氧化共沉淀法制备Mn-Zn铁氧体及其稀土掺杂效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mn-Zn铁氧体材料是现代电子工业和信息产业的基础材料,广泛应用于多路通信、开关电源、变压器磁芯、滤波器、录音和录象的各种记录磁头、信息存储系统、医疗诊断、军工和民用的抗电磁干扰等,随着通讯技术、计算机技术的飞速发展,对Mn-Zn铁氧体材料提出了越来越高的要求,而改善Mn-Zn铁氧体性能的研究主要集中在以下三个方面:一是材料成分比例的调整;二是制备工艺的改进,三是化学掺杂。本文对氧化共沉淀法制备Mn-Zn铁氧体的工艺和稀土掺杂效应进行了研究。
     本文在氧化共沉淀法制备Fe_2O_3的基础上,经过工艺改进,用强氧化剂H_2O_2代替空气,在溶液中直接合成纳米Mn-Zn铁氧体粉末,研究了溶液的浓度、PH值、热处理及表面活性剂对样品的相、微结构及磁性能的影响,结果表明:采用氧化共沉淀法在溶液中能直接制备出单相Mn-Zn铁氧体纳米粉末,溶液的浓度和PH值是该方法的两个关键因素,溶液的浓度越高、PH值越大,制备的Mn-Zn铁氧体样品结晶越完整,饱和磁化强度越高;制备的Mn-Zn铁氧体样品在空气中经不同温度热处理后均出现了Fe_2O_3,Fe_2O_3的含量随热处理的温度升高而减少,Mn-Zn铁氧体样品的饱和磁化强度随热处理的温度升高而增大;Mn-Zn铁氧体样品在空气中600℃热处理,然后再氮气气氛中冷却未出现Fe_2O_3,其饱和磁化强度比空气中冷却的要高;在溶液中加入适量的表面活性剂十六烷基三甲基溴化胺(CTAB),能有效减少纳米粒子的团聚,样品的晶粒度和饱和磁化强度随表面活性剂和水的质量比的增大而减少。
     其次采用氧化共沉淀法在溶液中对Mn-Zn铁氧体进行稀土RE(RE=Y、Nd、Gd、Dy)掺杂,制备出Mn_(0.5)-Zn_(0.5)RE_xFe_(2-x)O_4(RE=Y、Nd、Gd、Dy)纳米粉末,研究表明:采用氧化共沉淀法在溶液中能制备出单相Mn_(0.5)-Zn_(0.5)RE_xFe_(2-x)O_4(RE=Y、Nd、Gd、Dy)纳米粉末,Mn_(0.5)-Zn_(0.5)RE_xFe_(2-x)O_4(RE=Y、Nd、Gd、Dy)样品的晶粒度随x的含量增大而减少。Y~(3+)、Nd~(3+)掺杂的Mn-Zn铁氧体的饱和磁化强度随x的含量增大呈单调减少,Gd~(3+)、Dy~(3+)掺杂的Mn-Zn铁氧体,除x=0.04这一点外,其饱和磁化强度随x的含量增大先增大而后减小,在x=0.04时,其饱和磁化强度均达到最小值。
Mn-Zn ferrite is a key material of modern electron industry and information industry, widely used in switching power supplies, transformer magnetic cores, information memory systems, medical diagnose, anti-electronmagnetic interference and so on. With the rapid development of telecommunication and computer technology, the higher and higher requirements are put forward for the Mn-Zn ferrite. In order to improve the properties of Mn-Zn ferrite, researches are focused on the following three aspects: (1)adjusting the proportion of the material composition,(2)the improvement on preparation method,(3)chemistry dopant. In this paper the preparation of Mn-Zn ferrite and the effect of RE-doped on Mn-Zn ferrite by oxide co-precipitation method were studied
     In this paper Mn-Zn ferrite nanometer powder was synthesized in solution on the basis of preparation of Fe_3O_4 by oxide co-precipitation method. The effects of concentration of solution,PH value,heat-treatment and surfactant were studied on the phase ,microstructure and magnetic properties of the Mn-Zn ferrite samples.The results indicate the single phase Mn-Zn ferrite nanometer powder can be prepared directly by oxide co-precipitation method, and the concentration and PH value of solution are two key factors of the method, and the the higher concentration and PH values,the higher crystallinity and saturation magnetization. Fe_2O_3 exists in the Mn-Zn ferrite samples after they are heat-treated at different temperatures in air and the content of Fe_2O_3 reduces with the rising of heat-treatment temperature, while the saturation magnetizations increase. But Fe_2O_3 does't exist in the Mn-Zn ferrite samples after they are heat-treated at 600℃in air and then cooled in nitrogen atmosphere. The saturation magnetization of Mn-Zn ferrite samples cooled in nitrogen atmosphere is higher than that of Mn-Zn ferrite samples cooled in air.The surfactant CTAB added to solution can reduce agglomeration of the nanometer particles efficiently, the crystallite granularity and saturation magnetization decrease with the increasing of the ratio of the surfactant and water weight.
     Secondly Mn_(0.5)-Zn_(0.5)RE_xFe_(2-x)O_4(RE=Y、Nd、Gd、Dy)nanometer powder was prepared by oxide co-precipitation method .The results indicate the single phase Mn_(0.5)-Zn_(0.5)RE_xFe_(2-x)O_4 can be prepared directly by oxide co-precipitation method, the crystallite granularity of Mn_(0.5)-Zn_(0.5)RE_xFe_(2-x)O_4(RE=Y、Nd、Gd、Dy)samples and the saturation magnetizations of Y or Nd doped Mn-Zn ferrite decrease monotonously with the increasing of the content (x) ,but the saturation magnetizations of Gd or Dy doped Mn-Zn ferrite increase firstly and then reduce except x=0.04.At x=0.04 the saturation magnetizations reach the minimum.
引文
[1]席国喜,路迈西.锰锌铁氧体材料的制备研究新进展[J].人工晶体学报,2005,34(1):164-168
    [2]Arulrmurugan R, Jeyadevanb B, Vaidyanathana G, etal. Effect of zinc substitution on Co-Zn and Mn-Zn ferrite nanoparticles prepared by co-precipitation[J]. J Magn Magn Mater, 2005,288:470-477
    [3]T. Abbas, Y. Khan, M. Ahmad, S. Anwar. X-ray diffraction study of the cation distribution in the Mn-Zn-ferrites[J]. Solid State Commun. 1992, 82:701-703.
    [4]E.C. Snelling (Ed.). Soft Ferrites Properties and Applications, 2nded.[M]. Butter Worth and Co. (Publisher) Ltd., London, 1988: 20-22
    [5]徐泽玮.电源技术中应用的软磁材料发展回顾与分析[J].金属功能材料,2001,8(5):1-7
    [6]Lu J.W.Application and analysis of adjustable profile high frequency switch mode transformerhavingaU-shaped winding structure.[J]IEEE Trans.Magn.,1998,34(4):1345-1347
    [7]Takadate K.,Yamamoto Y.,Makino A.et al.Fine grained MnZn ferrites in the high driving.[J].Appl.Phys.l998,83(11):6861-6863
    [8]StoppelD. Develompents in soft magnetic power ferrites.[J]J.Magn.Magn.Mater.,1996,160:323-328
    [9]Sugimoto M.The past, present, and future of ferrites[J].J.Amer.Ceram.Soc,1999,82(2):269-280
    [10]Roess E.Soft magnetic ferrites and applications in the telecommunication and power converters[J].IEEE Trans.Magn., 1982,18:1529-1534
    [11]Koenig U.Improved manganese zinc ferrites for power transformers[J].IEEE Trans.Magn., 1975,11:1306-1308
    [12]陈国华.21世纪软磁铁氧体材料和元件发展趋势[J].磁性材料及器件,2001,32(4):34-36
    [13]刘玉红.软磁铁氧体材料的现状及其发展趋势[J].材料导报,2000,14(7):30-31
    [14]谭维,王长振,周甘宇,等.高磁导率锰锌铁氧体材料研究现状[J].中国锰业,2002,20(1):33-36
    [15]Costa ACFM, Tortella E, Morelli M R, et al. Synthesis , microstructure and magnetic properties of Ni-Zn ferrites[J].J Magn Magn Mater ,2003 , 256 :174
    [16]Yan M , Hu J. Microwave sintering of high permeability (Ni_(0.20) Zn_(0.60)Cu_(0.20)Fe_(1.98)O_4 )ferrite at low sintering temperatures[J] J Magn Magn Mater, 2006 ,305:171
    [17]Roess E.,Hanke I.,Moser E.Mn-Zn ferrite with initial permeability of over 20000 and their structure.Z.Angew[J].Phys., 1964,17(7):504-508
    [18]Roess E.Magnetic properties and microstructure of high permeability Mn-Zn ferrites.Ferrites Proceeding of the International Conference[C].1966:105-108
    [19]#12
    [20]安原克志.日本应用磁气协会志[J],1995,19(2):417-420
    [21]张友刚,黄永杰,罗迪民.磁性材料[M].成都:成都电讯工程学院出版社,1988
    [22]Shichijo Y.Magnetic properties of sintered ferrites of a MnO-ZnO-Fe2O3 ternary system[J].Trans JIM., 1961,2(4):204-210
    [23]Ohta K.Magnetostriction Constant of Mn-Zn-Feferrites[J].J.Appl.Phys.,1964,3(10):576-579
    [24]艾树涛,胡国光.高磁导率Mn-Zn铁氧体的配方和烧结工艺的研究[J],安徽大学学报,1999,23(1):31-36
    [25]何水校.锰锌铁氧体材料的未来发展动向[J].磁性材料及器件,2001,32(6):27-30
    [26]沈庆峰,杨显万,刘春侠.软磁铁氧体材料[J],昆明理工大学学报(理工版),2003,28:17-37
    [27]Carsten B.Why a magnetics designer should measure core loss;with a surve of loss measurement techniques and low cost,high accuracy alternative.Proceeding of PCIM[J],Nurnberg,Germany,1995:163-179
    [28]谭维.工艺因素及添加剂对锰锌铁氧体磁性能的影响[D]中南大学,2006.
    [29]Cardelli E.,Fiorucci L.,Torre E.D.Estimation of MnZn ferrite core losses in magnetic components at high frequency[J].IEEE Trans.Magn.,2001,37(4):2366-2368
    [30]Zhu J.,Tseng K.J.,Foo C.F.Effects of Muti-segment structure on core losses in Mn-Zn ferrites at high frequency[J].IEEE Trans.Magn.,2000,36(5):3408-3410
    [31]Otsuki E.,Yamada S.,Otsuka T.,et al.Microstructure and physical properties of MnZn ferrites for high frequency power supplies[J].J.Appl.Phys.,1991,69(8):5942-5944
    [32]白志刚,共沉淀法制备锰锌铁氧体粉末及烧结实验[D],武汉科技大学,2006
    [33]李新勇,冯良波,吕功煊等,ZnFe_2O_4纳米材料的制备及顺磁特性的研究[J],高等学校化学学报,1995,16(10):1495-1499
    [34]刘颖,王建华,平均粒径大小及磁性能不同Fe_3O_4超微粉的制备[J],功能材料,1993,24(1):20-24
    [35]C.Rath,K.K.Sahu,S.Anand,et al.Preparation and characterization of nanosize Mn-Zn ferrite[J],Journal of Magnetic Materials, 1999,202:77-84
    [36][36]邓宏,姜斌,曾娟等,水热法在制备电子陶瓷粉体中的应用[J],材料导报,2001,15(7):30-31
    [37]王秀峰,王永兰,金志浩,水热法制备陶瓷材料研究进展[J],硅酸盐通报,2004,25(8):1253-1257
    [38]Wang J.,Chong P. F.,Ng. S. C.,Gan L. M. MieroemulsionPoreessingof mnagnaese zinc ferrites [J]. Materials Letters, 1997, 30(2-3):217-221.
    [39]Kosak A., MkaovecD., Drofenik M., Znidarsic A. In situ snyhtesis of mganetic MnZn ferrite nanopartics using reverse microemulsions [J]. Joural of Magnetism and Magnetic Magerials,2004,272-276:1542-1544
    [40]张密林,周铭,景晓燕等,柠檬酸盐法合成高性能BaFe_(12)O_(19)超微粉[J],硅酸盐通报,1996,15(4):22-25
    [41]张密林,周铭,辛艳凤等,柠檬酸法合成SrFe_(12)O_(19)超微粉[J],硅酸盐学报,1996,24(6):695-688
    [42]杨隽,张启超.胶体化学法制备氧化铁超微粉[J],无机盐工业,2000,32(1):16-19
    [43]熊纲,杨绪杰,陆路德,等.纳米晶铁酸锌和铁酸斓的合成与表征[J],无机材料学报,1998,13(4):613-618
    [44]岳振星,周济,张洪国等,铁氧体-微晶玻璃纳米复合材料的结构与性能[J],无机材料学报,1999,14(3):375-379
    [45]熊纲,杨绪杰,陆路德,等.纳米晶铁酸锌和铁酸斓的合成与表征[J],无机材料学报,1998,13(4):613-618
    [46]余忠,兰中文,王京梅,等.溶胶凝胶法制备Mn-Zn铁氧体粉末[J],功能材料增刊,2000,31:34-35
    [47]李东风,贾振斌,魏雨.尖晶石型软磁铁氧体纳米材料的制备方法研究进展[J],电子元件与材料,2003,22(6):37-40
    [48]姜继森,高濂,郭景坤,铁酸锌纳米晶的机械化学合成[J],高等化学学报,1999,20(1):1-4
    [49]C.H.Yan,Z.G.Xu,F.X.Cheng,Z.M.Wang,Nanophased CoFe_2O_4 prepared by combustion method[J],Solid state communications, 1999(111):287-291
    [50]近角聪信著,葛世彗译,铁磁性物理[M],兰州:兰州大学出版社,2002,164-165
    [51]曲远方.功能陶瓷及应用[M].北京:化学工业出版社,2003,178-179
    [52]周志刚铁氧体磁性材料[M].北京:科学出版社,1981.25-26
    [53]宛德福,马兴隆磁性物理学(修订版)[M].北京:电子工业出版社,1999.35-42
    [54]姜寿亭著铁磁性理论[M].北京:科学出版社,.1993,36-39
    [55]李荫远,李国栋.铁氧体物理[M].北京:科学出版社,1978.35-62
    [56]钟文定.铁磁学[M].北京:科学出版社,1992.65-74
    [57]田莳.材料物理性能[M].北京:北京理工大学出版社,2004.308-309
    [58]何水校,软磁铁氧体材料的应用与市场[J],磁性材料及器件,1998,29(1):44
    [59]R.V.Mangalaraja,S.Ananthakmar,P.Manohar,etal,CharacterizationofMn_(0.8)Zn_(0.2)Fe_2O_4[J],Mater Scie&EnginA,2004,367:301-305
    [60]Rath,K.K.Sahu,S.Anand,Preparation of Mn_(0.65)Zn_(0.35)Fe_2O_4-ferrite by Hdrothermally[J] Magn.Magn.Mater,1999,202:77-84
    [61]秦润华,姜炜,等.纳米磁性四氧化三铁的制备及表征[J].材料导报,2003,66(9):662-668.
    [62]李发伸,王涛,王颖.H_2O_2氧化法制各Fe_3O_4纳米粒子及与共沉淀法制备该样品的比较[J].物理学报,2005,54(7):3100-3105.
    [63]王全胜,刘颖,等.沉淀氧化法制备Fe_3O_4的影响因素研究[J].北京理工大学学报,1994,14(2):2002,205.
    [64]T. Takad and M.. kiyatna. Ferrites, proe.Inter.Conf[C].Japan., 69(1971).
    [65]Misawa T,Hashimoto K,Setaka W,et al.The study of the Fe~(2+) effect in acidity solution[J],Inorg.Nucl.Chern.,1973,35:4167
    [66]Bigham J.M.,Schwertmann U.Carlson L.and Murad E.,A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(Ⅱ)in acid mine waters.Geochim.Cosmochim[J],Acta, 1990,54:2743-2758.
    [67]都有为,李正宇,陆怀先,等.FeOOH生成条件的研究(Ⅰ)[J].物理学报,1979,28(05)705-711
    [68]Bigham J.M., Schwertmann U. Carlson L. and Murad E., A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(Ⅱ) in acid mine waters.Geochim. Cosmochim [J],Acta ,1990,54:2743-2758.
    [69]Misawa T, Hashimoto K, Setaka W, et al.The study of the Fe~(2+) effect in acidity solution[J],Inorg. Nucl.Chem.,1973,35:4167
    [70]Tamaura Y.,Ito K.and Katsura T.,Trarisformation of γ-FeO(OH)to Fe3O4 by adsorption of iron(Ⅱ)ion onγ-FeO(OH)[J],Chem.Soc.Dalton Trans., 1983,189-194.
    [71]马子川,魏雨,郑学忠.Fe(Ⅱ)浓度及pH值对γ-FeOOH相转化为α-Fe_2O_3时间的影响[J],磁性材料及器件,1998,2(29):43
    [72]Schikorr,G., The iron (Ⅱ) hydroxide and ferromagnetic iron (Ⅲ) hydroxide.[J] Z. Allg.Chem.,1938,212, 33-38.
    [73]A. Kosak *, D. Makovec , M. Drofenik ,A. Znidarsic. In situ synthesis of magnetic MnZn-ferrite nanoparticles using reverse microemulsions[J]. Journal of Magnetism and Magnetic Materials 272-276 (2004) 1542-1544
    [74]聂建华.高性能Mn-Zn铁氧体材料的制备及机理研究[D].华中科技大学,2004
    [75]王朝明.高磁导率Mn-Zn铁氧体材料频率特性研究[D].电子科技大学,2003
    [76]Liao S.-C.,Chen Y.-J.,Kear B.Het al.Study on nanoparticle during vapor phase synthesis[J].Nanostruc Mater 1998,10(6):1063-1067
    [77]K.J.克莱邦德.纳米材料化学[M].北京:化学工业出版社,2004,7
    [78]张友刚,黄永杰,罗迪民.磁性材料[M].成都:成都电讯工程学院出版社,1988
    [79]Kaczmarek R.,Bouguila L.,Sadarnac D.Magnetic loss in MnZn ferrite under trapezoidal 1MHz voltage supply[J].J.Magn.Magn.Mater.,1996,160:49-50
    [80]Tung M.J.,Chang W.C.,Liu C.S.,et al.Study of loss mechanisms of MnZn ferrites in the frequency from 1 MHz to 10 MHz.[J] IEEE Trans.Magn.,1993,29(6):3526-3528
    [81]Cardelli E.,Fiorucci L.,Torre E.D.Estimation of MnZn ferrite core losses in magnetic components at high frequency[J].IEEE Trans.Magn.,2001,37(4):2366-2368
    [82]杨华明,宋晓岚,金胜明.新型无机材料[M].北京:化学工业出版社,2005.122-159.
    [83]崔正刚,殷福珊,微乳化技术及应用[M].北京:中国轻工业出版社.1999,73-83.
    [84]J. Wang , P.F. Chong , S.C. Ng , L.M. Gan. Microemulsion processing of manganese zinc ferrites[J]. Materials Letters 30 (1997) 217-221
    [85]P. Poddar , H. Srikanth , S.A. Morrison , E.E. Carpenter. Inter-particle interactions and magnetism in manganese-zinc ferrite nanoparticles[J]. Journal of Magnetism and Magnetic Materials 288 (2005) 443-451
    [86]R.D.K.Misra , S. Gubbala , A. Kale , W.F. Egelhoff Jr. Acomparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique[J]. MaterialsScience and Engineering B111(2004)164-174
    [87]赵大庆,杨锋.中国机械工程学会生产工程分会2001年“面向21世纪的生产工程”学术会 议[C],2001,374-377.
    [88]赵丽君.掺杂稀十尖晶石型铁氧体纳米晶的结构和磁性能研究[D].吉林大学,2006.
    [89]刘光华.稀十材料与应用技术[M].北京:化学工业出版社,2005.10-11
    [90]庄稼,迟燕华,石均宁等,低热固相反应制备纳米铈镍铁氧体粉末[J],功能材料,2002,33(3):253-255
    [91]苏锵,稀土化学[M],河南:科学技术出版社,1993,5-6
    [92]N Rezlescu,E Rezlescu,C Pasnicu and M L Craus,Effects of the rare-earth ions on some properties of a nickel-zinc ferrite,[J].Phys.:Condens.Matter,1994,6: 5707-5716
    [93]Tatsuya Kodama,Masataka Ookubo,Satoshi Miura,Material Research Bulletine.Synthesis and characterization of ultrafine Mn(Ⅱ)-bearing ferrite of type Mn_xFe_(3-x)O_4 by coprecipitation[J]J.Magn.Magn.Mater.l996,31(12),1501-1512
    [94]]Hemeda.O.M , Said.M.Z , Barakat.M.M. Spctral and transport Phenomena in Ni ferrite-substituted Gd_2O_3[J].J.Magn.Magn.Mater.2001, 224:132-142
    [95]姚志强,王琴,钟炳.超临界流体干燥法制备Mn-Zn铁氧体超细粉末物相结构的研究[J].磁性材料及器件.1999,30(1):28-31
    [96]张丽华,王子忱,赵纯,等.掺杂Sb~(3+)的ZnO纳米晶敏感材料的性能[J].材料研究学报.1994,8(4):348-351
    [97]A.A.SATTAR,A.et al.,Magnetic properties of Cu-Zn ferrites doped with rare-earth oxides,[J].Phys.stat.sol.(a)171,563(1999)