [13] Xuezheng Sun, Peifu Gu, Mingyu Li, and et al. Tunable spatial demultiplexer based on the Fabry-Perot filter[J]. Optics Express, 2006, 14(18): 8470~8475
    [14]顾培夫,白胜元,李海峰.密集型波分复用薄膜干涉滤光片的设计[J].光学学报, 2002, 22(7): 794~797
    [15]余侃,刘文,黄德修等.角度调谐滤光片的膜系优化设计算法[J].中国激光, 2007, 34(9): 1287~1291
    [16]余侃,黄德修,樊玲等.角度调谐滤光片带宽消偏振研究[J].光学学报, 2010, 30(1): 214~217
    [17] S. De Silvestri, P. Laporta, V. Magni, and et al. Unstable laser resonators with super-Gaussian mirrors[J]. Optics Letters, 1988, 13(3): 201~203
    [18]罗时荣,吕百达,张彬.平顶高斯光束与超高死光束传输特性的比较研究[J].物理学报, 1999, 48(8): 1446~1451
    [19]吕百达,罗时荣.强激光的计算模拟:平顶高斯光束模型[J].红外与激光工程, 2001, 30(6): 457~461
    [20] F. Gori. Flattened Gaussian beam[J]. Optics Communicaiton, 1994, 107: 335~341
    [21] V. Bagini, R. Borghi, F. Gori, and et al. Propagation of axially symmetric flattened Gaussianbeams[J]. J. Opt. Soc. Am. A., 1996, 13(7): 1385~1394
    [22] M. Ibnchaikh and A. Belafhal. Closed-form propagation expressions of flattened Gaussian beams through an apertured ABCD optical system[J]. Optics Communication, 2001, 193, 73~79
    [23] Anthony A. Tovar. Propagation of flat-topped multi-Gaussian laser beams[J]. J. Opt. Soc. Am. A, 2001, 18(8): 1897~1904
    [24] Gao Yanqi, Zhu Baoqiang, Liu Daizhong,and et al. Propagation of flat-topped multi-Gaussian beams through a double-lens system with apertures[J]. Optics Express, 2009, 17(15): 12753~12766
    [25]刘红婕.高功率激光束中高频位相畸变特性的研究[D].绵阳:中国工程物理研究院, 2005:19
    [26]刘红婕,景峰,左言磊等.高功率激光束波前空间频率划分研究[J].光子学报,2006, 35(10):1464~1467
    [27]王方,粟敬钦,王文义等.内腔四程放大高功率激光系统寄生振荡[J].强激光与粒子束,2009,21(8):1183~1186
    [1] Bertrand G. Bovard. Rugate filter theory: an overview[J]. Applied Optics, 1993, 32(28): 5427~5442
    [2] W. H. Southwell and Randolph L. Hall. Rugate filter sidelobe suppression using quintic andrugated quintic matching layers[J]. Applied Optics, 1989, 28(14): 2949~2951
    [3] Bertrand G. Bovard. Fourier transform technique applied to quarterwave optical coatings[J]. Applied Optics., 1988, 27(15): 3062~3063
    [4] W. H. Southwell. Spectral response calculations of rugate filters using coupled-wave theory[J]. Applied Optics, 1988, 28(14): 2949~2951
    [5] W. H. Southwell. Using apodization functions to reduce sidelobes in rugate filters[J]. Applied Optics., 1989, 28(23): 5091~5094
    [6] Thomas D. Rahmlow. Rugate filter having suppressed harmonics[P]. United States Patent: 5523882, 1996–6–4
    [7] Thomas D. Rahmlow and Aaron Turner. Broadband Rugate filter[P]. United States Patent: 5475531, 1995–12–12
    [8] William J. gunning. Rugate filter incorporating parallel and series addition[P]. United States Patent: 4952025, 1990–8–28
    [9] Narayan P. Murarka, kent J. Kogler, Craig S. Bartholomew, and et al. Rugate optical filter systems[P]. United States Patent: 4837044, 1989–6–6
    [10] Rahmlow Thomas D. Rugate filter having suppressed harmonics[P]. European patent: 0623834A1, 1994–5–5
    [11] Andy C. van Popta, Matthew M. Hawkeye, Jeremy C. Sit, and et al. Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition[J]. Optics Letters. 2004, 29(21): 2545~2547
    [12]赵磊,隋展,朱启华等.用于补偿增益窄化效应的Rugate滤波器设计[J].物理学报,2009,58(6):3977~3982
    [13] Bertrand G. Bovard. Rugate filter design: the modified Fourier transform technique[J]. Applied Optics., 1990, 29(1): 24~30
    [14] William J. Gunning, Randolph L. Hall, Frank J. Woodberry, and et al. Codeposition of continuous composition rugate filter[J]. Applied Optics, 1989, 28(14): 2945~2948
    [15] Kevin Robbie, Gisia Beydaghyan, Tim Brown, et al. Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure[J]. Review of scientific instruments, 2004, 75(4): 1089~1097
    [16] R. Leitel, O. Stenzel, S. Wilbrandt, and et al. Fabrication and characterization of rugate structures composed of SiO2 and Nb2O5[J]. Optics and Precision Engineering, 2005, 13(4): 505~511
    [17] Tim K. L. Wong, Lukasz Brzozowski, and Edward H. Sargent. Analysis of non-quarter-wave grating by a modified Fourier-transform method[J]. Applied Optics., 2002, 41(32): 6763~6767
    [18] Federico Aguayo-Ríos, Francisco Villa-Villa, and Jorge A. Gaspar-Armenta. Dichroic Rugatefilters[J]. Applied Optics., 2006, 45(3): 495~500
    [19] Kevin Robbie, Gisia Beydaghyan, Tim Brown, and et al. Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure[J]. Review of scientific instruments, 2004, 75(4): 1089~1097
    [20] Adam John Nolte. Fundamental studies of polyelectrolyte multilayer films: optical, mechanical, and lithographic property control[D]. Massachusetts: Massachusetts institute of technology, 2007: 37~44
    [21] Stephan Fahr, Carolin Ulbrich, Thomas Kirchartz, and et al. Rugate filter for light-trapping in solar cells[J]. Optics Express, 2008, 16(13): 9332~9343
    [22] Zhao Lu. Multiple narrow bandpass optical filters based on one-dimensional Rugate photonic structures of two periodicities[J]. Optics Letters, 2011, 36(4): 573~575
    [23] Liu Y. Y. and Lu Z. Properties of Phase shift defects in one-dimensional Rugate photonic structures[J]. Progress in Electromagnetics Research, 2011, 111: 213~218
    [24] Liu Y. Y. and Lu Z. Phase shift defect modes in one-dimensional asymmetrical photonic structures consisting of two Rugate segments with different periodicities[J]. Progress in Electromagnetics Research, 2011, 112: 257~272
    [25] P. V. Usik, A. E. Serebryannikov, and Ekmel Ozbay. Spatial and spatial-frequency filtering using one-dimensional graded-index lattices with defects[J]. Optics Communications, 2009, 282: 4490~4496
    [26]战元龄,曲会忠,张铁群. Rugate光学薄膜通带内反射次峰的抑制[J].光学学报,1991, 11(2): 172~175
    [27]徐晓峰,赵文杰,范滨等.利用Rugate膜系实现宽角度减反射膜的设计[J].光子学报, 2003, 32(11): 1382~1385
    [28]徐晓峰,张凤山,范滨等.利用Rugate膜系理论实现宽角度入射1500-1600nm波段减反射薄膜的研究[J].红外与毫米波学报, 2004, 23(3): 185~188
    [29]程鑫彬,范滨,王占山等.改进的傅里叶变换在Rugate滤光片设计中的应用[J].光学仪器, 2008, 30(5): 69~74
    [30] Luo Zhaoming, Wen Shuangchun, Tang Zhixiang, and et al. Low-pass rugate spatial filters for beam smoothing[J]. Optics communications, 2010, 283: 2665~2668
    [31] P. S. Cross and H. Kogelnik. Sidelobe suppression in corrugated-waveguide filter[J]. Optics Letters, 1977, 1(1): 43~45
    [32] John T. Hunt. National ignition facility performance review 1999[R]. California, Lawrence Livermore National Laboratory, 2000: 6-77~6-91
    [33] S. Lim, S. Shih, and J. F. Wagner. Design and fabrication of a double bandstop Rugate filter grown by plasma-enhanced chemical vapor deposition by plasma-enhanced chemical vapordeposition[J]. Thin Solid Films, 1996, 277: 144~146
    [34] D. Poitras, S. Larouche, and L. Martinu. Design and plasma deposition of dispersion-corrected multiband Rugate filters[J]. Applied Optics, 2002, 41(25): 5249 ~5255
    [35] Larouche S, Szymanowski H, Klemberg-Sapieha J. E., and et al. Microstructure of plasma-deposited SiO2/TiO2 optical films[J]. Journal of vacuum science & technology A, 2004, 2(4): 1200~1207
    [36] Lee. C. C., Tang C. J., and Wu J. Y. Rugate filter made with composite thin films by ion-beam sputtering[J]. Applied Optics, 2006, 45(7): 1333~1337
    [37] Xinbin Cheng, Bin Fan, J. A. Dobrowolski, and et al. Gradient-index optical filter synthesis with controllable and predictable refractive index profiles[J]. Optics Express, 2008, 16(4): 2315~2321
    [38] Nobuyuki Ishikuraa, Minoru Fujiia, Kohei Nishidaa, and et al. Porous silicon based extended-bandwidth Rugate filters for mid-infrared application[J]. Infrared Physics & Technology, 2010, 53(4): 292~294
    [39] Y. L. Khunga and N. H. Voelcker. Multidirectional lateral gradient films with position-dependent photonic signatures made from porous silicon[J]. Optical Materials, 2009, 32(1): 234~242
    [40]唐晋发,顾培夫,刘旭等.现代光学薄膜技术[M].浙江:浙江大学出版社,2007: 3
    [1] T. K. Gaylord and M. G. Moharam. Thin and thick gratings: terminology clarification[J]. Applied Optics, 1981, 20(19): 3271~3273
    [2] Igor V. Ciapurin, Leonid B. Glebov, and Vadim I. Smirnov. Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings[J]. Optical Engineering, 2006, 45(1): 015802-1~015802-9