碳化硅MSM紫外探测器结构优化与温度特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第三代半导体材料碳化硅(SiC)具有禁带宽度大、击穿电场高、介电常数低、热稳定性好等特点,在高频大功率电子器件以及耐高温光电器件方面呈现出极大的潜力。随着紫外探测技术的快速发展,高性能紫外探测器逐渐成为研究热点。SiC基金属-半导体-金属(MSM)紫外探测器具有暗电流低、响应速度快、易于集成等特点,在导弹追踪、火灾探测、臭氧层监测、紫外天文学等军民两用领域具有广阔的应用前景,受到广泛的关注。
     MSM紫外探测器的电极分布对入射光具有遮光效应,从而对器件的光电特性产生一定负面影响。为了提高探测器的性能,在改善材料质量、提高制备工艺水平的同时,选择合理的器件参数、研究新型的探测器结构以便增强光的入射是一种有效的技术手段。鉴于国内光电探测器的研究现状,本文从物理建模、数值仿真、理论分析、结构优化等方面对SiC MSM紫外探测器的光电特性及温度特性开展了系统的研究,并取得了以下研究成果:
     1.基于热电子发射理论,建立了6H-SiC MSM结构紫外探测器的器件模型。对金属叉指宽度和间距均为3μm的器件进行了仿真,结果表明该结构探测器在10V偏压下暗电流已经达到15pA。器件的光电流比暗电流大2个数量级。通过仿真优化了器件结构,结果表明电极宽度和间距分别为6μm和3μm的探测器具有最大光电流。电极宽度为3μm,电极间距为6μm的器件具有最高的紫外可见光比。
     2.使用数值计算方法建立了4H-SiC MSM结构紫外光探测器的二维模型。通过求解泊松方程、电流连续性方程及电流密度方程计算了该探测器的响应度特性。考虑到金属电极对紫外光的反射和吸收,详细研究了各种器件参数对光谱响应的影响并分析了其工作机理。结果表明响应度与电极高度成反比并随电极间距和宽度的增加而增大。各种结构的探测器紫外可见光比均达到3个数量级。结构优化表明电极高度为50nm、电极宽度和间距为3μm和9μm的探测器在10V偏压下具有最高响应度180.056mA/W,同时该探测器的峰值量子效率和最大紫外可见光比分别为77.93%和1875。
     3.建立了新型三角形电极MSM探测器仿真模型,并对其I-V特性进行了研究。与传统结构MSM探测器相比,探测器光电流输出增加了113%,而暗电流没有明显增大。电极的角度、间距和宽度对增强探测器的光入射效果起着重要的作用。仿真结果表明在30V偏压和310nm光照条件下,三角形电极底角、宽度和间距分别为60°、3μm和4μm的探测器具有最高紫外可见光比、较高的响应度和量子效率,其数值分别为13049、0.1712A/W和68.48%。
     4.基于漂移-扩散模型、迁移率模型、复合模型、势垒降低模型、光产生与吸收模型,建立了新型半圆形电极MSM探测器的器件模型,研究了探测器结构变化对光谱响应特性的影响。为了实现最佳光电探测性能,对半圆形电极结构进行了优化。结果表明电极半径为2μm,电极间距为3μm的探测器在290nm光照条件下具有0.177A/W的峰值响应度,75%的外量子效率,同时在0.3V偏压条件下归一化光暗电流对比度达到1.192×10~(11)1/W。
     5.利用热动力、流体动力以及与温度相关的材料吸收系数模型研究了4H-SiCMSM紫外探测器的温度特性。仿真结果表明探测器的暗电流与光电流均随温度升高而增大,且暗电流的增幅高于光电流从而导致了探测器电流比率的降低。在温度为800k偏压为5V以及300nm紫外光照射条件下,探测器的电流比率仍达到2个数量级。量子效率随温度升高而增大且峰值均位于280nm。光谱响应特性随温度的升高呈现不对称的趋势,长波方向上探测器的响应度不断提高并且峰值出现12nm的红移。对于高光子能量的短波长紫外辐射,光谱响应并未随温度的上升出现显著变化。
As a third generation semiconductor materials, silicon carbide (SiC) demonstratesexcellent potential for high-frequency, high-power electronic devices and hightemperature resistant optoelectronic devices due to its outstanding properties of widebandgap, high break down electric field, low dielectric constant and high thermalstability. With the rapid development of ultraviolet (UV) detecting technology, high-performance UV photodetectors have been regarded as a research hotspot. In recentyears, owing to great superiority of a low dark current, a fast response and easy tointegration, SiC based metal-semiconductor-metal (MSM) UV detectors have been ofgreat interest for a wide range of commercial and military applications, includingmissile tracking, flame detection, ozone monitoring and UV-astrophysics, etc.
     The electrode distribution of MSM UV detector exerts shadow effect for normalincidence, which definitely has a negative influence on photoelectric properties of thedetectors. In order to obtain the optimum performance, material quality and fabricationprocess should be further improved. Simultaneously, proper device parameters andnovel structures are considered as effective solutions to enhance the UV incidence. Inview of the domestic research status of photodetectors, this dissertation reveals asystemic investigation of photoelectric and temperature characteristics of the SiC basedMSM UV detectors by means of physical modeling, numerical simulation, theoreticalanalysis and structure optimization. The main studies and conclusive results are asfollows.
     1. Based on thermionic emission theory, a model of a6H-SiC MSM UV detector isestablished. A device with3μm electrode width (W) and3μm electrode spacing (L) issimulated. The findings show that the detector has quite a low dark current of15pA at10V bias and the photocurrent is two orders of magnitude higher than the dark current.Simulation and optimization results indicate that the maximum photocurrent and thehighest ratio of photocurrent to dark current are obtained with device parameters of W=6μm, L=3μm and W=3μm, L=6μm, respectively.
     2. A two-dimensional model of a4H-SiC MSM UV detector has been establishedusing a self-consistent numerical calculation method. The spectral response of thephotodetector is calculated by solving Poisson's equation, the current continuityequation and the current density equation. With consideration of the reflection andabsorption on the metal contacts, a detailed study involving various electrode heights (H), spacings (S) and widths (W) reveals conclusive results in device design. Theinfluences of those parameters on responsivity and relevant mechanisms are analyzed.The findings show that responsivity is inversely proportional to electrode height and isenhanced with an increase of electrode spacing and width. In addition, all UV-to-visiblerejection ratios are>103and the findings show that a responsivity as high as180.056mA/W, a comparable quantum efficiency of77.93%and a maximum UV-to-visible ratioof1875are achieved at10V bias with a detector size of H=50nm, S=9μm and W=3μm.
     3. A model of novel triangular electrode MSM (TEMSM) and conventionalelectrode MSM (CEMSM) detectors is established. The TEMSM detector shows asuperiority of a113%photocurrent increase and similar low dark current over theCEMSM device. Furthermore, the electrode angle α, width W and spacing S play a vitalrole to enhance the effect of incidence. Under30V bias, the maximum UV-to-visiblerejection ratio, comparable responsivity and external quantum efficiency at310nm are13049,0.1712A/W and68.48%for a TEMSM detector with device parameters ofα=60°, W=3μm and S=4μm, respectively.
     4. A model of novel semicircular electrode MSM (SEMSM) UV detector andspectral response features are investigated and characterized based on a series ofphysical models. To achieve the enhanced device performance, structure parametershave been adjusted appropriately to optimize the detector. The findings show that adevice with2μm finger radius and3μm spacing exhibits outstanding characteristics interms of a peak responsivity of0.177A/W at290nm, a maximum external quantumefficiency of over75%and a comparable normalized photocurrent to dark current ratio(NPRD) of1.192×10~(11)1/W under0.3V bias.
     5. Temperature-dependent characteristics of a4H-SiC MSM UV photodetectorhave been investigated based on thermodynamic, hydrodynamic and absorption modelrelated with temperature. It is found that the dark current and photocurrent increase withthe increasing temperature and the former is larger than the latter at higher temperature,which leads to a decrease to photodetector current ratio (PDCR). Nevertheless, thePDCR obtained under5V bias and300nm UV illumination remains2orders ofmagnitude even at800K. As temperature rises, quantum efficiency increases and allpeak values occur at280nm. In addition, the responsivity exhibits an unsymmetricaltrend. It is clear that a remarkable12nm red-shift of peak responsivity occurs andoverall spectrum response is enhanced for longer wavelength. While the shortwavelength response remains relatively independent of the temperature.
引文
[1.1] Omnès F, Monroy E, Mu oz E, et al. Wide bandgap UV photodetectors: Ashort review of devices and applications. Proceedings of SPIE-TheInternational Society for Optical Engineering,2007,64763:64730E-1-15.
    [1.2]赵勋杰,张英远,高稚允,紫外告警技术,红外与激光工程,2004,33(1):5-9.
    [1.3]李慧蕊,新型紫外探测器及其应用,光电子技术,2000,20(1):45-51.
    [1.4]张燕,龚海梅,白云等,空间用紫外探测及AlGaN探测器的研究进展,2006,36(11):1009-1012.
    [1.5] Liu H D, Guo X Y, McIntosh D, et al. Demonstration of ultraviolet6H-SiCPIN avalanche photodiodes. IEEE Photonics Technology Letters,2006,18(23):2508-2510.
    [1.6] Yang W F, Zhang F, Liu Z G, et al. High responsivity4H-SiC basedmetal-semiconductor-metal ultraviolet photodetectors. Science in China, SeriesG,2008,51(11):1616-1620.
    [1.7] Zhang Y G, Li A Z, Milnes A G. Metal-semiconductor-metal ultravioletphotodetectors using6H-SiC. IEEE Photonics Technology Letters,1997,9(3):363-364.
    [1.8] Chang S H, Fang Y K, Hsu K C, et al. GaN UV MSM photodetector on porousβ-SiC/(111)Si substrates. Sensors and Actuators, A: Physical,2008,147(1):1-5.
    [1.9] Xie F, Lu H, Chen D J, et al. GaN MSM photodetectors fabricated on bulkGaN with low dark-current and high UV/visible rejection ratio, Physica StatusSolidi C,2011,8:488-490.
    [1.10] Lee K H, Chang P C, Chang S J, et al. InGaN metal-semiconductor-metalphotodetectors with triethylgallium precursor and unactivated Mg-doped GaNcap layers. Journal of Applied Physics,2011,110(8):083113-1-9.
    [1.11] Huang Z D, Weng W Y, Chang S J, et al. GaN Schottky Barrier PhotodetectorsWith a Lattice-Matched Al0.82In0.18N Intermediate Layer. IEEE SensorsJournal,2011,11(11):2895-2901.
    [1.12] Juang F R, Fang Y K, Chiang Y T, et al. The poly-SiC MSM photodiode onceramic SiC substrate for low-cost ultraviolet light sensing applications, IEEESensors Journal,2011,11(12):3446-3450.
    [1.13] Mazzillo M, Shukla P, Mallik R, et al.4H-SiC schottky photodiode baseddemonstrator board for UV-Index monitoring. IEEE Sensors Journal,2011,11(2):377-381.
    [1.14] Bai X G, Liu H D, Mcintosh D C, et al. High-detectivity andhigh-single-photon-detectionefficiency4H-SiC avalanche photodiodes. IEEEJournal of Quantum Electronics,2009,45(3):300-303.
    [1.15] Vert A, Soloviev S, Sandvik P. SiC avalanche photodiodes andphotomultipliers for ultraviolet and solar-blind light detection, Physica StatusSolidi A,2009,206(10):2468-2477.
    [1.16] Tsai S Y, Hon M H, Lu Y M.Fabrication of transparent p-NiO/n-ZnOheterojunction devices for ultraviolet photodetectors, Solid-State Electronics,2011,63(1):37-41.
    [1.17] Zhou H, Fang G J, Liu Ni S, et al. Ultraviolet photodetectors based on ZnOnanorods-seed layer effect and metal oxide modifying layer effect. NanoscaleResearch Letters,2011,6(1):1-6.
    [1.18] Zheng Q H, Huang F, Ding K, et al. MgZnO-based metal-semiconductor-metalsolar-blind photodetectors on ZnO substrates. Applied Physics Letters,2011,98(22):221112-1-3.
    [1.19] Chen M Y, Chang C C. Comparison of Performance of IntegratedPhotodetectors Based on ZnS and ZnSe Metal-Semiconductor-MetalPhotodiodes. Japanese Journal of Applied Physics,2009,48(11):112201-1-5.
    [1.20] Vigil E, Peter L M, Forcade F, et al. An ultraviolet selective photodetectorbased on a nanocrystalline TiO2photoelectrochemical cell. Sensors andActuators: A Physical,2011,171(2):87-92.
    [1.21] Huang H L, Xie Y N, Yang W F, et al. Low-Dark-Current TiO2MSM UVPhotodetectors With Pt Schottky Contacts. IEEE Electron Device Letters,2011,32(4):530-532.
    [1.22] Alfieri D, Almaviva S, De Sio A, et al. Single-crystal diamond MIS diode fordeep UV detection. Radiation Effects and Defects in Solids,2010,165:737-745.
    [1.23] Monroy E, Omnes F, Calle F, et al. Wide-bandgap semiconductor ultravioletphotodetectors, Semiconductor Science and Technology,2003,18(4):33-51.
    [1.24] BenMoussa A, Soltani A, Schühle U, et al. Recent developments ofwide-bandgap semiconductor based UV sensors. Diamond and RelatedMaterials,2009,18:860-864.
    [1.25] Duboz J Y, Grandjean N, Omnes F, et al. Solar blind detectors based onAlGaN grown on sapphire. Physica Status Solidi C,2005,2(3):964-971.
    [1.26] Marso M, Fox A, Heidelberger G, et al. An AlGaN/GaN two-colorphotodetector based on an AlGaN/GaN/SiC HEMT layer structure. PhysicaStatus Solidi C,2006,3(6):2261-2264.
    [1.27] Kim D W, Chea K S, Park Y J, et al. Fabrication of metal-semiconductor-metal(MSM) UV photodetectors with Al0.16Ga0.84N/GaN heterostructures. PhysicaStatus Solidi A,2004,201(12):2686-2690.
    [1.28] Wong M M, Chowdhury U, Collins C J, et al. High Quantum EfficiencyAlGaN/GaN Solar-Blind Photodetectors Grown by Metalorg. Physica StatusSolidi A,2001,188(1):333-336.
    [1.29] Lai W C, Peng L C, Chang M N, et al. GaN-based LED with embeddedmicrolens-like structure. Journal of the Electrochemical Society,2009,156(12):H976-H987.
    [1.30] Behrends A, Bakin A, Waag A, et al. Electroluminescence from an-ZnO/p-GaN hybrid LED. Physica Status Solidi C,2010,7(6):1709-1711.
    [1.31] Song Y K. Vertical cavity InGaN LEDs and lasers. Compound Semicond,2000,6(1):53-4,56-7.
    [1.32] Dalmasso S, Feltin E, De Mierry P, et al. Green electroluminescent (Ga, In,Al)N LEDs grown on Si (111). Electronics Letters,2000,36(20):1728-1730.
    [1.33] Hsu Y P, Chang S J, Su Y K, et al. InGaN-GaN MQW LEDs with Si treatment.IEEE Photonics Technology Letters,2005,17(8):1620-1622.
    [1.34] Tsai C M, Sheu J K, Lai W C, et al. Enhanced output power in GaN-basedLEDs with naturally textured surface grown by MOCVD. IEEE ElectronDevice Letters,2005,26(7):464-466.
    [1.35] Sayed A, Boeck G. Two-stage ultrawide-band5-W power amplifier using SiCMESFET. IEEE Transactions on Microwave Theory and Techniques,2005,53(7):2441-2449.
    [1.36] Henry H G, Augustine G, DeSalvo G C, et al. S-band operation of SiC powerMESFET with20W (4.4W/mm) output power and60%PAE. IEEETransactions on Electron Devices,2004,51(6):839-845.
    [1.37] Lee Y S, Jeong Y H. A high-efficiency class-E power amplifier using SiCMESFET. Microwave and Optical Technology Letters,2007,49(6):1447-1449.
    [1.38] Zhang A P, Rowland L B, Kaminsky E B, et al. Microwave power SiCMESFETs and GaN HEMTs. Solid-State Electronics,2003,47(5):821-826.
    [1.39] Shiojima K, Makimura T, Kosugi T, et al. High-power AlGaN/GaN dual-gatehigh electron mobility transistor mixers on SiC substrates. Electronics Letters,2004,40(12):775-776.
    [1.40] Xu H T, Sanabria C, Chini A, et al. A C-band high-dynamic range GaN HEMTlow-noise amplifier. IEEE Microwave and Wireless Components Letters,2004,14(6):262-264.
    [1.41] Saito W, Domon T, Omura I, et al. Demonstration of13.56-MHz class-Eamplifier using a high-Voltage GaN power-HEMT. IEEE Electron DeviceLetters,2006,27(5):326-328.
    [1.42] Ryu S H, Krishnaswami S, O'Loughlin M, et al.10-kV,123-m·cm24H-SiCpower DMOSFETs. IEEE Electron Device Letters,2004,25(8):556-558.
    [1.43] Tournier D, Godignon P, Montserrat J, et al. A4H-SiC high-power-densityVJFET as controlled current limiter. IEEE Transactions on IndustryApplications,2003,39(5):1508-1513.
    [1.44] Poblenz C, Corrion A L, Recht F, et al. Power performance of AlGaN/GaNHEMTs grown on SiC by ammonia-MBE at4and10GHz. IEEE ElectronDevice Letters,2007,28(11):945-947.
    [1.45] Dorsaz J, Faure B, Carlin J F, et al. First InGaN/GaN thin film LED usingSiCOI engineered substrate, Physica Status Solidi C,2006,3(6):2227-2230.
    [1.46] SalVatori S, Rossi M C, Galluzzi F, et al. Perfomance of diamond-basedphotoconductive devices in the UV range, Diamond and Related Materials,1998,7:811-816.
    [1.47] Sun J, Dai Q, Liu F J, et al. The ultraviolet photoconductive detector based onAl-doped ZnO thin film with fast response. Science in China Series G,2011,54(1):102-105.
    [1.48] Hickman R, Van Hove J M, Chow P P, et al. GaN PN junction issues anddevelopments, Solid-State Electronics,2000,44(2):377-381.
    [1.49] Zhang Y, Shen S C, Kim H J, et al. Low-noise GaN ultraviolet p-i-nphotodiodes on GaN substrates. Applied Physics Letters,2009,94(22):221109-1-3.
    [1.50] Zhao Y M, Zhang J Ym Zhang X Y, et al. A Back-illuminated Au/ZnO/AlShottky UV Photodetector. Chinese Journal of Luminescence,2010,31(4):527-530.
    [1.51] Li J, Zhao M, Wang X F. High performance Schottky UV photodetectorsbased on epitaxial AlGaN thin film. Physica B,2010,405(3):996-998.
    [1.52] Chen C H. GaN ultraviolet Schottky barrier photodetectors with ZrO2or SiO2insulators.Optical Review,2011,18(1):107-110.
    [1.53] Young S J. Ir/n-ZnO Schottky barrier ultraviolet photodiodes. IEEE SensorsJournal,2011,11(5):1129-1133.
    [1.54] Zhu H L, Chen X P, Cai J F, et al.4H-SiC ultraviolet avalanche photodetectorswith low breakdown voltage and high gain. Solid-State Electronics,2009,53(1):7-10.
    [1.55] Ng B K, David J P R, Tozer R C, et al. Performance of thin4H-SiC UVavalanche photodiodes. IEE Proceedings-Optoelectronics,2003,150(2):187-190.
    [1.56] Chen C H, Chang S J, Wu M H, et al. AIGaN Metal-Semiconductor-metalPhotodetectors with Low-temperature AIN Cap Layer and Recessed Electrodes.Japanese Journal of Applied Physics,2010,49(4):04DG05-1-3.
    [1.57] Weng W Y, Chang S J, Lai W C, et al. GaN MSM photodetectors with asemi-insulating Mg-doped AlInN cap layer. IEEE Photonics TechnologyLetters,2009,21(8):504-506.
    [1.58] Wu S L, Wang Y C, Yu C L, et al. Visible-blind metal-semiconductor-metalphotodetectors by capping an in situ low-temperature AlN layer. Journal of theElectrochemical Society,2008,155(10): J287-289.
    [1.59] Lee K H, Chuang R W, Chang P C, et al. Nitride-based MSM photodetectorswith a HEMT structure and a low-temperature AlGaN intermediate layer.Journal of the Electrochemical Society,2008,155(12): H959-963.
    [1.60] Zhu H, Shan C X, Yao B, et al. High spectrum selectivity ultravioletphotodetector fabricated from an n-ZnO/p-GaN heterojunction. Journal ofPhysical Chemistry C,2008,112(51):20546-20548.
    [1.61] Periasamy C, Chakrabarti P. Large-area and nanoscale n-ZnO/p-Siheterojunction photodetectors. Journal of Vacuum Science and Technology B,2011,29(5):051206-1-6.
    [1.62] Huang J, Wang L J, Tang K, et al. Ultraviolet detector based on ZnO/diamondfilm heterojunction diode. Chinese Journal of Luminescence,2011,32(3):272-276.
    [1.63] Iwaya M, Miura S, Fujii T, et al. High-performance UV detector based onAlGaN/GaN junction heterostructure-field-effect transistor with a p-GaN gate.Physica Status Solidi C,2009,6(S2): S972-975.
    [1.64] Chen C H, Chang S J, Chang S P, et al. Novel fabrication of UV photodetectorbased on ZnO nanowire/p-GaN heterojunction. Chemical Physics Letters,2009,476:69-72.
    [1.65] Monroy E, Calle F, Pau J L, et al. AlGaN-based UV photodetectors. Jounral ofCrystal Growth,2001,230:537-543.
    [1.66]王三盛,顾彪,徐茵等, GaN基材料生长及其在光电器件领域的应用,材料导报,2002,16(1):31-35.
    [1.67]牛萍娟,陈乃金,李养贤等, GaN基光电子材料及器件研究,微纳电子技术,2004,12:13-21.
    [1.68]马洪磊,杨莺歌,刘晓梅等, GaN薄膜的研究进展,功能材料,2004,5(35):537-544.
    [1.69]顾彪,王三胜,徐茵等,GaN基材料及其在短波光电器件领域的应用,高技术通讯,2002,3,104-110。
    [1.70] Chae K S, Kim D W, Kim B S, et al. Characteristics of back-illuminatedvisible-blind UV photodetector based on AlxGa1-xN p-i-n photodiodes. Journalof Crystal Growth,2005,276:367-373.
    [1.71] Tut T, Biyikli N, Kimukin I, et al. High bandwidth-efficiency solar-blindAlGaN Schottky photodiodes with low dark current. Solid-State Electronics,49(1):117-122.
    [1.72] Yu C L, Chang S J, Chang P C, et al. Nitride-based ultraviolet Schottky barrierphotodetectors with LT-AlN cap layers. Superlattices and Microstructures,2006,40:470-475.
    [1.73] Chen M C, Sheu J K, Lee M L, et al. Planar GaN p-i-n photodiodes withn+-conductive channel formed by Si implantation. Applied Physics Letters,2006,88(20):203508-1-3.
    [1.74] Chiou Y Z, Lin Y C, Wang C K. AlGaN photodetectors prepared on Sisubstrates, IEEE Electron Device Letters,2007,28(4):264-266.
    [1.75] Chang P C, Yu C L, Chang S J, et al. High-detectivity nitride-based MSMPhotodetectors on in GaN-GaN multiquantum well with the unactivatedMg-doped GaN layer. IEEE Journal of Quantum Electronics,2007,43(11):1060-1064.
    [1.76] Lee K H, Chang P C, Chang S J, et al. AlGaN/GaN Schottky barrier UVphotodetectors with a GaN sandwich layer. IEEE Sensors Journal,2009,9(7):814-819.
    [1.77] Look D C, Reynolds D C, Fang Z Q, et al. Point defect characterization of GaNand ZnO. Materials Science&Engineering B,1999, B66(1-3):30-32.
    [1.78] Lin T K, Chang S J, Su Y K, et al. ZnO MSM photodetectors with Ru contactelectrodes. Journal of Crystal Growth,2005,281:513-517.
    [1.79] Moon T H, Jeong M C, Lee W, et al. The fabrication and characterization ofZnO UV detector. Applied Surface Science,2005,240(1-4):280-285.
    [1.80] Young S J, Ji L W, Chang S J, et al. ZnO metal-semiconductor-metalultraviolet sensors with various contact electrodes. Journal of Crystal Growth,2006,293(1):43-47.
    [1.81] Liu J M, Xia Y B, Wang L J, et al. Electrical characteristics of UVphotodetectors based on ZnO/diamond film structure. Applied Surface Science,2007,253(12):5218-5222.
    [1.82] Zhen B, Zhang J W, Bian X M, et al. A high-performance ultravioletphotoconductive detector based on a ZnO film grown by RF sputtering. Journalof Electronic Materials,2008,37(5):760-763.
    [1.83] Zhang T C, Guo Y, Mei Z X, et al. Visible-blind ultraviolet photodetectorbased on double heterojunction of n-ZnO/insulator-MgO/p-S. Applied PhysicsLetters,2009,94(11):113508-1-3.
    [1.84] Guo X Y, Beck A, Yang B, et al. Low dark current4H-SiC avalanchephotodiodes. Journal of Applied Physics,2003,39(23):1673-1674.
    [1.85]王丽玉,谢家纯,刘文齐, SiC肖特基紫外光电探测器的研制,半导体光电,2004,25(1):25-28.
    [1.86] Yan F, Xin X B, Aslam S, et al.4H-SiC UV photo detectors with large areaand very high specific detectivity. IEEE Journal of Quantum Electronics,2004,40(9):1315-1320.
    [1.87] Chen X P, Yang W F, Wu Z Y. Visible blind p-i-n ultraviolet photodetectorfabricated on4H-SiC. Microelectronic Engineering,2006,83:104-106.
    [1.88] Liu H D, Guo X Y, McIntosh D, et al. Demonstration of ultraviolet6H-SiCPIN avalanche photodiodes. IEEE Photonics Technology Letters,2006,18(23):2508-2510.
    [1.89] Guo X Y, Beck A L, Huang Z H, et al. Performance of low-dark-current4H-SiC avalanche photodiodes with thin multiplication layer. IEEETransactions on Electron Devices,2006,53(9):2259-2265.
    [1.90] Liu X F, Sun G S, Li J M, et al. Vertical PIN ultraviolet photodetectors basedon4H-SiC homoepilayers. Physica Status Solidi C,2007,4(5):1609-1612.
    [1.91] Chen X P, Zhu H L, Cai J F, et al. High-performance4H-SiC-based ultravioletp-i-n photodetector. Journal of Applied Physics,2007,102:024505-1-4.
    [1.92]吴正云, Xin X B, Yan F, et al.金属-半导体-金属(MSM)结构4H-SiC紫外光电探测器的研制,量子电子学报,2004,21(2):269-272
    [1.93] Nabet B. A Heterojunction Metal-Semiconductor-Metal Photodetector. IEEEPhotonics Technology Letters,9(2):223-225.
    [1.94] Chui C O, Okyay A K, Saraswat K C, Effective dark current suppression withasymmetric MSM photodetectors in Group IV semiconductors. IEEE PhotonicsTechnology Letters,2003,15(11):1585-1587.
    [1.95]杨伟锋,蔡加法,张峰等,一维阵列MSM4H-SiC紫外光电探测器的研制,半导体学报,2008,29(3):570-573.
    [1.96] Behnam A, Jason J, Choi Y H, et al. Metal-semiconductor-metalphotodetectors based on single-walled carbon nanotube film-GaAs Schottkycontacts. Journal of Applied Physics,2008,103(11):114315-1-6.
    [1.97] Tomoko B, Williams D F, Hale P D, et al. Novel nano-structuredmetal-semiconductor-metal photodetector with high peak voltage. JapaneseJournal of Applied Physics,2009,48:06FD031-06FD035.
    [1.98] Das N, Karar A, Vasiliev M, et al. Analysis of nano-grating-assisted lightabsorption enhancement in metal-semiconductor-metal photodetectorspatterned using focused ion-beam lithography. Optics Communications,2011,284(6):1694-1700.
    [2.1]石顺祥,过已吉.光电子技术及其应用.成都:电子科技大学出版社,2001.
    [2.2]安毓英,曾晓东.光电探测原理.西安:西安电子科技大学出版社,2004.
    [2.3] Zhang J Q, Yang Y T, Chai C C, et al. Ohmic contact property of Ti/Al/Ni/Auon AlGaN/GaN heterostructure for application in ultraviolet detectors. Journalof Semiconductor,2008,29(11):2187-2191.
    [2.4]薛松,韩彦军,吴震等, p型GaN欧姆接触的比接触电阻率测量,半导体学报,2005,26(5):965-969.
    [2.5]刘恩科,朱秉升,罗普生.半导体物理学.北京:国防工业出版社,1994.
    [2.6]陈汉鸿, ZnO薄膜和ZnO紫外探测器.硕士论文,浙江大学,2002.
    [2.7]施敏,伍国任,半导体器件物理.北京:电子工业出版社,1987.
    [2.8] Sze S M, Coleman D J, Loya A. Current transport in metal-semiconductor-metal (MSM) structures. Solid-State Electronics,1971,14:1209-1218.
    [2.9] Vijayakumar A, Sundaram K B, Todi R M. Amorphous-SiCBN-basedmetal-semiconductor-metal photodetector for high-temperature applications.IEEE Electron Device Letters,2007,28(8):713-715.
    [2.10]高建军.高速光电子器件建模及光电集成电路设计技术.北京:高等教育出版社,2009.
    [2.11]岑龙斌,桑立雯,周绪荣等,307~325nm波长AlGaN基紫外光探测器,半导体光电,2007,28(6):789-792.
    [2.12]周飞跃, GaN基MSM结构紫外探测器研究.硕士论文,电子科技大学,2006.
    [2.13] Soole J B D, Schumacher H. InGaAs metal-semiconductor-metalphotodetectors for long wavelength optical communications. IEEE Journal ofQuantum Electronics,1991,23(3):737-752.
    [2.14]浦昭邦,赵辉.光电测试技术.北京:机械工业出版社,2009.
    [2.15]付小宁,牛建军,陈靖.光电探测技术与系统.北京:电子工业出版社,2010.
    [2.16] S. M. Sze and K. K. Ng. Physics of Semiconductor Device. John Wiley&SonsInc. Press,2007.
    [2.17] Sano E. A device model for metal-semiconductor-metal photodetectors and itsapplications to optoelectronic integrated circuit simulation. IEEE Transactionson Electron Devices,1990,37(9):1964-1968.
    [2.18]陈维友,刘式墉,金属半导体金属光探测器电路模型的研究,电子科学学刊,1994,16(3):327-331.
    [2.19]陈维友,杨树人,刘式墉.光电子器件模型与OEIC模拟.北京:国防工业出版社,2001.
    [2.20]范辉,陆雨田.一种改进型金属-半导体-金属光电探测器数学模型,中国激光,2007,34(8):1032-1036.
    [3.1]周梅,赵德刚,以弱p型为有源区的新型p-n结构GaN紫外探测器,物理学报,2009,58(10):7255-7260.
    [3.2] Chen B, Yang Y T, Li Y J, et al. Simulation and optimization of a6H-SiCmetal-semiconductor-metal ultraviolet photodetector. Journal ofSemiconductors,2010,31(6):064010-1-5.
    [3.3] Chen B, Yang Y T, Chai C C, et al. Quantitatively exploring the effect of atriangular electrode on performance enhancement in a4H-SiCmetal-semiconductor-metal ultraviolet photodetector. Chinese Physics Letters,2011,28(6):068501-1-4.
    [3.4]刘磊, GaN欧姆接触与MSM结构紫外探测器研究.硕士学位论文),杭州:浙江大学,2004.
    [3.5]姜守振,徐现刚,李娟等, SiC单晶生长及其晶片加工技术的进展,半导体学报,2007,28(5):810-814.
    [3.6]陈之战,施尔畏,肖宾等, SiC单晶生长研究进展,材料导报,2002,16(6):32-38.
    [3.7]任学民. SiC单晶生长技术及器件研究进展,半导体情报,1998,35(4):7-12.
    [3.8]刘喆,徐现刚. SiC单晶生长,材料科学与工程学报,2003,21(2):274-278.
    [3.9] Tairov Y M, Tsvetkov V F. Investigation of growth processes of ingots ofsilicon carbide single crystals. Journal of Crystal Growth,1978,43(2):209-212.
    [3.10] Tairov Y M, Tsvetkov V F. General principles of growing large-size singlecrystals of various silicon carbide polytypes. Journal of Crystal Growth,1981,52:146-150.
    [3.11]王辉,琚伟伟,刘香茹等,半导体SiC材料研究进展及其应用,科技创新导报,2008,1:8-9l.
    [3.12]梅芳,弓满锋,李玲.溅射技术在SiC薄膜沉积中的应用和工艺研究进展,表面技术,2008,37(2):75-78.
    [3.13]葛金余,杜丕一,韩高荣. SiC薄膜制备工艺进展,材料科学与工程,1998,16(1):36-40.
    [3.14]王引书,李晋闽,林兰英. SiC单晶生长及其器件研制进展,材料研究学报,1998,12(3):233-238.
    [3.15]李晋闽. SiC材料及器件研制的进展,物理,2000,29(8):481-487.
    [3.16]韩茹,杨银堂,柴常春. n-SiC的电子拉曼散射及二级拉曼谱研究,物理学报,2008,57(5):3182-3187.
    [3.17] ISE TCAD release7.0manual. Vol.4a. ISE Integrated Systems EngineeringAG,2001.
    [3.18] Williams J R, Chung G Y, Tin C C, et al. Passivation of the4H-SiC/SiO2interface with nitric oxide. Materials Science Forum,2002,389-393(2):967-972.
    [3.19] Muller S G, Glass R C, Hobgood H M, et al. Progress in the industrialproduction of SiC substrates for semiconductor devices. Materials Science&Engineering B,2001, B80(1-3):1-3.
    [3.20] Davis R F, Roskowski A M, Preble E A, et al. Gallium nitride materials-Progress, status, and potential roadblocks. Proceedings of the IEEE,2002,90(6):993-1004.
    [3.21] Bouzidi A, Hamzaoui H, Bouazzi A S, et al. Analytic computation of thephotocurrent density in a n-6H-SiC/p-Si/n-Si/p-Si0.8Ge0.2multilayer solar cell.Microelectronics Journal,2006,37(5):388-394.
    [3.22] Kato K. Ultrawide-band/high-frequency photodetectors. IEEE Transactions onMicrowave Theory and Techniques,1999,47:1265-1281.
    [3.23] Zhao Xia, Currie Marc, Cola A, et al. Time response of two-dimensionalgas-based vertical field metal-semiconductor-metal photodetectors. IEEETransactions on Electron Devices,2008,55(7):1762-1770.
    [3.24] DESSIS-ISE,2D Semiconductor Device Simulator version10.02005Integrated Systems Engineering, Zurich.
    [3.25] Sridhara S G, Devaty R P, Choyke W J. Absorption coefficient of4H siliconcarbide from3900to3250. Journal of Applied Physics,1998,84(5):2963-2964.
    [3.26]陈厦平,朱会丽.4H-SiC材料在紫外波段吸收系数的分析研究.光谱实验室,2010,27(4):1597-1600.
    [3.27] Yang W F, Zhang F, Liu Z G, et al. Effects of annealing on the performance of4H-SiC metal-semiconductor-metal ultraviolet photodetectors, MaterialsScience in Semiconductor Processing,2008,11(2):59-62.
    [3.28] Su Y K, Chang S J, Chen C H, et al. GaN metal-semiconductor-metalultraviolet sensors with various contact electrodes, IEEE Sensors Journal,2002,2(4):366-371.
    [3.29] Dmitruk N L, Fursenko O V, Kondratenko O S, et al. Optical characteristizationof thin Au films by standard and polaritonic ellipsometry. Semicond PhysQuantum Electron Optoelectron,2003,6(3):349-353.
    [3.30] Sciuto A, Roccaforte F, Di Franco S, et al. High efficiency4H-SiC SchottkyUV-photodiodes using self-aligned semitransparent contacts. SuperlatticesMicrostruct,2007,41(1):29-35.
    [3.31] Torvik J T, Pankove J I, Van Zeghbroeck B J. Comparison of GaN and6H-SiCp-i-n photodetectors with excellent ultraviolet sensitivity and selectivity. IEEETransactions on Electron Devices,1999,46(7):1326-1331.
    [3.32] Zhang J Q, Yang Y T, Lou L F, et al. Current–voltage characteristics simulationand analysis of4H-SiC metal–semiconductor–metal ultraviolet photodetectors.Chinese Optics Letters,2008,6(8):615-618.
    [3.33] Zhao D G, Jiang D S, Liu Z S, et al. An anomalous gain mechanism in GaNSchottky barrier ultraviolet photodetectors. Chinese Physics Letters,2009,26(5):058501-1-4.
    [3.34] Sabuktagin S, Moon Y T, Dogan S, et al. Observation of surface charging at theedge of a Schottky contact, IEEE Electron Device Letters,2006,27(4):211-213.
    [4.1] Vardi A, Bahir G, Schacham S E, et al. Negative photoconductivity due tointraband transitions in GaN/AlN quantum dots. Journal of Applied Physics,2010,108(10):104512-1-7.
    [4.2] Hou Q F, Wang X L, Xiao H L, et al. Influence of electric field on persistentphotoconductivity in unintentionally doped n-type GaN. Applied PhysicsLetters,2011,98(10):102104-1-3.
    [4.3] Arslan E, Bütün S, Lisesivdin S B, et al. The persistent photoconductivity effectin AlGaN/GaN heterostructures grown on sapphire and SiC substrates. Journalof Applied Physics,2008,103(10):103701-1-7.
    [4.4] Kai Q, Li X H, Yin Z J, et al. Threading dislocations related persistentphotoconductivity effect in hydride vapor phase epitaxy grown GaN epilayers.Europhysics Letters,2008,82(1):18002-1-6.
    [4.5] Li B K, Ge W K, Wang J N, et al. Persistent photoconductivity and carriertransport in AlGaN/GaN heterostructures treated by fluorine plasma. AppliedPhysics Letters,2008,92(8):082105-1-3.
    [4.6] Wang X L, Fang C B, Xiao H L, et al. Investigation of optical quenching ofphotoconductivity in high-resistivity GaN epilayer. Journal of Crystal Growth,2007,298:800-803.
    [4.7] Chung S J, Karunagaran B, Velumani S, et al. Photoluminescence andpersistent photoconductivity of AlxGa1-xN/GaN heterostructures. AppliedPhysics A,2007, A86(4):521-524.
    [4.8] Horn A, Katz O, Bahir G, et al. Surface states and persistent photocurrent in aGaN heterostructure field effect transistor. Semiconductor Science andTechnology,2006,21(7):933-937.
    [4.9] Koo A, Budde F, Ruck B J, et al. Photoconductivity in nanocrystalline GaN andamorphous GaON. Journal of Applied Physics,2006,99(3):034312-1-7.
    [4.10] Pot B, Passaseo A, Lomascolo M, et al. Persistent photocurrent spectroscopy ofGaN metal-semiconductor-metal photodetectors on long time scale. AppliedPhysics Letters,2004,85(25):6083-6085.
    [4.11] Katz O, Bahir G, Salzman J. Persistent photocurrent and surface trapping inGaN Schottky ultraviolet detectors. Applied Physics Letters,2004,84(20):4092-4094.
    [4.12] Munoz E, Monroy E, Garrido J A, et al. Photoconductor gain mechanisms inGaN ultraviolet detectors. Applied Physics Letters,1997,71(7):870-872.
    [4.13] Garrido J A, Monroy E, Izpura I, et al. Photoconductive gain modelling of GaNphotodetectors, Semiconductor Science and Technology,1998,13(6):563-568.
    [4.14] Katz O, Garber V, Meyler B, et al. Gain mechanism in GaN Schottkyultraviolet detectors. Applied Physics Letters,2001,79(10):1417-1419.
    [4.15] Chiou Y Z. DC and noise characteristics of4H-SiC metal-semiconductor-metalultraviolet photodetectors. Japanese Journal of Applied Physics, Part1,2004,43(5A):2432-2434.
    [4.16] Ghandi R, Buono B, Domeij M, et al. High-voltage (2.8kV) Implantation-free4H-SiC BJTs With Long-term Stability of the Current Gain, IEEE Transactionson Electron Devices,2011,58(8):2665-2669.
    [4.17] Miyake H, Kimoto T, Suda J.4H-SiC BJTs with record current gains of257on(0001) and335on (0001). IEEE Electron Device Letters,2011,32(7):841-843.
    [4.18] Menon K G, Nakajima A, Ngwendson L, et al. Performance evaluation of10-kV SiC trench clustered igbt. IEEE Electron Device Letters,2011,32(9):1272-1274.
    [4.19] Das M K, Zhang Q C, Callanan R, et al. A13kV4H-SiC n-channel IGBT withLow Rdiff, on and fast switching. Materials Science Forum,2009,600-603:1183-1186.
    [4.20] Davis S.1200V SiC MOSFET Poised to Replace Si MOSFETs and IGBTs.Power Electronics Technology,2011,37(2):36-40.
    [4.21] Kono H, Suzuki T, Takao K, et al.1.4kV double-implanted MOSFETsfabricated on4H-SiC(000-1). Materials Science Forum,2010,679-680:607-612.
    [4.22] Abbate C, Busatto G, Iannuzzo F. Operation of SiC normally-off JFET at theedges of its safe operating area. Microelectronics Reliability,2011,51(9-11):1767-1772.
    [4.23] Guédon F, Singh S K, McMahon R A, et al. Gate driver for SiC JFETs withprotection against normally-on behaviour induced fault. Electronics Letters,2011,47(6):375-377.
    [4.24] Ise K, Tanaka H, Takaki K, et al. Development of a megahertz high-voltageswitching pulse modulator using a SiC-JFET for an induction synchrotron.IEEE Transactions on Plasma Science,2011,39(2):730-736.
    [4.25] Elahipanah H. Record gain at3.1GHz of4H-SiC high power RF MESFET.Microelectronics Journal,2011,42(2):299-304.
    [4.26] Chen W H, Li X, Wang L, et al. A novel broadband VHF SiC MESFET class-Ehigh power amplifier. Microwave and Optical Technology Letters,2010,52(2):272-276.
    [4.27] Deng X C, Li L, Zhang B. et al. High-power density SiC MESFETs withmulti-recess gate. Electronics Letters,2011,47(8):517-518.
    [4.28]刘芳,张玉明,张义门等,离子注入制备n型SiC欧姆接触的工艺研究,半导体技术,2004,30(4):24-28.
    [4.29] Morkoc H, Strite S, Gao G B, et al. Large-band-gap SiC, III-V nitride, and II-VIZnSe-based semiconductor device technologies. Journal of Applied Physics,1994,76(3):1363-1698.
    [4.30]王姝睿,刘忠立, SiC器件工艺的发展状况,微电子学,2000,30(6):422-425.
    [4.31] Takemura O, Kimoto T, Matsunami H, et al. Implantation of Al and Bacceptors into alpha-SiC and pn junction diodes. Materials Science Forum,1998,264-268:701-704.
    [4.32] Panknin D, Wirth H, Mucklich A, et al. Electrical and microstructuralproperties of highly boron-implantation doped6H-SiC. Journal of AppliedPhysics,2001,89(6):3162-3167.
    [4.33] Rao M V. Maturing ion-implantation technology and its device applications inSiC. Solid-State Electronics,2003,47(2):213-222.
    [4.34]商庆杰,潘宏菽,陈昊等, SiC MESFET工艺技术研究与器件研制,半导体技术,2009,34(6):549-552.
    [4.35]韩茹,碳化硅器件的温度特性及其关键工艺研究.博士学位论文,西安电子科技大学,2008.
    [4.36]宋登元. SiC器件基本制备工艺的原理与发展现状,半导体技术,1994,4(2):5-9.
    [4.37]柴常春,杨银堂,朱作云等,碳化硅(SiC)器件制造工艺中的干法刻蚀技术,西安电子科技大学学报,1998,25(5):659-663.
    [4.38]杨银堂,贾护军,李跃进等, SiC上Ti/Ni/Au多层金属的欧姆接触特性,功能材料与器件学报,2006,12(6):498-500.
    [4.39] Han R, Yang Y T, Wang P, et al. Ohmic contact properties of multi-metal filmson n-type4H-SiC. Chinese Journal of Semiconductors,2007,28(2):149-153.
    [4.40]王平,杨银堂,郭立新等, SiC欧姆接触特性,西安电子科技大学学报,2011,38(4):38-41.
    [4.41] Han S Y, Jang H W, Lee J L. IrO2Schottky contact on n-type4H-SiC. AppliedPhysics Letters,2003,82(26):4726-4728.
    [4.42]杨克勤,陈厦平,杨伟锋等,不同退火温度下金属/4H-SiC Schottky势垒高度的研究,量子电子学报,2005,22(2):251-255.
    [4.43]孔详锌, MSM型TiO2紫外探测器的研制.硕士学位论文,吉林大学,2007.
    [4.44]张昊翔,硅基GaN薄膜材料及紫外探测器原型器件研究.博士学位论文,浙江大学,2001.
    [4.45]吴跃波,紫外光电探测器的研制.博士学位论文,厦门大学,2008.
    [4.46]张军琴,宽禁带半导体MSM结构紫外探测器的研究.博士学位论文,西安电子科技大学,2009.
    [4.47] Su Y K, Chiou Y Z, Chang C S, et al.4H-SiC metal-semiconductor-metalultraviolet photodetectors with Ni/ITO electrodes. Solid-State Electronics,2002,46(12):2237-2240.
    [4.48] Zhang F, Yang W F, Huang H L, et al. High-performance4H-SiC basedmetal-semiconductor-metal ultraviolet photodetectors with Al2O3SiO2films.Applied Physics Letters,92(25):251102-1-3.
    [4.49] Ozelo H F B, De Barros Jr L E M, Nabet B, et al. MSM photodetector with anintegrated microlens array for improved optical coupling. Microwave andOptical Technology Letters,2000,26(6):357-360.
    [4.50] Ang K W, Yu M B, Zhu S Y, et al. Novel NiGe MSM photodetector featuringasymmetrical Schottky barriers using sulfur co-implantation and segregation.IEEE Electron Device Letters,2008,29(7):708-710.
    [4.51]吕惠民,陈光德,苑进社.电极形成与紫外探测器灵敏度关系的研究,光子学报,2006,35(7):1052-1055.
    [4.52] Nigam S, Kim J, Luo B. Effect of contact geometry on4H-SiC rectifiers withjunction termination extension. Solid-State Electronics,2003,47(1):57-60.
    [4.53] Galeckas A, Linnros J, Grivickas V, et al. Auger recombination in4H-SiC:unusual temperature behavior. Applied Physics Letters,1997,71(22):3269-3271.
    [5.1] Powell A R, Rowland L B. SiC materials-progress, status, and potentialroadblocks. Proceedings of the IEEE,2002,90(6):942-955.
    [5.2] Razeghi M. Short-wavelength solar-blind detectors-Status, prospects, andmarkets. Proceedings of the IEEE,2002,90(6):1006-1014.
    [5.3] Balbi M, Sorianello V, Colace L, et al. Analysis of temperature dependence ofGe-on-Si p-i-n photodetectors. Physica E: Low-Dimensional Systems andNanostructures,2009,41(6):1086-1089.
    [5.4] Zhou H, Fang G J, Yuan L Y, et al. Deep ultraviolet and near infraredphotodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated atlow temperature. Applied Physics Letters,2009,94(1):013503-1-3.
    [5.5] Cinar K, Yldrm N, Coskun C, et al. Temperature dependence of current-voltagecharacteristics in highly doped Ag/p-GaN/In Schottky diodes. Journal ofApplied Physics,2009,106(7):073717-1-5.
    [5.6] Lu J H, Wang Y C, Wang C L, et al. The study of temperature dependence ofphotoresponse in superlattice infrared photodetectors. Journal of AppliedPhysics,2007,102(7):074502-1-5.
    [5.7] Koide Y, Liao, M Y, Alvarez J. Thermally stable solar-blind diamond UVphotodetector.Diamond and Related Materials,2006,15(11-12):1962-1966.
    [5.8] Tan Z Y, Guo X G, Cao J C, et al. Temperature dependence of current-voltagecharacteristics of terahertz quantum-well photodetectors. SemiconductorScience and Technology,2009,24(11):115014-4.
    [5.9] Schacham S E, Bahir G, Finkman E, et al. Temperature dependence ofresponsivity in quantum dot infrared photodetectors. Physica E:Low-Dimensional Systems and Nanostructures,2003,17(1-4):636-637.
    [5.10] Blank T V, Goldberg Y A, Konstantinov O V. Temperature dependence of theperformance of ultraviolet detectors. Nuclear Instruments and Methods inPhysics Research, Section A: Accelerators, Spectrometers, Detectors andAssociated Equipment,2003,509(1-3):109-117.
    [5.11] Colace L, Balbi M, Sorianello V, et al. Temperature-dependence of Ge on Sip-i-n photodetectors. Journal of Lightwave Technology,2008,26(14):2211-2214.
    [5.12] Sou I K, Ma Z H, Zhang Z Q, et al. Temperature dependence of the responsivityof ZnS-based UV detectors. Journal of Crystal Growth,2000,214:1125-1129.
    [5.13] Blank T V, Goldberg Yu A, Kalinina E V, et al. Temperature dependence of thephotoelectric conversion quantum efficiency of4H-SiC Schottky UVphotodetectors. Semiconductor Science and Technology,2005,20(8):710-715.
    [5.14] Cha H Y, Soloviev S, Zelakiewicz S, et al. Temperature dependentcharacteristics of nonreach-through4H-SiC separate absorption andmultiplication APDs for UV detection. IEEE Sensors Journal,2008,8(3):233-237.
    [5.15] Bao C Y, Li Z L, Chen Z Z, et al. Comparison of properties ofmetal-semiconductor-metal GaN ultraviolet photodetectors operated at94Klow temperature and at room temperature. Chinese Journal of Luminescence,2002,23(5):461-464.
    [5.16] Zhang Y M, Zhou Y H, Zhang Y M. The simulation of temperature dependenceof responsivity and response time for6H-SiC UV photodetector. ChinesePhysics,2007,16(5):1276-1279.
    [5.17] Cha H Y, Sandvik P M. Electrical and optical modeling of4H-SiC avalanchephotodiodes. Japanese Journal of Applied Physics,2008,47(7):5423-5425.
    [5.18] Ng B K, David J P R, Tozer R C, et al. Nonlocal effects in thin4H-SiC UVavalanche photodiodes. IEEE Transactions on Electron Devices,2003,50(8):1724-1732.
    [5.19] Macfarlane G G, Roberts V. Infrared Absorption of Germanium near the LatticeEdge, Physical Review,1955,97(6):1714-1716.
    [5.20] Nallet F, Planson D, Isoird K, et al. Comparison of static, switching and thermalbehavior between a1500V silicon and silicon carbide bipolar diodes.Proceedings of the International Semiconductor Conference,1999,1:195-198.
    [5.21] Lindefelt U. Doping-induced band edge displacements and band gap narrowingin3C-,4H-,6H-SiC, and Si. Journal of Applied Physics,1998,84:2628-2637.
    [5.22] Averine S, Chan Y C, Lam Y L. Evaluation of Schottky contact parameters inmetal-semiconductor-metal photodiode structures. Applied Physics Letters,2000,77(2):274-276.
    [5.23] M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur. Properties of advancedsemiconductor materials. Wiley New York,2001.
    [5.24]张峰,4H-SiC基紫外探测器减反射膜的设计、制备以应用.博士学位论文,厦门大学,2008.
    [5.25] Chang W R, Fang Y K, Ting S F, et al. The hetero-epitaxial SiCN/Si MSMphotodetector for high-temperature deep-UV detecting applications. IEEEElectron Device Letters,2003,24(9):565-567.