丙泊酚通过改变星形胶质细胞THBS-1的表达水平影响神经细胞功能状态的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     在动物实验水平观察丙泊酚麻醉对大鼠脑内星形胶质细胞及神经元功能标志蛋白的影响,进而在体外细胞培养实验中明确丙泊酚对星形胶质细胞THBS-1 mRNA及蛋白表达水平的调节作用,观察丙泊酚对单纯培养神经元及与星形胶质细胞共培养神经元突触密度及突起状态的影响。
     方法:
     ①建立大鼠丙泊酚全身麻醉模型,制备大鼠脑组织石蜡切片,应用免疫组织化学法检测星形胶质细胞及神经元标志蛋白;②分离、纯化培养大鼠大脑皮层星形胶质细胞,设置不同浓度和不同时间的丙泊酚处理组,应用免疫荧光化学技术、RT-PCR及Western blotting检测丙泊酚对星形胶质细胞THBS-1 mRNA及蛋白表达的影响;③使用单纯培养及与星形胶质细胞共培养两种方式,培养大鼠大脑皮层神经元,以不同浓度丙泊酚对其进行处理,应用免疫荧光化学技术观察丙泊酚对不同方式培养的神经元突触密度及神经突起状态的影响。
     结果:
     ①动物实验显示丙泊酚处理后大鼠大脑皮层内THBS-1蛋白的表达水平增加,而GFAP、MAP2及Synapsin I蛋白表达水平及分布无明显改变;②丙泊酚可浓度和时间依赖性地上调体外培养大鼠大脑皮层星形胶质细胞的THBS-1 mRNA及蛋白表达水平平,尤以终浓度为30μM和处理时间12h影响最为明显;③与星形胶质细胞共培养的神经元突触密度和突起密集程度均显著高于单纯培养的神经元,300μM丙泊酚可引起单纯培养神经元的突起形态改变,而30μM丙泊酚可一定程度地增加共培养组神经元的突触密度。
     结论:
     丙泊酚可时间和浓度依赖性地增加大鼠大脑皮层星形胶质细胞分泌THBS-1的水平。与星形胶质细胞共培养可改善体外培养神经元的生长状态,且丙泊酚可影响与星形胶质细胞共培养神经元的突触密度。
Objective:
     ①To observe the effects of propofol anesthesia on the functional protein of astrocytes and neurons in rat cortex.②To detect the THBS-1 mRNA and protein level of the cultured rat cortical astrocytes in different propofol treat groups.③To compare the influence of propofol on synapses and neurite outgrowth between the stand-alone cultured neuron and co-cultured neuron with astrocytes.
     Methods:
     ①The general anesthesia model of rat using propofol was established firstly. The rat brain tissue slices were used to detect the functional proteins of astrocytes and neurons by immunohistochemisty.②Astrocytes were isolated from pooled rat cortex and grown in culture, then exposed to propofol with different concentrations or different time. The mRNA level of thrombospondin 1 (THBS-1) was detected by RT-PCR, and the protein level of THBS-1 by immunofluorescence cytochemistry and Western blotting.③The rat cortical neurons were cultured in two different ways, co-coltured with astrocytes or stand-alone cultured. Then the cells were treated with different concentrations of propofol. Immunofluorescence cytochemistry was applied to display the state of neuron synapses and neurites.
     Results:
     ①The THBS-1 level was increased in rat cortex after intraperitoneal administration of propofol.②The mRNA and protein level of THBS-1 in cultured rat cortical astrocytes was upregulated by propofol in a time and concentration dependent way. Exposure to 30μM propofol for 12 h may lead to the extreme changes in THBS-1 level.③The synapse density and neurite net intensity of the neurons that were co-cultured with astrocytes surpassed those of the stand-alone cultured ones. The shape change of the neurite was observed in the 300μM propofol exposed group. Even higher synapse density was detected in the co-cultured neurons treated with 30μM propofol.
     Conclusions:
     The level of THBS-1 secreted by asrtocytes in the rat cortex could be upregulated in a time and dose dependent way when exposed to propofol. The growth state of cultured neuron can be improved by co-culturing with astrocytes. Propofol can influence the synapse density of the co-cultured neurons.
引文
1. Kozinn, J., et al., Inhibition of glutamatergic activation of extracellular signal-regulated protein kinases in hippocampal neurons by the intravenous anesthetic propofol. Anesthesiology,2006.105(6):p.1182-91.
    2. Zhang, H., et al., Blocking conversion of GABAergic inhibition as a potential mechanism of propofol-mediated brain protection following resuscitation. Drug News Perspect,2009.22(9):p.525-9.
    3. Barhoumi, R.; et al., Effects of propofol on intracellular Ca2+homeostasis in human astrocytoma cells. Brain Res,2007.1145:p.11-8.
    4. Chu, L.F., et al., Ischemic brain cell-derived conditioned medium protects astrocytes against ischemia through GDNF/ERK/NF-kB signaling pathway. Brain Res,2008.1239:p.24-35.
    5. Christopherson, K.S., et al., Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell,2005.120(3):p.421-33.
    6. Todd, K.J., D.S. Auld, and R. Robitaille, Neurotrophins modulate neuron-glia interactions at a vertebrate synapse. Eur J Neurosci,2007.25(5):p.1287-96.
    7. Bessis, A., et al., Microglial control of neuronal death and synaptic properties. Glia,2007.55(3):p.233-8.
    8. Stellwagen, D. and R.C. Malenka, Synaptic scaling mediated by glial TNF-alpha. Nature,2006.440(7087):p.1054-9.
    9. Wang, J., et al., Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases. Toxicol Lett,2008. 183(1-3):p.72-80.
    10. Tripanichkul, W., K. Sripanichkulchai, and D.I. Finkelstein, Estrogen down-regulates glial activation in male mice following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. Brain Res,2006. 1084(1):p.28-37.
    11. Dhandapani, K.M. and D.W. Brann, Estrogen-astrocyte interactions:implications for neuroprotection. BMC Neurosci,2002.3:p.6.
    12. Morales, M., et al., Glutamate activates protein kinase B (PKB/Akt) through AMPA receptors in cultured Bergmann glia cells. Neurochem Res,2006.31(3):p. 423-9.
    13. Franke, B., M. Figiel, and J. Engele, CNS glia are targets for GDNF and neurturin. Histochem Cell Biol,1998.110(6):p.595-601.
    14. Sontheimer, H., et al., Glutamate opens Na+/K+channels in cultured astrocytes. Glia,1988.1(5):p.328-36.
    15. Drejer, J., E. Meier, and A. Schousboe, Novel neuron-related regulatory mechanisms for astrocytic glutamate and GABA high affinity uptake. Neurosci Lett,1983.37(3):p.301-6.
    16. Lieth, E., D.R. McClay, and J.M. Lauder, Neuronal-glial interactions:complexity of neurite outgrowth correlates with substrate adhesivity of serotonergic neurons. Glia,1990.3(3):p.169-79.
    17. Nakamura, Y., H. Kubo, and K. Kataoka, Uptake of transmitter amino acids by glial plasmalemmal vesicles from different regions of rat central nervous system. Neurochem Res,1994.19(9):p.1145-50.
    18. Karwacki, Z., et al., The effect of propofol on astro-and microglial reactivity in the course of experimental intracerebral haemorrhage in rats. Folia Neuropathol, 2006.44(1):p.50-8.
    19. Hansson, E., Transport of monoamine and amino acid neurotransmitters by primary astroglial cultures. Neurochem Res,1985.10(5):p.667-75.
    20. Samuels, I.S., et al., Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci,2008. 28(27):p.6983-95.
    21. Koob, A.O., A.D. Paulino, and E. Masliah, GFAP reactivity, apolipoprotein E redistribution and cholesterol reduction in human astrocytes treated with alpha-synuclein. Neurosci Lett.469(1):p.11-4.
    22. Kalman, M., GFAP expression withdraws-a trend of glial evolution? Brain Res Bull,2002.57(3-4):p.509-11.
    23. Vyberg, M., et al., Immunohistochemical identification of neuron-specific enolase, synaptophysin, chromogranin and endocrine granule constituent in neuroendocrine tumours. Acta Histochem Suppl,1990.38:p.179-81.
    24. Yan, R., X.G. Luo, and G.R. Bi, [Influence of astrocyte-conditioned medium on the formation of synapses in neural stem cells:the role of neurotrophin proteins]. Zhonghua Yi Xue Za Zhi,2008.88(35):p.2508-12.
    25. Lu, B., et al., Expression of synapsin I correlates with maturation of the neuromuscular synapse. Neuroscience,1996.74(4):p.1087-97.
    26. Erickson, J.D., et al., Activity-dependent regulation of vesicular glutamate and GABA transporters:a means to scale quantal size. Neurochem Int,2006.48(6-7): p.643-9.
    27. El-Husseini Ael, D., et al., Synaptic strength regulated by palmitate cycling on PSD-95. Cell,2002.108(6):p.849-63.
    28. Beique, J.C. and R. Andrade, PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex. J Physiol,2003.546(Pt 3):p.859-67.
    29. Petersen, J.D., et al., Distribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase Ⅱ at the PSD. J Neurosci,2003. 23(35):p.11270-8.
    30. Aarts, M., et al., Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science,2002.298(5594):p.846-50.
    31. Gylys, K.H., et al., Synaptic changes in Alzheimer's disease:increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. Am J Pathol,2004.165(5):p.1809-17.
    32. Toro, C. and J.F. Deakin, NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophr Res,2005.80(2-3):p.323-30.
    33. Sabio, G., et al., Stress-and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2. Biochem J,2004.380(Pt 1):p.19-30.
    34. Morabito, M.A., M. Sheng, and L.H. Tsai, Cyclin-dependent kinase 5 phosphorylates the N-terminal domain of the postsynaptic density protein PSD-95 in neurons. J Neurosci,2004.24(4):p.865-76.
    35. Platel, J.C., et al., GFAP-GFP neural progenitors are antigenically homogeneous and anchored in their enclosed mosaic niche. Glia,2009.57(1):p.66-78.
    36. Zhou, M., G.P. Schools, and H.K. Kimelberg, GFAP mRNA positive glia acutely isolated from rat hippocampus predominantly show complex current patterns. Brain Res Mol Brain Res,2000.76(1):p.121-31.
    37. Lu, Z. and J. Kipnis, Thrombospondin 1--a key astrocyte-derived neurogenic factor. FASEBJ.
    38. Lin, L.F., et al., Purification and initial characterization of rat B49 glial cell line-derived neurotrophic factor. J Neurochem,1994.63(2):p.758-68.
    39. Arikkath, J., et al., Delta-catenin regulates spine and synapse morphogenesis and function in hippocampal neurons during development. J Neurosci,2009.29(17): p.5435-42.
    40. Lee, S.H., et al., Synapses are regulated by the cytoplasmic tyrosine kinase Fer in a pathway mediated by p120catenin, Fer, SHP-2, and beta-catenin. J Cell Biol, 2008.183(5):p.893-908.
    41.高艳;吴永红;张成岗;整合平均光密度和面积比两种参数用于显微图像定量分析的初步研究.军事医学科学院院刊,2009年05期
    42.李佩尧,张成岗.星形胶质细胞分泌血小板反应蛋白(TSP)促进神经突触形成.军事医学科学院院刊,2006,30(4):372-4.
    43. Shibakawa YS, Sasaki Y, Goshima Y, Echigo N, Kamiya Y, Kurahashi K, Yamada Y, Andoh I Effects of ketamine and propofol on inflammatory responses of primary glial cell cultures stimulated with lipopolysaccharide. Br J Anaesth.2005; 95(6): 803-10.
    44.莱昂纳多D.米勒.米勒麻醉学[M].北京:北京大学医学出版社,2006年833.
    45. Amorim, Pedro MD; Chambers, Geoffrey MS; Cottrell, James MD; Kass, Ira S. PhD. Propofol Reduces Neuronal Transmission Damage and Attenuates the Changes in Calcium, Potassium, and Sodium during Hyperthermic Anoxia in the Rat Hippocampal Slice. Anesthesiology 1995.83(6):1254-1265.
    46.郑志,林玲.神经细胞培养理论与实践[M].北京:科学出版社,2002年:4-107.
    47. Adams, J.C., and Tucker, R.P. The thrombospondin type 1 repeat (TSR) superfamily. Dev. Dyn,2000.218:280-299.
    48. Chen, S., and Diamond, J.S. Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina. J. Neurosci,2002.22:2165-2173.
    49. Jurgen Schuttler andHelmut Schwilden. Modern anesthetics [M]. U.S.A: Springer,2008:3-10.
    50. Lin, T.N., Kim, G.M., Chen, J.J., Cheung, W.M., He, Y.Y., and Hsu, C.Y Differential regulation of thrombospondin-1 and thrombospondin-2 after focal cerebral ischemia/reperfusion. Stroke,2003.34:177-186.
    51. Liuzzi, F.J., and Lasek, R.J. (1987). Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science 237,642-645.
    52. Mauch, D.H., Nagler, K., Schumacher, S., Goritz, C., Muller, E.C., Otto, A., and Pfrieger, F.W. CNS synaptogenesis promoted by glia-derived cholesterol. Science, 2001.294:1354-1357.
    53. Nagler, K., Mauch, D.H., and Pfrieger, F.W. Glia-derived signals induce synapse formation in neurones of the rat central nervous system. J. Physiol.2001,533: 665-679.
    54. Ullian, E.M., Sapperstein, S.K., Christopherson, K.S., and Barres, B.A. Control of synapse number by glia. Science.2001,291:657-661.
    55. Ullian, E.M., Barkis, W.B., Chen, S., Diamond, J.S., and Barres, B.A. Invulnerability of retinal ganglion cells to NMDA excitotoxicity. Mol. Cell. Neurosci.2004a,26: 544-557.
    56. Ullian, E.M., Christopherson, K.S., and Barres, B.A. Role for glia in synaptogenesis. Glia.2004b,47:209-216.
    57. Ullian, E.M., Harris, B.T., Wu, A., Chan, J.R., and Barres, B.A. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol. Cell. Neurosci.2004c,25:241-251.
    58. Pfrieger F W, Barres B A. Synaptic efficacy enhanced by glial cells in vitro. Science, 1997,277 (5332):1684-7.
    59.胡荣,吴喜贵,杨忠等.大鼠星形胶质细胞在突触形成中的作用及机制.解剖学报,2005,36(3):225-30.
    60. Steinmetz CC, Buard I, Claudepierre T, et al. Regional variations in the glial influence on synapse development in the mouse CNS. J Physiol.2006 Nov 15;577(Pt 1):249-61.
    61. Koudinov AR, Koudinova NV. Cholesterol's role in synapse formation.Science,2002,295:2213
    62. Kesslak JP. Can estrogen play a significant role in the prevention of Alzheimer's disease? J Neural Transm Suppl,2002,62:227-39.
    63. Piet R, Bonhomme R, Theodosis DT, et al. Modulation of GABAergic transmission by endogenous glutamate in the rat supraoptic Hacleus. Eur J Neurosci,2003,17:1777-85.
    64. Dawson DW, Pearce SF, Zhong R, et al. CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol,1997,138(3):707-17.
    65.李鸿钧,马雁冰,孙茂盛.胶质细胞源性神经营养因子家族研究进展.国外医学临床生物化学与检验学分册,2002,23(2):115-7.
    66. Fernandez-Espejo E, Armengol JA, Flores JA, et al. Cells of the sympathoadrenal lineage:biological properties as donor tissue for cell-replacement therapies for Parkinson's disease. Brain Res Brain Res Rev.2005 Sep;49(2):343-54.
    67. Gao J, Prough DS, MxAdoo DJ, et al. Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Exp Neurol.2006 Oct;201(2):281-92.
    68. Steinhauser C, Gallo V. News on glutamate receptors in glial cells. Trends Neurosci,1996,19 (8):339-45.
    69. Rosewater K, Sontheimer H. Fibrous and protoplasmic astrocytes express GABAA receptors that differ in benzodiazepine pharmacology. Brain Res,1994,636 (1): 73-80.
    70. Bergles D E, Roberts J B, Somogyi P, et al. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature,2000,405 (6783): 187-91.
    71. Adembri C, Venturi L, Tani A, Chiarugi A, Gramigni E, Cozzi A, Pancani T, De Gaudio RA, Pellegrini-Giampietro DE. Neuroprotective effects of propofol in models of cerebral ischemia:inhibition of mitochondrial swelling as a possible mechanism. Anesthesiology.2006.104(1):80-9.
    72. Adams, J.C. Thrombospondins:multifunctional regulators of cell interactions. Annu. Rev. Cell Dev. Biol.2001.17:25-51.
    73. Graf, E.R., Zhang, X., Jin, S.X., Linhoff, M.W., and Craig, A.M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell,2004.119:1013-1026.
    1. Ullian, E.M., K.S. Christopherson, and B.A. Barres, Role for glia in synaptogenesis. Glia,2004. 47(3):p.209-16.
    2. Meyer-Franke, A, et al., Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron,1995.15(4):p. 805-19.
    3. Pfrieger, F.W. and B.A. Barres, Synaptic efficacy enhanced by glial cells in vitro. Science,1997. 277(5332):p.1684-7.
    4. Ullian, E.M., et al., Control of synapse number by glia. Science,2001.291(5504):p.657-61.
    5. Nagler, K., D.H. Mauch, and F.W. Pfrieger, Glia-derived signals induce synapse formation in neurones of the rat central nervous system. J Physiol,2001.533(Pt 3):p.665-79.
    6. Mauch, D.H., et al., CNS synaptogenesis promoted by glia-derived cholesterol. Science,2001. 294(5545):p.1354-7.
    7. Christopherson, K.S., et al., Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell,2005.120(3):p.421-33.
    8. Hama, H., et al., PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron,2004.41(3):p.405-15.
    9. Barker, A.J., et al., Developmental control of synaptic receptivity. J Neurosci,2008.28(33):p. 8150-60.
    10.Elmariah, S.B., et al., Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors. J Neurosci,2005.25(14):p.3638-50.
    11.Evanko, D.S., et al., Defining pathways of loss and secretion of chemical messengers from astrocytes. Glia,2004.47(3):p.233-40.
    12. Beattie, E.C., et al., Control of synaptic strength by glial TNFalpha. Science,2002.295(5563):p. 2282-5.
    13.Stellwagen, D. and R.C. Malenka, Synaptic scaling mediated by glial TNF-alpha. Nature,2006. 440(7087):p.1054-9.
    14.Turrigiano, G.G., More than a sidekick:glia and homeostatic synaptic plasticity. Trends Mol Med,2006.12(10):p.458-60.
    15.Zhang, J.M., et al., ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron,2003.40(5):p.971-82.
    16.Panatier, A., et al., Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell,2006.125(4):p.775-84.
    17. Lund, R.D. and J.S. Lund, Development of synaptic patterns in the superior colliculus of the rat. Brain Res,1972.42(1):p.1-20.
    18.Warton, S.S. and R. McCart, Synaptogenesis in the stratum griseum superficiale of the rat superior colliculus. Synapse,1989.3(2):p.136-48.
    19.Yamada, K., et al.. Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J Comp Neurol, 2000.418(1):p.106-20.
    20. Bushong, E.A., M.E. Martone, and M.H. Ellisman, Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci,2004.22(2):p.73-86.
    21.Mi, H. and B.A. Barres, Purification and characterization of astrocyte precursor cells in the developing rat optic nerve. J Neurosci,1999.19(3):p.1049-61.
    22.Bushong, E.A., et al., Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci,2002.22(1):p.183-92.
    23.Ogata, K. and T. Kosaka, Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience,2002.113(1):p.221-33.
    24.Araque, A., G. Carmignoto, and P.G. Haydon, Dynamic signaling between astrocytes and neurons. Annual Review of Physiology,2001.63:p.795-813.
    25.Scemes, E., et al., Connexin and pannexin mediated cell-cell communication. Neuron Glia Biol, 2007.3(3):p.199-208.
    26. Halassa, M.M., et al., Synaptic islands defined by the territory of a single astrocyte. J Neurosci, 2007.27(24):p.6473-7.
    27.Sul, J.Y., et al., Astrocytic Connectivity in the Hippocampus. Neuron Glia Biol,2004.1(1):p. 3-11.
    28. Wang, X., et al., Astrocytic Ca2+signaling evoked by sensory stimulation in vivo. Nat Neurosci, 2006.9(6):p.816-23.
    29.Schummers, J., H. Yu, and M. Sur, Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science,2008.320(5883):p.1638-43.
    30.Zhao, C., W. Deng, and F.H. Gage, Mechanisms and functional implications of adult neurogenesis. Cell,2008.132(4):p.645-60.
    31. Lim, D.A. and A. Alvarez-Buylla, Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci U S A,1999.96(13):p.7526-31.
    32.Song, H.J., C.F. Stevens, and F.H. Gage, Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat Neurosci,2002.5(5):p.438-45.
    33.Song, H., C.F. Stevens, and F.H. Gage, Astroglia induce neurogenesis from adult neural stem cells. Nature,2002.417(6884):p.39-44.
    34. Blondel, O., et al., A glia-derived signal regulating neuronal differentiation. J Neurosci,2000. 20(21):p.8012-20.
    35.Genoud, C., et al., Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol,2006.4(11):p. e343.
    36. Fellin, T. and G. Carmignoto, Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol,2004.559(Pt 1):p.3-15.
    37.Parpura, V., et al., Glutamate-mediated astrocyte-neuron signalling. Nature,1994.369(6483): p.744-7.
    38.Cotrina, M.L., et al., Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci U S A,1998.95(26):p.15735-40.
    39.Halassa, M.M., T. Fellin, and P.G. Haydon, The tripartite synapse:roles for gliotransmission in health and disease. Trends Mol Med,2007.13(2):p.54-63.
    40.Hirase, H., et al., Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol,2004.2(4): p. E96.
    41.Nimmerjahn, A., et al., Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods,2004.1(1):p.31-7.
    42.Takata, N. and H. Hirase, Cortical layer 1 and layer 2/3 astrocytes exhibit distinct calcium dynamics in vivo. PLoS One,2008.3(6):p. e2525.
    43.Hirase, H., J. Creso, and G. Buzsaki, Capillary level imaging of local cerebral blood flow in bicuculline-induced epileptic foci. Neuroscience,2004.128(1):p.209-16.
    44.Gobel, W., B.M. Kampa, and F. Helmchen, Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nat Methods,2007.4(1):p.73-9.
    45.Haydon, P.G., GLIA:listening and talking to the synapse. Nat Rev Neurosci,2001.2(3):p. 185-93.
    46.Pasti, L., et al., Intracellular calcium oscillations in astrocytes:a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci,1997.17(20):p. 7817-30.
    47.Araque, A., et al.. Tripartite synapses:glia, the unacknowledged partner. Trends Neurosci, 1999.22(5):p.208-15.
    48.Parri, H.R., T.M. Gould, and V. Crunelli, Spontaneous astrocytic Ca2+oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci,2001.4(8):p.803-12.
    49.Angulo, M.C., et al., Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci,2004.24(31):p.6920-7.
    50.Kang, N., et al., Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J Neurophysiol,2005.94(6):p. 4121-30.
    51.Shigetomi, E., et al., Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci,2008.28(26):p. 6659-63.
    52.Gordon, G.R., et al., Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci,2005.8(8):p.1078-86.
    53.Pascual, O., et al., Astrocytic purinergic signaling coordinates synaptic networks. Science,2005. 310(5745):p.113-6.
    54.Serrano, A., et al., GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci,2006.26(20):p.5370-82.
    55.Bezzi, P., et al., Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature,1998.391(6664):p.281-5.
    56.Coco, S., et al., Storage and release of ATP from astrocytes in culture. J Biol Chem,2003. 278(2):p.1354-62.
    57.Mothet, J.P., et al., Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc Natl Acad Sci U S A,2005. 102(15):p.5606-11.
    58.Kimelberg, H.K., et al., Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci,1990.10(5):p.1583-91.
    59.Duan, S., et al., P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci,2003.23(4):p.1320-8.
    60.Ye, Z.C., et al., Functional hemichannels in astrocytes:a novel mechanism of glutamate release. J Neurosci,2003.23(9):p.3588-96.
    61.Perea, G. and A. Araque, Astrocytes potentiate transmitter release at single hippocampal synapses. Science,2007.317(5841):p.1083-6.
    62.Martin, E.D., et al., Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia,2007.55(1):p.36-45.
    63.Perea, G. and A. Araque, Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci,2005.25(9):p.2192-203.
    64.Nett, W.J., S.H. Oloff, and K.D. McCarthy, Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol,2002.87(1):p. 528-37.
    65. Fellin, T., T. Pozzan, and G. Carmignoto, Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J Biol Chem,2006.281(7):p.4274-84.
    66.Kozlov, A.S., et al., Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci U S A,2006.103(26):p.10058-63.
    67. Nestor, M.W., et al., Plasticity of neuron-glial interactions mediated by astrocytic EphARs. J Neurosci,2007.27(47):p.12817-28.
    68.Navarrete, M. and A. Araque, Endocannabinoids mediate neuron-astrocyte communication. Neuron,2008.57(6):p.883-93.
    69. D'Ascenzo, M., et al., mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci U S A,2007.104(6):p.1995-2000.
    70. Fellin, T., et al., Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. J Neurosci,2006.26(36):p.9312-22.
    71. Ding, S., et al., Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J Neurosci,2007.27(40):p.10674-84.
    72.Cavelier, P. and D. Attwell, Tonic release of glutamate by a DIDS-sensitive mechanism in rat hippocampal slices. J Physiol,2005.564(Pt 2):p.397-410.
    73.Fiacco, T.A., et al., Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron,2007.54(4):p.611-26.
    74. Lee, C.J., et al., Astrocytic control of synaptic NMDA receptors. J Physiol,2007.581(Pt 3):p. 1057-81.