非巴比妥类静脉全身麻醉药对大鼠皮层星形胶质细胞表达凝血酶敏感蛋白1及神经元突触数目影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     通过体外细胞培养实验,研究依托咪酯、咪达唑仑及氯胺酮对星形胶质细胞表达凝血酶敏感蛋白的影响。并观察依托咪酯和氯胺酮对共培养神经元突触的影响。
     方法:
     1)分离纯化培养SD大鼠大脑皮层星形胶质细胞,并分别用依托咪酯、咪达唑仑及氯胺酮进行干预。药物设立不同浓度及不同时间组。利用RT-PCR和Western blotting技术分别检测星形胶质细胞表达TSP在基因和蛋白水平的变化;
     2)建立并优化星形胶质细胞和神经元共培养模型。用依托咪酯和氯胺酮进行处理,利用细胞免疫荧光化学法观察上述药物对神经元突触数目的影响。
     结果:
     1)依托咪酯可促进星形胶质细胞表达TSP-1,且具有浓度依赖性和时间依赖性。2)氯胺酮可减少星形胶质细胞分泌TSP-1,但与对照组无统计学差异。3)咪达唑仑对星形胶质细胞表达TSP-1无明显影响。4)依托咪酯可增加共培养神经元的突触数目;氯胺酮可减少共培养神经元的突触数目。两组之间具有统计学差异。
     结论:
     1.依托咪酯具有以促进星形胶质细胞TSP-1表达的作用。2.氯胺酮下调星形胶质细胞表达TSP-1,但与对照组相比无统计学差异;咪达唑仑对星形胶质细胞分泌TSP-1无明显影响。3.依托咪酯和氯胺酮可通过影响TSP-1的表达间接作用于神经元,分别对突触数量产生上调和下调的作用。
Objective:
     To investigate the modulation of TSP-1 levels in astrocytes by etomidate, midazolam and ketamine and observe the influence on synapses number of co-cultured neurons by etomidate and ketamine.
     Method:
     Cortical astrocytes were cultured then treated with etomidate, midazolam and ketamine at different concentrations. The Sprague-Dawley rat was used as the primary cell source. The TSP-1 expression was detected through RT-PCR and Western blotting. We established co-culture model of neurons and cortical astrocytes and observed the numbers of synapses of co-culture neurons after being treated with etomidate and ketamine.
     Results:
     1) Etomidate promote the expression of TSP-1.2) Ketamine reduce the secretion of TSP-1, though there is no significant difference compared with the control group.3) Midazolam has no notable effect on the modulation of TSP-1.4) Etomidate increases the number of synapses of co-cultured neurons while ketamine reduces it.
     Conclusion:
     1) Etomidate promote the expression of TSP-1.2) Ketamine reduce the secretion of TSP-1.3) Midazolam has no obvious effect on the modulation of TSP-1. 4) Etomidate and ketamine has different influence on the synapses number of neurons.
引文
[1]Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes:cellular and molecular cues to biological function. Trends Neurosci.1997.20(12):570-7.
    [2]Ridet JL, Alonso G, Chauvet N, Chapron J, Koenig J, Privat A. Immunocytochemical characterization of a new marker of fibrous and reactive astrocytes. Cell Tissue Res.1996.283(1):39-49.
    [3]Benarroch EE. Neuron-astrocyte interactions:partnership for normal function and disease in the central nervous system. Mayo Clin Proc.2005.80(10): 1326-38.
    [4]Pehar M, Vargas MR, Cassina P, Barbeito AG, Beckman JS, Barbeito L. Complexity of astrocyte-motor neuron interactions in amyotrophic lateral sclerosis. Neurodegener Dis.2005.2(3-4):139-46.
    [5]Escartin C, Valette J, Lebon V, Bonvento G. Neuron-astrocyte interactions in the regulation of brain energy metabolism:a focus on NMR spectroscopy. J Neurochem.2006.99(2):393-401.
    [6]Theodosis DT, Poulain DA, Oliet SH. Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev.2008.88(3): 983-1008.
    [7]Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano G. Astrocyte-neuron interactions in neurological disorders. J Biol Phys.2009.35(4):317-36.
    [8]Pereira A Jr, Furlan FA. On the role of synchrony for neuron-astrocyte interactions and perceptual conscious processing. J Biol Phys.2009.35(4): 465-80.
    [9]Benarroch EE. Astrocyte-neuron interactions:implications for epilepsy. Neurology.2009.73(16):1323-7.
    [10]Reyes-Haro D, Muller J, Boresch M, et al.. Neuron-astrocyte interactions in the medial nucleus of the trapezoid body. J Gen Physiol.2010.135(6):583-94.
    [11]Jolivet R, Allaman I, Pellerin L, Magistretti PJ, Weber B. Comment on recent modeling studies of astrocyte-neuron metabolic interactions. J Cereb Blood Flow Metab.2010.30(12):1982-6.
    [12]Mangia S, Dinuzzo M, Giove F, Carruthers A, Simpson IA, Vannucci SJ. Response to'comment on recent modeling studies of astrocyte-neuron metabolic interactions':much ado about nothing. J Cereb Blood Flow Metab. 2011
    [13]Voutsinos-Porche B, Bonvento G, Tanaka K, et al.. Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron.2003.37(2):275-86.
    [14]Gomes FC, Paulin D, Moura NV. Glial fibrillary acidic protein (GFAP): modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res.1999.32(5):619-31.
    [15]Trejo F, Vergara P, Brenner M, Segovia J. Gene therapy in a rodent model of Parkinson's disease using differentiated C6 cells expressing a GFAP-tyrosine hydroxylase transgene. Life Sci.1999.65(5):483-91.
    [16]Albrecht PJ, Dahl JP, Stoltzfus OK, Levenson R, Levison SW. Ciliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblast growth factor-2, to increase motor neuron survival. Exp Neurol.2002.173(1):46-62.
    [17]Pavelko KD, Howe CL, Drescher KM, et al.. lnterleukin-6 protects anterior horn neurons from lethal virus-induced injury. J Neurosci.2003.23(2):481-92.
    [18]Gabriel C, Ali C, Lesne S, et al.. Transforming growth factor alpha-induced expression of type 1 plasminogen activator inhibitor in astrocytes rescues neurons from excitotoxicity. FASEBJ.2003.17(2):277-9.
    [19]Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature.2002.417(6884):39-44.
    [20]Svendsen CN. The amazing astrocyte. Nature.2002.417(6884):29-32.
    [21]Mauch DH, Nagler K, Schumacher S, et al.. CNS synaptogenesis promoted by glia-derived cholesterol. Science (80-).2001.294(5545):1354-7.
    [22]Wang XF, Cynader MS. Astrocytes provide cysteine to neurons by releasing glutathione. J Neurochem.2000.74(4):1434-42.
    [23]Aloisi F, Ria F, Adorini L. Regulation of T-cell responses by CNS antigen-presenting cells:different roles for microglia and astrocytes. Immunol Today.2000.21(3):141-7.
    [24]Dong Y, Benveniste EN. Immune function of astrocytes. Glia.2001.36(2): 180-90.
    [25]Falsig J, Porzgen P, Lund S, Schrattenholz A, Leist M. The inflammatory transcriptome of reactive murine astrocytes and implications for their innate immune function. J Neurochem.2006.96(3):893-907.
    [26]Ross FM, Gwyn P, Spanswick D, Davies SN. Carbenoxolone depresses spontaneous epileptiform activity in the CA1 region of rat hippocampal slices. Neuroscience.2000.100(4):789-96.
    [27]Petroff OA, Errante LD, Kim JH, Spencer DD. N-acetyl-aspartate, total creatine, and myo-inositol in the epileptogenic human hippocampus. Neurology.2003. 60(10):1646-51.
    [28]Nordal RA, Nagy A, Pintilie M, Wong CS. Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury:a role for vascular endothelial growth factor. Clin Cancer Res.2004.10(10):3342-53.
    [29]Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science (80-).1994.263(5154):1768-71.
    [30]McFarland KN, Wilkes SR, Koss SE, Ravichandran KS, Mandell JW. Neural-specific inactivation of ShcA results in increased embryonic neural progenitor apoptosis and microencephaly. J Neurosci.2006.26(30):7885-97.
    [31]Burke RE, Antonelli M, Sulzer D. Glial cell line-derived neurotrophic growth factor inhibits apoptotic death of postnatal substantia nigra dopamine neurons in primary culture. J Neurochem.1998.71(2):517-25.
    [32]Noel F, Tofilon PJ. Astrocytes protect against X-ray-induced neuronal toxicity in vitro. Neuroreport.1998.9(6):1133-7.
    [33]Tanaka J, Toku K, Zhang B, Ishihara K, Sakanaka M, Maeda N. Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. Glia. 1999.28(2):85-96.
    [34]Langeveld CH, Jongenelen CA, Schepens E, Stoof JC, Bast A, Drukarch B. Cultured rat striatal and cortical astrocytes protect mesencephalic dopaminergic neurons against hydrogen peroxide toxicity independent of their effect on neuronal development. Neurosci Lett.1995.192(1):13-6.
    [35]Saura J, Pares M, Bove J, et al.. Intranigral infusion of interleukin-lbeta activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity. J Neurochem.2003.85(3):651-61.
    [36]Brown DR. Neurons depend on astrocytes in a coculture system for protection from glutamate toxicity. Mol Cell Neurosci.1999.13(5):379-89.
    [37]Cornet A, Bettelli E, Oukka M, et al.. Role of astrocytes in antigen presentation and naive T-cell activation. J Neuroimmunol.2000.106(1-2):69-77.
    [38]Stuve O, Youssef S, Slavin AJ, et al.. The role of the MHC class II transactivator in class Ⅱexpression and antigen presentation by astrocytes and in susceptibility to central nervous system autoimmune disease. J Immunol. 2002.169(12):6720-32.
    [39]Rolls A, Shechter R, London A, et al.. Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol.2007.9(9):1081-8.
    [40]Salmaggi A, Gelati M, Dufour A, et al.. Expression and modulation of IFN-gamma-inducible chemokines (IP-10, Mig, and I-TAC) in human brain endothelium and astrocytes:possible relevance for the immune invasion of the central nervous system and the pathogenesis of multiple sclerosis. J Interferon Cytokine Res.2002.22(6):631-40.
    [41]Leone DP, Relvas JB, Campos LS, et al.. Regulation of neural progenitor proliferation and survival by betal integrins. J Cell Sci.2005.118(Pt 12): 2589-99.
    [42]Charles AC. Glia-neuron intercellular calcium signaling. Dev Neurosci.1994. 16(3-4):196-206.
    [43]Inoue K, Koizumi S, Tsuda M, Shigemoto-Mogami Y. Signaling of ATP receptors in glia-neuron interaction and pain. LifeSci.2003.74(2-3):189-97.
    [44]Perea G, Araque A. Glial calcium signaling and neuron-glia communication. Cell Calcium.2005.38(3-4):375-82.
    [45]Fields RD. Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron-glia signaling. Semin Cell Dev Biol.2011.22(2):214-9.
    [46]Sharma G, Vijayaraghavan S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci USA.2001.98(7):4148-53.
    [47]Bennett MR, Farnell L, Gibson WG. A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. Biophys J. 2005.89(4):2235-50.
    [48]Perea G, Araque A. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci.2005.25(9): 2192-203.
    [49]Perea G, Araque A. Synaptic regulation of the astrocyte calcium signal. J Neural Transm.2005.112(1):127-35.
    [50]Dani JW, Chernjavsky A, Smith SJ. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron.1992.8(3):429-40.
    [51]Rajasekaran K, Jayakumar R, Venkatachalam K. Increased neuronal nitric oxide synthase (nNOS) activity triggers picrotoxin-induced seizures in rats and evidence for participation of nNOS mechanism in the action of antiepileptic drugs. Brain Res.2003.979(1-2):85-97.
    [52]Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science (80-).2004.305(5680):99-103.
    [53]Bergles DE, Roberts JD, Somogyi P, Jahr CE. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature.2000.405(6783): 187-91.
    [54]Bergles DE, Jabs R, Steinhauser C. Neuron-glia synapses in the brain. Brain Res Rev.2010.63(1-2):130-7.
    [55]Alvarez-Maubecin V, Garcia-Hernandez F, Williams JT, Van Bockstaele EJ. Functional coupling between neurons and glia. J Neurosci.2000.20(11): 4091-8.
    [56]Froes MM, Correia AH, Garcia-Abreu J, Spray DC, de Carvalho AC C, Neto MV. Gap-junctional coupling between neurons and astrocytes in primary central nervous system cultures. Proc Natl Acad Sci USA.1999.96(13):7541-6.
    [57]Ventura R, Harris KM. Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci.1999.19(16):6897-906.
    [58]Witcher MR, Park YD, Lee MR, Sharma S, Harris KM, Kirov SA. Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses. Glia.2010.58(5):572-87.
    [59]Araque A, Sanzgiri RP, Parpura V, Haydon PG. Astrocyte-induced modulation of synaptic transmission. Can J Physiol Pharmacol.1999.77(9):699-706.
    [60]Hussy N, Deleuze C, Pantaloni A, Desarmenien MG, Moos F. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation. J Physiol.1997.502 (Pt 3):609-21.
    [61]Langle SL, Poulain DA, Theodosis DT. Neuronal-glial remodeling:a structural basis for neuronal-glial interactions in the adult hypothalamus. J Physiol Paris. 2002.96(3-4):169-75.
    [62]Gourine AV, Kasymov V, Marina N, et al.. Astrocytes control breathing through pH-dependent release of ATP. Science (80-).2010.329(5991):571-5.
    [63]Vernadakis A. Glia-neuron intercommunications and synaptic plasticity. Prog Neurobiol.1996.49(3):185-214.
    [64]Mong JA, McCarthy MM. Steroid-induced developmental plasticity in hypothalamic astrocytes:implications for synaptic patterning. J Neurobiol. 1999.40(4):602-19.
    [65]Castejon OJ. Synaptic plasticity in the oedematous human cerebral cortex. J Submicrosc Cytol Pathol.2003.35(2):177-97.
    [66]Zanon RG, Oliveira AL MHC I upregulation influences astroglial reaction and synaptic plasticity in the spinal cord after sciatic nerve transection. Exp Neurol. 2006.200(2):521-31.
    [67]Zeng LH, Ouyang Y, Gazit V, et al.. Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex. Neurobiol Dis.2007.28(2):184-96.
    [68]Haydon PG, Blendy J, Moss SJ, Rob JF. Astrocytic control of synaptic transmission and plasticity:a target for drugs of abuse. Neuropharmacology. 2009.56 Suppl 1:83-90.
    [69]Ben AS, Pascual O. Glia:the many ways to modulate synaptic plasticity. Neurochem Int.2010.57(4):440-5.
    [70]Barker AJ, Ullian EM. Astrocytes and synaptic plasticity. Neuroscientist.2010. 16(1):40-50.
    [71]Paixao S, Klein R. Neuron-astrocyte communication and synaptic plasticity. Curr Opin Neurobiol.2010.20(4):466-73.
    [72]Vincent AJ, Gasperini R, Foa L, Small DH. Astrocytes in Alzheimer's disease: emerging roles in calcium dysregulation and synaptic plasticity. J Alzheimers Dis.2010.22(3):699-714.
    [73]Ben AS, Pont-Lezica L, Bechade C, Pascual O. Is astrocyte calcium signaling relevant for synaptic plasticity. Neuron Glia Biol.2010:1-9.
    [74]Bonansco C, Couve A, Perea G, Ferradas CA, Roncagliolo M, Fuenzalida M. Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity. Eur J Neurosci.2011.33(8):1483-92.
    [75]Halassa MM, Fellin T, Haydon PG. The tripartite synapse:roles for gliotransmission in health and disease. Trends Mol Med.2007.13(2):54-63.
    [76]Nadkarni S, Jung P. Modeling synaptic transmission of the tripartite synapse. Phys Biol.2007.4(1):1-9.
    [77]Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses:glia, the unacknowledged partner. Trends Neurosci.1999.22(5):208-15.
    [78]Elmariah SB, Hughes EG, Oh EJ, Balice-Gordon RJ. Neurotrophin signaling among neurons and glia during formation of tripartite synapses. Neuron Glia Biol.2005.1:1-11.
    [79]Paixao S, Klein R. Neuron-astrocyte communication and synaptic plasticity. Curr Opin Neurobiol.2010.20(4):466-73.
    [80]Ben AS, Pont-Lezica L, Bechade C, Pascual O. Is astrocyte calcium signaling relevant for synaptic plasticity. Neuron Glia Biol.2010:1-9.
    [81]Oh LY, Goodyer CG, Olivier A, Yong VW. The promoting effects of bFGF and astrocyte extracellular matrix on process outgrowth by adult human oligodendrocytes are mediated by protein kinase C. Brain Res.1997.757(2): 236-44.
    [82]Tapia-Arancibia L, Rage F, Givalois L, Arancibia S. Physiology of BDNF:focus on hypothalamic function. Front Neuroendocrinol.2004.25(2):77-107.
    [83]Endo T. Glycans and glycan-binding proteins in brain:galectin-1-induced expression of neurotrophic factors in astrocytes. Curr Drug Targets.2005.6(4): 427-36.
    [84]Fiacco TA, McCarthy KD. Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci.2004.24(3):722-32.
    [85]Vesce S, Bezzi P, Volterra A. The active role of astrocytes in synaptic transmission. Cell Mol Life Sci.1999.56(11-12):991-1000.
    [86]Newman EA. New roles for astrocytes:regulation of synaptic transmission. Trends Neurosci.2003.26(10):536-42.
    [87]Piet R, Poulain DA, Oliet SH. Contribution of astrocytes to synaptic transmission in the rat supraoptic nucleus. Neurochem Int.2004.45(2-3): 251-7.
    [88]Oliet SH, Piet R. Anatomical remodelling of the supraoptic nucleus:changes in synaptic and extrasynaptic transmission. J Neuroendocrinol.2004.16(4): 303-7.
    [89]Benz B, Grima G, Do KQ. Glutamate-induced homocysteic acid release from astrocytes:possible implication in glia-neuron signaling. Neuroscience.2004. 124(2):377-86.
    [90]Martineau M, Baux G, Mothet JP. Gliotransmission at central glutamatergic synapses:D-serine on stage. J Physiol Paris.2006.99(2-3):103-10.
    [91]Yang Y, Ge W, Chen Y, et al.. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci USA. 2003.100(25):15194-9.
    [92]Beattie EC, Stellwagen D, Morishita W, et al.. Control of synaptic strength by glial TNFalpha. Science (80-).2002.295(5563):2282-5.
    [93]Slayter HS, Karp G, Miller BE, Rosenberg RD. Binding properties of human thrombospondin:interaction with mucopolysaccharides. Semin Thromb Hemost.1987.13(3):369-77.
    [94]Clezardin P, Bourdillon MC, Hunter NR, McGregor JL. Cell attachment and fibrinogen binding properties of platelet and endothelial cell thrombospondin are not affected by structural differences in the 70 and 18 kDa protease-resistant domains. FEBS Lett.1988.228(2):215-8.
    [95]LawlerJ. The structural and functional properties of thrombospondin. Blood. 1986.67(5):1197-209.
    [96]Shen W, Steinruck H, Ljungh A. Expression of binding of plasminogen, thrombospondin, vitronectin, and fibrinogen, and adhesive properties by Escherichia coli strains isolated from patients with colonic diseases. Gut.1995. 36(3):401-6.
    [97]Chen H, Sottile J, O'Rourke KM, Dixit VM, Mosher DF. Properties of recombinant mouse thrombospondin 2 expressed in Spodoptera cells. J Biol Chem.1994.269(51):32226-32.
    [98]Wang TN, Qian X, Granick MS, et al.. Thrombospondin-1 (TSP-1) promotes the invasive properties of human breast cancer. J Surg Res.1996.63(1):39-43.
    [99]Masli S, Turpie B, Hecker KH, Streilein JW. Expression of thrombospondin in TGFbeta-treated APCs and its relevance to their immune deviation-promoting properties. J Immunol.2002.168(5):2264-73.
    [100]Wei P, Zhao YG, Zhuang L, Hurst DR, Ruben S, Sang QX. Protein engineering and properties of human metalloproteinase and thrombospondin 1. Biochem Biophys Res Commun.2002.293(1):478-88.
    [101]Hankenson KD, Hormuzdi SG, Meganck JA, Bornstein P. Mice with a disruption of the thrombospondin 3 gene differ in geometric and biomechanical properties of bone and have accelerated development of the femoral head. Mol Cell Biol.2005.25(13):5599-606.
    [102]Masli S, Turpie B, Streilein JW. Thrombospondin orchestrates the tolerance-promoting properties of TGFbeta-treated antigen-presenting cells. Int Immunol.2006.18(5):689-99.
    [103]Smadja DM, d'Audigier C, Bieche I, et al.. Thrombospondin-1 is a plasmatic marker of peripheral arterial disease that modulates endothelial progenitor cell angiogenic properties. ArteriosclerThromb Vasc Biol.2011.31(3):551-9.
    [104]Christopherson KS, Ullian EM, Stokes CC, et al.. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell.2005. 120(3):421-33.
    [105]Hamel MG, Mayer J, Gottschall PE. Altered production and proteolytic processing of brevican by transforming growth factor beta in cultured astrocytes. J Neurochem.2005.93(6):1533-41.
    [106]Cross AK, Haddock G, Stock CJ, et al.. ADAMTS-1 and-4 are up-regulated following transient middle cerebral artery occlusion in the rat and their expression is modulated by TNF in cultured astrocytes. Brain Res.2006. 1088(1):19-30.
    [107]Park JA, Lee HS, Ko KJ, et al.. Meteorin regulates angiogenesis at the gliovascular interface. Glia.2008.56(3):247-58.
    [108]Choi YK; Kim KW. AKAP12 in astrocytes induces barrier functions in human endothelial cells through protein kinase Czeta. FEBS J.2008.275(9):2338-53.
    [109]Moore NH, Costa LG, Shaffer SA, Goodlett DR, Guizzetti M. Shotgun proteomics implicates extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation. J Neurochem.2009.108(4):891-908.
    [110]Wang X, Chen W, Liu W, Wu J, Shao Y, Zhang X. The role of thrombospondin-1 and transforming growth factor-beta after spinal cord injury in the rat. J Clin Neurosci.2009.16(6):818-21.
    [111]Eroglu C, Allen NJ, Susman MW, et al.. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell.2009.139(2):380-92.
    [112]Lu Z, Kipnis J. Thrombospondin 1--a key astrocyte-derived neurogenic factor. FASEBJ.2010.24(6):1925-34.
    [113]Garcia O, Torres M, Helguera P, Coskun P, Busciglio J. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down's syndrome. PLOS ONE.2010.5(12):el4200.
    [114]Katsel P, Byne W, Roussos P, Tan W, Siever L, Haroutunian V. Astrocyte and glutamate markers in the superficial, deep, and white matter layers of the anterior cingulate gyrus in schizophrenia. Neuropsychopharmacology.2011. 36(6):1171-7.
    [115]Ikeda H, Miyatake M, Koshikawa N, et al.. Morphine modulation of thrombospondin levels in astrocytes and its implications for neurite outgrowth and synapse formation. J Biol Chem.2010.285(49):38415-27.
    [1]Rozovsky I, Laping NJ, Krohn K, Teter B, O'Callaghan JP, Finch CE. Transcriptional regulation of glial fibrillary acidic protein by corticosterone in rat astrocytes in vitro is influenced by the duration of time in culture and by astrocyte-neuron interactions. Endocrinology.1995.136(5):2066-73.
    [2]Albrecht J, Faff L. Astrocyte-neuron interactions in hyperammonemia and hepatic encephalopathy. Adv Exp Med Biol.1994.368:45-54.
    [3]O'Reilly SA, Roedica J, Nagy D, et al.. Motor neuron-astrocyte interactions and levels of Cu,Zn superoxide dismutase in sporadic amyotrophic lateral sclerosis. Exp Neurol.1995.131(2):203-10.
    [4]Melcangi RC, Galbiati M, Messi E, et al.. Astrocyte-neuron interactions in vitro: role of growth factors and steroids on LHRH dynamics. Brain Res Bull.1997. 44(4):465-9.
    [5]Aschner M. Neuron-astrocyte interactions:implications for cellular energetics and antioxidant levels. Neurotoxicology.2000.21(6):1101-7.
    [6]Kirchhoff F, Dringen R, Giaume C. Pathways of neuron-astrocyte interactions and their possible role in neuroprotection. Eur Arch Psychiatry Clin Neurosci. 2001.251(4):159-69.
    [7]Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes:cellular and molecular cues to biological function. Trends Neurosci.1997.20(12):570-7.
    [8]Ridet JL, Alonso G, Chauvet N, Chapron J, Koenig J, Privat A. Immunocytochemical characterization of a new marker of fibrous and reactive astrocytes. Cell Tissue Res.1996.283(1):39-49.
    [9]Benarroch EE. Neuron-astrocyte interactions:partnership for normal function and disease in the central nervous system. Mayo Clin Proc.2005.80(10): 1326-38.
    [10]Pehar M, Vargas MR, Cassina P, Barbeito AG, Beckman JS, Barbeito L. Complexity of astrocyte-motor neuron interactions in amyotrophic lateral sclerosis. Neurodegener Dis.2005.2(3-4):139-46.
    [11]Escartin C, Valette J, Lebon V, Bonvento G. Neuron-astrocyte interactions in the regulation of brain energy metabolism:a focus on NMR spectroscopy. J Neurochem.2006.99(2):393-401.
    [12]Theodosis DT, Poulain DA, Oliet SH. Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev.2008.88(3): 983-1008.
    [13]Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano G. Astrocyte-neuron interactions in neurological disorders. J Biol Phys.2009.35(4):317-36.
    [14]Pereira A Jr, Furlan FA. On the role of synchrony for neuron-astrocyte interactions and perceptual conscious processing. J Biol Phys.2009.35(4): 465-80.
    [15]Benarroch EE. Astrocyte-neuron interactions:implications for epilepsy. Neurology.2009.73(16):1323-7.
    [16]Reyes-Haro D, Muller J, Boresch M, et al.. Neuron-astrocyte interactions in the medial nucleus of the trapezoid body. J Gen Physiol.2010.135(6):583-94.
    [17]Jolivet R, Allaman I, Pellerin L, Magistretti PJ, Weber B. Comment on recent modeling studies of astrocyte-neuron metabolic interactions. J Cereb Blood Flow Metab.2010.30(12):1982-6.
    [18]Mangia S, Dinuzzo M, Giove F, Carruthers A, Simpson IA, Vannucci SJ. Response to'comment on recent modeling studies of astrocyte-neuron metabolic interactions':much ado about nothing. J Cereb Blood Flow Metab. 2011.
    [19]Voutsinos-Porche B, Bonvento G, Tanaka K, et al.. Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron.2003.37(2):275-86.
    [20]Gomes FC, Paulin D, Moura NV. Glial fibrillary acidic protein (GFAP): modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res.1999.32(5):619-31.
    [21]Trejo F, Vergara P, Brenner M, Segovia J. Gene therapy in a rodent model of Parkinson's disease using differentiated C6 cells expressing a GFAP-tyrosine hydroxylase transgene. Life Sci.1999.65(5):483-91.
    [22]Albrecht PJ, Dahl JP, Stoltzfus OK, Levenson R, Levison SW. Ciliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblast growth factor-2, to increase motor neuron survival. Exp Neurol.2002.173(1):46-62.
    [23]Pavelko KD, Howe CL, Drescher KM, et aL lnterleukin-6 protects anterior horn neurons from lethal virus-induced injury. J Neurosci.2003.23(2):481-92.
    [24]Gabriel C, Ali C, Lesne S, et al.. Transforming growth factor alpha-induced expression of type 1 plasminogen activator inhibitor in astrocytes rescues neurons from excitotoxicity. FASEB J.2003.17(2):277-9.
    [25]Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature.2002.417(6884):39-44.
    [26]Svendsen CN. The amazing astrocyte. Nature.2002.417(6884):29-32.
    [27]Mauch DH, Nagler K, Schumacher S, et al.. CNS synaptogenesis promoted by glia-derived cholesterol. Science (80-).2001.294(5545):1354-7.
    [28]Wang XF, Cynader MS. Astrocytes provide cysteine to neurons by releasing glutathione. J Neurochem.2000.74(4):1434-42.
    [29]Aloisi F, Ria F, Adorini L Regulation of T-cell responses by CNS antigen-presenting cells:different roles for microglia and astrocytes. Immunol Today.2000.21(3):141-7.
    [30]Dong Y, Benveniste EN. Immune function of astrocytes. Glia.2001.36(2): 180-90.
    [31]Falsig J, Porzgen P, Lund S, Schrattenholz A, Leist M. The inflammatory transcriptome of reactive murine astrocytes and implications for their innate immune function. J Neurochem.2006.96(3):893-907.
    [32]Ross FM, Gwyn P, Spanswick D, Davies SN. Carbenoxolone depresses spontaneous epileptiform activity in the CA1 region of rat hippocampal slices. Neuroscience.2000.100(4):789-96.
    [33]Petroff OA, Errante LD, Kim JH, Spencer DD. N-acetyl-aspartate, total creatine, and myo-inositol in the epileptogenic human hippocampus. Neurology.2003. 60(10):1646-51.
    [34]Nordal RA, Nagy A, Pintilie M, Wong CS. Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury:a role for vascular endothelial growth factor. Clin Cancer Res.2004.10(10):3342-53.
    [35]Nawashiro H, Brenner M, Fukui S, Shima K, Hallenbeck JM. High susceptibility to cerebral ischemia in GFAP-null mice. J Cereb Blood Flow Metab.2000. 20(7):1040-4.
    [36]Prat A, Biernacki K, Wosik K, Antel JP. Glial cell influence on the human blood-brain barrier. Glia.2001.36(2):145-55.
    [37]Takano T Tian GF, Peng W, et al.. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci.2006.9(2):260-7.
    [38]Haseloff RF, Blasig IE, Bauer HC, Bauer H. In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol.2005.25(1):25-39.
    [39]Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science (80-).1994.263(5154):1768-71.
    [40]McFarland KN, Wilkes SR, Koss SE, Ravichandran KS, Mandell JW. Neural-specific inactivation of ShcA results in increased embryonic neural progenitor apoptosis and microencephaly. J Neurosci.2006.26(30):7885-97.
    [41]Burke RE, Antonelli M, Sulzer D. Glial cell line-derived neurotrophic growth factor inhibits apoptotic death of postnatal substantia nigra dopamine neurons in primary culture. J Neurochem.1998.71(2):517-25.
    [42]Noel F, Tofilon PJ. Astrocytes protect against X-ray-induced neuronal toxicity in vitro. Neuroreport.1998.9(6):1133-7.
    [43]Tanaka J, Toku K, Zhang B, Ishihara K, Sakanaka M, Maeda N. Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. Glia. 1999.28(2):85-96.
    [44]Langeveld CH, Jongenelen CA, Schepens E, Stoof JC, Bast A, Drukarch B. Cultured rat striatal and cortical astrocytes protect mesencephalic dopaminergic neurons against hydrogen peroxide toxicity independent of their effect on neuronal development. Neurosci Lett.1995.192(1):13-6.
    [45]Saura J, Pares M, Bove J, et al.. Intranigral infusion of interleukin-lbeta activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity. J Neurochem.2003.85(3):651-61.
    [46]Brown DR. Neurons depend on astrocytes in a coculture system for protection from glutamate toxicity. Mol Cell Neurosci.1999.13(5):379-89.
    [47]Bergles DE, Roberts JD, Somogyi P, Jahr CE. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature.2000.405(6783): 187-91.
    [48]Bergles DE, Jabs R, Steinhauser C. Neuron-glia synapses in the brain. Brain Res Rev.2010.63(1-2):130-7.
    [49]Alvarez-Maubecin V, Garcia-Hemandez F, Williams JT, Van Bockstaele EJ. Functional coupling between neurons and glia. J Neurosci.2000.20(11): 4091-8.
    [50]Froes MM, Correia AH, Garcia-Abreu J, Spray DC, de Carvalho AC C, Neto MV. Gap-junctional coupling between neurons and astrocytes in primary central nervous system cultures. Proc Natl Acad Sci USA.1999.96(13):7541-6.
    [51]Ventura R, Harris KM. Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci.1999.19(16):6897-906.
    [52]Witcher MR, Park YD, Lee MR, Sharma S, Harris KM, Kirov SA. Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses. Glia.2010.58(5):572-87.
    [53]Araque A, Sanzgiri RP, Parpura V, Haydon PG. Astrocyte-induced modulation of synaptic transmission. CanJ Physiol Pharmacol.1999.77(9):699-706.
    [54]Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H. Microdomains for neuron-glia interaction:parallel fiber signaling to Bergmann glial cells. Nat Neurosci.1999.2(2):139-43.
    [55]Charles AC. Glia-neuron intercellular calcium signaling. Dev Neurosci.1994. 16(3-4):196-206.
    [56]Inoue K, Koizumi S, Tsuda M, Shigemoto-Mogami Y. Signaling of ATP receptors in glia-neuron interaction and pain. Life Sci.2003.74(2-3):189-97.
    [57]Perea G, Araque A. Glial calcium signaling and neuron-glia communication. Cell Calcium.2005.38(3-4):375-82.
    [58]Fields RD. Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron-glia signaling. Semin Cell Dev Biol.2011.22(2):214-9.
    [59]Sharma G, Vijayaraghavan S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci USA.2001.98(7):4148-53.
    [60]Bennett MR, Farnell L, Gibson WG. A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. Biophys J. 2005.89(4):2235-50.
    [61]Perea G, Araque A. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci.2005.25(9): 2192-203.
    [62]Perea G, Araque A. Synaptic regulation of the astrocyte calcium signal. J Neural Transm.2005.112(1):127-35.
    [63]Dani JW, Chernjavsky A, Smith SJ. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron.1992.8(3):429-40.
    [64]Rajasekaran K, Jayakumar R, Venkatachalam K. Increased neuronal nitric oxide synthase (nNOS) activity triggers picrotoxin-induced seizures in rats and evidence for participation of nNOS mechanism in the action of antiepileptic drugs. Brain Res.2003.979(1-2):85-97.
    [65]Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science (80-).2004.305(5680):99-103.
    [66]Halassa MM, Fellin T, Haydon PG. The tripartite synapse:roles for gliotransmission in health and disease. Trends Mol Med.2007.13(2):54-63.
    [67]Nadkarni S, Jung P. Modeling synaptic transmission of the tripartite synapse. Phys Biol.2007.4(1):1-9.
    [68]Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses:glia, the unacknowledged partner. Trends Neurosci.1999.22(5):208-15.
    [69]Elmariah SB, Hughes EG, Oh EJ, Balice-Gordon RJ. Neurotrophin signaling among neurons and glia during formation of tripartite synapses. Neuron Glia Biol.2005.1:1-11.
    [70]Paixao S, Klein R. Neuron-astrocyte communication and synaptic plasticity. CurrOpin Neurobiol.2010.20(4):466-73.
    [71]Ben AS, Pont-Lezica L, Bechade C, Pascual O. Is astrocyte calcium signaling relevant for synaptic plasticity. Neuron Glia Biol.2010:1-9.
    [72]Vernadakis A. Glia-neuron intercommunications and synaptic plasticity. Prog Neurobiol.1996.49(3):185-214.
    [73]Mong JA, McCarthy MM. Steroid-induced developmental plasticity in hypothalamic astrocytes:implications for synaptic patterning. J Neurobiol. 1999.40(4):602-19.
    [74]Castejon OJ. Synaptic plasticity in the oedematous human cerebral cortex. J Submicrosc Cytol Pathol.2003.35(2):177-97.
    [75]Zanon RG, Oliveira AL MHC I upregulation influences astroglial reaction and synaptic plasticity in the spinal cord after sciatic nerve transection. Exp Neurol. 2006.200(2):521-31.
    [76]Zeng LH, Ouyang Y, Gazit V, et al.. Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex. Neurobiol Dis.2007.28(2):184-96.
    [77]Haydon PG, Blendy J, Moss SJ, Rob JF. Astrocytic control of synaptic transmission and plasticity:a target for drugs of abuse. Neuropharmacology. 2009.56 Suppl 1:83-90.
    [78]Ben AS, Pascual O. Glia:the many ways to modulate synaptic plasticity. Neurochem Int.2010.57(4):440-5.
    [79]Barker AJ, Ullian EM. Astrocytes and synaptic plasticity. Neuroscientist.2010. 16(1):40-50.
    [80]Paixao S, Klein R. Neuron-astrocyte communication and synaptic plasticity. Curr Opin Neurobiol.2010.20(4):466-73.
    [81]Vincent AJ, Gasperini R, Foa L, Small DH. Astrocytes in Alzheimer's disease: emerging roles in calcium dysregulation and synaptic plasticity. J Alzheimers Dis.2010.22(3):699-714.
    [82]Ben AS, Pont-Lezica L, Bechade C, Pascual O. Is astrocyte calcium signaling relevant for synaptic plasticity. Neuron Glia Biol.2010:1-9.
    [83]Bonansco C, Couve A, Perea G, Ferradas CA, Roncagliolo M, Fuenzalida M. Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity. Eur J Neurosci.2011.33(8):1483-92.
    [84]Oh LY, Goodyer CG, Olivier A, Yong VW. The promoting effects of bFGF and astrocyte extracellular matrix on process outgrowth by adult human oligodendrocytes are mediated by protein kinase C. Brain Res.1997.757(2): 236-44.
    [85]Tapia-Arancibia L, Rage F, Givalois L, Arancibia S. Physiology of BDNF:focus on hypothalamic function. Front Neuroendocrinol.2004.25(2):77-107.
    [86]Endo T. Glycans and glycan-binding proteins in brain:galectin-1-induced expression of neurotrophic factors in astrocytes. Curr Drug Targets.2005.6(4): 427-36.
    [87]Fiacco TA, McCarthy KD. Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J Neurosci.2004.24(3):722-32.
    [88]Vesce S, Bezzi P, Volterra A. The active role of astrocytes in synaptic transmission. Cell Mol Life Sci.1999.56(11-12):991-1000.
    [89]Newman EA. New roles for astrocytes:regulation of synaptic transmission. Trends Neurosci.2003.26(10):536-42.
    [90]Piet R, Poulain DA, Oliet SH. Contribution of astrocytes to synaptic transmission in the rat supraoptic nucleus. Neurochem Int.2004.45(2-3): 251-7.
    [91]Oliet SH, Piet R. Anatomical remodelling of the supraoptic nucleus:changes in synaptic and extrasynaptic transmission. J Neuroendocrinol.2004.16(4): 303-7.
    [92]Benz B, Grima G, Do KQ. Glutamate-induced homocysteic acid release from astrocytes:possible implication in glia-neuron signaling. Neuroscience.2004. 124(2):377-86.
    [93]Martineau M, Baux G, Mothet JP. Gliotransmission at central glutamatergic synapses:D-serine on stage. J Physiol Paris.2006.99(2-3):103-10.
    [94]Yang Y, Ge W, Chen Y, et al.. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci USA. 2003.100(25):15194-9.
    [95]Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB. ATP released from astrocytes mediates glial calcium waves. J Neurosci.1999.19(2): 520-8.
    [96]Zhang JM, Wang HK, Ye CQ, et al.. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron.2003. 40(5):971-82.
    [97]Newman EA. Glial cell inhibition of neurons by release of ATP. J Neurosci. 2003.23(5):1659-66.
    [98]Koizumi S, Fujishita K, Tsuda M, Shigemoto-Mogami Y, Inoue K. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures. Proc Natl Acad Sci USA.2003.100(19):11023-8.
    [99]Smit AB, Syed Nl, Schaap D, et al.. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature.2001.411(6835):261-8.
    [100]Beattie EC, Stellwagen D, Morishita W, et al.. Control of synaptic strength by glial TNFalpha. Science (80-).2002.295(5563):2282-5.
    [101]Christopherson KS, Ullian EM, Stokes CC, et al.. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell.2005. 120(3):421-33.
    [102]Toumell CE, Bergstrom RA, Ferreira A. Progesterone-induced agrin expression in astrocytes modulates glia-neuron interactions leading to synapse formation. Neuroscience.2006.141(3):1327-38.
    [103]Cornet A, Bettelli E, Oukka M, et al.. Role of astrocytes in antigen presentation and naive T-cell activation. J Neuroimmunol.2000.106(1-2):69-77.
    [104]Stuve O, Youssef S, Slavin AJ, et al.. The role of the MHC class Ⅱ transactivator in class II expression and antigen presentation by astrocytes and in susceptibility to central nervous system autoimmune disease. J Immunol. 2002.169(12):6720-32.
    [105]Salmaggi A, Gelati M, Dufour A, et al.. Expression and modulation of IFN-gamma-inducible chemokines (IP-10, Mig, and I-TAC) in human brain endothelium and astrocytes:possible relevance for the immune invasion of the central nervous system and the pathogenesis of multiple sclerosis. J Interferon Cytokine Res.2002.22(6):631-40.
    [106]Rolls A, Shechter R, London A, et al.. Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol.2007.9(9):1081-8.
    [107]Leone DP, Relvas JB, Campos LS, et al.. Regulation of neural progenitor proliferation and survival by betal integrins. J Cell Sci.2005.118(Pt 12): 2589-99.
    [108]Yeo W, Gautier J. Early neural cell death:dying to become neurons. Dev Biol. 2004.274(2):233-44.
    [109]Fish JL, Kosodo Y, Enard W, Paabo S, Huttner WB. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc Natl Acad Sci U S A.2006.103(27):10438-43.
    [110]Hussy N, Deleuze C, Pantaloni A, Desarmenien MG, Moos F. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation. J Physiol.1997.502 (Pt 3):609-21.
    [111]Langle SL, Poulain DA, Theodosis DT. Neuronal-glial remodeling:a structural basis for neuronal-glial interactions in the adult hypothalamus. J Physiol Paris. 2002.96(3-4):169-75.
    [112]Gourine AV, Kasymov V, Marina N, et al.. Astrocytes control breathing through pH-dependent release of ATP. Science (80-).2010.329(5991):571-5.