p73基因对人类肺腺癌血管生成影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:肺癌是一种对人类健康和生命威胁极大的恶性肿瘤,其发生与多种因素有关。大量的遗传学和分子生物学研究表明p53基因与肺癌的发生密切相关,在非小细胞肺癌中其突变率为47.8%,小细胞肺癌中其突变率为80%左右。p73基因是p53基因家族的新成员,蛋白序列与p53蛋白高度同源,也定位于细胞核内,现已发现有p73α、p73β、p73γ、p73δ、p73ε、p73Φ六种变异体。△Np73基因是一种缩短了的p73基因,它缺乏转录激活区。血管生成是实体瘤生长和转移的基础。当肿瘤体积增至2mm~3左右时,已不能依靠弥散获取氧气和营养物质,如无新生血管长入,肿瘤组织将保持休眠状态或发生退化。一旦血管长入肿瘤,这些血管将为肿瘤提供养料和排泄代谢产物,肿瘤在生长过程中也分泌多种物质来促进新生血管的进一步形成,这些丰富的毛细血管也为肿瘤细胞侵袭进入循环系统提供了良好的机会。血管生成过程包括:血管内皮基底膜溶解,内皮细胞向肿瘤内迁移,内皮细胞的增殖,内皮细胞形成管道,小分支形成血管网络,形成新的血管基底膜。这一复杂过程是肿瘤细胞、血管内皮细胞以及细胞外基质微环境相互作用的结果,受多种促血管生成因子和血管生成抑制因子的调节。已有研究表明,p73基因与某些肿瘤的血管生成密切相关。目前的研究表明p73基因在非小细胞肺癌中表达增高,而且很少发生突变。但是这种高表达对肺癌的发展,尤其是在肺癌血管生成方面起什么作用,目前尚不清楚。
     目的:了解高表达p73基因在人类肺腺癌血管生成方面的作用,以及p73基因不同变异体之间功能的差异,并且为非小细胞肺癌的基因治疗提供一种新的方法。
     方法:A549细胞株(wtp53)、H1299细胞株(p53-null)是两种人类肺腺癌细胞株。p73α、p73β、△Np73基因构建于真核表达质粒pcDNA3,通过脂质体基因转染的方法将外源性p73基因转染以上两种细胞,用G418筛选过表达p73基因的细胞克隆,RT-PCR和western blot对所筛选的细胞克隆进行鉴定。将筛选得到的过表达p73基因细胞株放大培养,观察p73基因不同的异构体对两种细胞株生长曲线的影响。应用逆转录多聚酶链反应(RT-PCR)技术,检测转染前后以上两种肿瘤细胞中VEGF、bFGF、TSP-1的mRNA表达水平的变化,western-blot法检测转染前后肿瘤细胞中VEGF、bFGF蛋白表达水平的变化,观察过表达的p73基因对肿瘤细胞产生血管生成相关因子的作
    
    第三军医大学博士学位论文
    用。将过表达p73基因的A549细胞以及对照组的A549细胞接种于裸鼠,观察种植瘤
    的大小、生长速度,免疫组化检测种植瘤中vEGF、bFGF、iNos的表达程度,Fvln一RAg
    免疫组化染色计数种植瘤微血管密度(M vD),观察过表达p73基因对裸鼠种植瘤血管
    生成的影响。应用SPSS 10.0统计软件进行统计分析。
     结果:将p73a、p73p、△Np73基因以脂质体法转染A549细胞、H1299细胞后,
    经G418成功的筛选出过表达p73基因细胞株。细胞生长曲线的测定发现过表达的p73
    Q、p73p基因能够抑制以上两种细胞的生长,而过表达的△Np73基因可以促进以上
    两种细胞生长。RT一PCR半定量法检测以上两种肺腺癌细胞中VEGF、bFGF、TSP一l
    mRNA的表达,发现过表达的p73a基因能够降低vEGF、bFGF mRN^的表达(p<0.05),
    增加TsP一1 mRN^的表达(p<0.05);westem blot半定量法检测vEGF、bFGF蛋白的表
    达,发现过表达的p73“基因能够降低以上两种肺腺癌细胞中vEGF、bFGF蛋白的表
    达水平(P<0.05)。过表达的p73p作用与p73。相似,但是其对vEGF mRNA和蛋白表
    达的抑制作用更明显(P<0.01)。而过表达△Np73基因的作用与p73。、p73p相反,其
    功能更像一个癌基因。免疫组织化学方法检测裸鼠种植瘤VEGF、bFGF、iNOS蛋白
    的表达,发现过表达p73。基因能够降低种植瘤中vEGF、bFGF、iNos蛋白表达水平
    (P<0 .05),减少裸鼠种植瘤MVD(p<0.01),从而抑制裸鼠种植瘤生长。过表达△Np73
    基因在裸鼠种植瘤中的作用与过表达p73Q相反,能够促进裸鼠种植瘤的生长。
     结论:过表达的p73“、p73p基因在肺腺癌中可以起到抑制肿瘤血管生成的作用,
    其中p73p基因的作用更为明显。而△Np73基因的作用与p73。、p73p基因相反,能
    够促进肿瘤血管生成,它的表现象是一个癌基因。利用p73基因在非小细胞肺癌很少
    突变的这一现象,可以人工诱导p73基因的高表达,尤其是p73p的高表达,通过其
    能抑制肿瘤血管生成这一作用,来抑制肺癌的发展,为非小细胞肺癌的基因治疗提供
    了一种新的选择。
Background: Lung cancer is extremely harmful to the life and health of human beings. Its genesis is related to multiple factors. It has been proved that there is approximately 47.8% in NSCLC and 80% in SCLC with p53 gene mutation. p73 gene is a homologue of p53. p73 protein has the similary structure to p53 protein and it is located in the nucleus too. p73 gene has some kinds of variants, such as p73 a , p73 P , p73 Y , p73 5 , p73 and p73 4. A Np73 gene is a kind of shortening p73 which lack the transcriptional activation domain. p73 gene is located in human chromosome Ip36 where was found delete frequently in many human tumors. All these imply that p73 gene may be an anti-oncogene and some researches have proved it can inhibit cell growth and induce cell apoptosis.
    Angiogenesis is a process that form the new blood vessels from preexisting micro-vascular. The tumor can't grow beyond 2~3mm3 for lack of oxygen and nutrient without angiogenesis. With angiogenesis the tumor can obtain nutrition and the capillaries can provide a chance for the tumor metastasis. The process includes the following steps: dissolve the vascular endothelial basal membrane, endothelium cell migrate to tumor tissue, endothelium cell proliferate, form new capillary, form new basal membrane. This complex process involves the interaction of tumor cells, endothelial cell and extracellular matrix. Its regulation depends on many cytokines. Some cytokines have been separated and purified, such as VEGF, bFGF, angiogenin, TSP-1, iNOS and so on. The effect of p73 gene on angiogenesis in some human tumors has been reported. It has been proved that p73 gene was overexpression in NSCLC and nearly hasn't mutation. But the effect of p73 gene on angiogenesis in NSCLC is still unknown.
    Objective: To study the effect of p73 gene overexpression on angiogenesis in human lung adenocarcinoma and the difference function between the p73 variants. Then find a new way for NSCLC gene therapy.
    Methods: This study use A549 cell, HI299 cell, 2 kinds of lung adenocarcinoma cell
    
    
    lines as a study object. p73oc, p73 0 and A Np73 gene were transfered into these 2 kinds of cells by liposome and the overexpresion of p73 gene cell clones were chosen by G418. The overexpression of different p73 varients cells were cultured and their effects on the cell growth curve were observed. The mRNA expression of VEGF^ bFGF and TSP-1 were detected by RT-PCR, the protein expression of VEGF^ bFGF were detected by western blot in vitro. A549 cell, A549-p73oc cell and A549-ANp73 cell were transplanted into nude mice. The effect of p73 gene on angiogenesis in transplanted tumor was studied. The volume and growth speed of transplanted tumors were observed. VEGF> bFGF and iNOS protein expression in transplanted tumors were detected by immunohistochemistry staining. MVD of transplanted tumors were counted by FVTII-RAg immunohistochemistry staining.
    Results: Overexpression of p73 gene cell clones were chosen successfully. The cell growth curve demonstrated that overexpression of p73cc and p73 P could inhibit the cell growth but the A Np73 could promote cell growth. Overexpression of p73a could inhibit VEGF, bFGF mRNA and protein expression and promote TSP-1 mRNA expression(p<0.05). The overexpression of p73 3 has similar function with p73a but has more obviously effect on inhibiting VEGF expression(p<0.01). Overexpression of p73ot can inhibit nude mice transplanted tumor growth, inhibit VEGF, bFGF, iNOS protein expression(p<0.05), reduced the tumor MVD(p<0.01). A Np73 gene has the contrary function of p73a in vitro and in vivo, its behavior is more like an oncogene.
    Conclusion: Overexpression of p73cc and p73 P can inhibit the angiogenesis in human lung adenocarcinoma. The p73 P may has more obviously effect on inhibiting angiogenesis. A Np73 gene has the contrary effect of p73cc, p73 P on angiogenesis, it seems like an oncogene. We can apply the characteristic that p73 gene nearly hasn't mutation in NSCLC to induce p73 gene overexpression in lung adenocarcinoma, especially the p73 P overexpress
引文
1. Miller N, Simoes EJ, Chang JC. Trends in Missouri lung cancer rates. Mo-Med,1999; 96(2): 57-61
    2. Park B J, Lee MS, Ahn YO, et al. Nationwide incidence estimation of lung cancer in Korea. J-Korean-Med-Sci, 1995,10(2):67-73
    3. Wang Q. An analysis of incidence mortality and survival rates of lung cancer in Beijing. Zhonghua-Liu-Xing-Bing-Xue-Za-Zhi, 1991; 12(4):205-207
    4. Del-Donno M, Verduri A, OlivieriD. Air pollution and reversible chronic respiratory diseases. Monaldi-Arch-Chest-Dis, 2002; 57(3-4):164-166
    5. Cheng YW, Chiou HL, Sheu GT, et al. The association of human papillomavirus 16/18 infection with lung cancer among nonsmoking Taiwanese women. Cancer-Res,2001;61(7):2799-2803
    6. Koskela RS, Klockars M, Jarvinen E, et al. Cancer mortality of granite workers 1940-1985. IARC-Sci-Publ, 1990;(97):43-53
    7. Fontanini G, Vignati S, Bigini D, et al. Human non-small cell lung cancer: p53 protein accumulation is an early event and persists during metastatic progression. J-Pathol, 1994; 174(1):23-31
    8. Ebina M, Martinez A, Birrer MJ, et al. In situ detection of unexpected patterns of mutant p53 gene expression in non-small cell lung cancers. Oncogene,2001; 20(20): 2579-2586
    9. Kannan K, Kaminski N, Rechavi G, et al. DNA microarray analysis of genes involved in p53 mediated apoptosis: activation of Apaf-1. Oncogene,2001; 20(26): 3449-3455
    10. Wistuba Ⅱ, Gazdar AF, Minna, et al. Molecular genetics of small cell lung carcinoma. Semin-Oncol,2001; 28(2 Suppl 4):3-13
    11. Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at lp36, a region frequently deleted in neuroblastoma and other human cancers. Cell, 1997;90(4): 809-819
    12. Tsao H, Zhang X, Majewski P, et al. Mutational and expression analysis of the p73 gene in melanoma cell lines. Cancer-Res,1999;59(1): 172-174
    13. Kovalev S, Marchenko N, Swendeman S, et al. Expression level, allelic origin, and
    
    mutation analysis of the p73 gene in neuroblastoma tumors and cell lines. Cell- Growth-Differ, 1998;9(11):897-903
    14. Sunahara M, Ichimiya S, Nimura Y, et al. Mutational analysis of the p73 gene localized at chromosome 1p36.3 in colorectal carcinomas. Int-J-Oncol, 1998; 13(2): 319-323
    15. Zhang H, Rosdahl I. Expression of oncogenes, tumour suppressor, mismatch repair and apoptosis-related genes in primary and metastatic melanoma cells. Int-J-Oncol, 2001;19(6):1149-1153
    16. Pan H, Liao SJ, Lai WY, et al. Overexpression but lack of mutation and methylation of p73 in hepatocellular carcinoma. Acta-Oncol,2002;41(6): 550-555
    17. Stiewe T, Putzer BM. Role of p73 in malignancy: tumor suppressor or oncogene? Cell-Death-Differ,2002;9(3): 237-245
    18. Zaika AI, Kovalev S, Marchenko ND, et al. Overexpression of the wild type p73 gene in breast cancer tissues and cell lines. Cancer-Res, 1999;59(13):3257-3263
    19. De LV, Costanzo A, Barcaroli D, et al. Two new p73 splice variants, gamma and delta, with different transcriptional activity. J-Exp-Med, 1998; 188 (9): 1763-1768
    20. Casciano I, Mazzocco K, Boni L, et al. Expression of DeltaNp73 is a molecular marker for adverse outcome in neuroblastoma patients. Cell-Death-Differ,2002;9(3):246-251
    21. Kartasheva NN, Contente Ana, Lenz-Stoppler C, et al. p53 induces the expression of its antagonist p73 Delta N, establishing an autoregulatory feedback loop. Oncogene, 2002;21 (31): 4715-4727
    22. Grob T J, Novak U, Maisse C, et al. Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell-Death-Differ,2001 ;8(12): 1213-1223
    23. Nakagawa T, Takahashi M, Ozaki T, et al. Autoinhibitory regulation of p73 by Delta Np73 to modulate cell survival and death through a p73-specific target element within the Delta Np73 promoter. Mol-Cell-Biol,2002;22(8):2575-2585
    24. Zaika A, Irwin M, Sansome C, et al. Oncogenes induce and activate endogenous p73 protein. J-Biol-Chem,2001; 276(14): 11310-11316
    25. Zhu J, Jiang J, Zhou W, et al. The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer-Res, 1998; 58(22):5061-5065
    26. Tokuchi Y, Hashimoto T, Kobayashi Y, et al. The expression of p73 is increased in lung cancer, independent of p53 gene alteration. Br-J-Cancer, 1999;80(10): 1623-1629
    
    
    27. Nomoto S, Haruki N, Kondo M, et al. Search for mutations and examination of allelic expression imbalance of the p73 gene at 1p36.33 in human lung cancers. Cancer-Res, 1998;58(7): 1380-1383
    28. Mai M, Yokomizo A, Qian C, et al. Activation of p73 silent allele in lung cancer. Cancer-Res, 1998; 58(11):2347-2349.
    29. Gupta MK, Qin RY. Mechanism and its regulation of tumor-induced angiogenesis. World-J-Gastroenterol,2003;9(6): 1144-1155
    30. Shijubo N, Kojima H, Nagata M, et al. Tumor angiogenesis of non-small cell lung cancer. Microsc-Res-Tech,2003;60(2):186-198
    31. Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am-J-Physiol-Cell-Physiol,2002;282(5):C947-970
    32. Neeman M, Provenzale JM, Dewhirst MW. Magnetic resonance imaging applications in the evaluation of tumor angiogenesis. S emin-Radiat-Oncol,2001;11(1): 70-82
    33. Chaplain MA. Mathematical modelling of angiogenesis. J-Neurooncol, 2000; 50(1-2):37-51
    34. Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin-Oncol,2002;29(6 Suppl 16): 10-4.
    35. Carmeliet P, Collen D. Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann-N-Y-Acad-Sci,2000;902:249-262
    36. Kolch W, Martiny-Baron G, Kieser A, et al. Regulation of the expression of the VEGF/VPS and its receptors: role in tumor angiogenesis. Breast-Cancer-Res-Treat, 1995;36(2): 139-155
    37. Potgens AJ, Westphal HR, de-Waal RM, et al. The role of vascular permeability factor and basic fibroblast growth factor in tumor angiogenesis. Biol-Chem-Hoppe-Seyler,1995; 376(2):57-70
    38. Vlodavsky I, Korner G, Ishai-Michaeli R, et al. Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer-Metastasis-Rev, 1990;9(3):203-226
    39. Kong G, Kim EK, Kim WS, et al. Inducible nitric oxide synthase (iNOS) immunoreactivity and its relationship to cell proliferation, apoptosis, angiogenesis, clinicopathologic characteristics, and patient survival in pancreatic cancer. Int-J-
    
    Pancreatol, 2001; 29 (3): 133-140
    40. Chiarugi V, Magnelli L, Gallo O. Cox-2, iNOS and p53 as play-makers of tumor angiogenesis (review). Int-J-Mol- Med, 1998;2(6):715-719
    41. Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J-Cell-Mol-Med,2002;6(1): 1-12
    42. Langenfeld EM, Calvano SE, Abou-Nukta F, et al. The mature bone morphogenetic protein-2 is aberrantly expressed in non-small cell lung carcinomas and stimulates tumor growth of A549 cells. Carcinogenesis,2003;24(9): 1445-1454
    43. Nguyen TT, Tran E, Ong CK, et al. Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells is mediated by activation of MEK-MAPK. J-Cell-Physiol,2003; 197(1): 110-121
    44. Wang J, Chen G, PantopoulosK. The haemochromatosis protein HFE induces an apparent iron-deficient phenotype in H1299 cells that is not corrected by co-expression of beta 2-microglobulin. Biochem -J,2003;370(Pt 3): 891-899
    45. Choi JH, Ahn KS, Kim J, et al. Enhanced induction of Bax gene expression in H460 and H1299 cells with the combined treatment of cisplatin and adenovirus mediated wt-p53 gene transfer. Exp-Mol-Med,2000; 32(1):23-28
    46. Nakanishi H, Mizutani Y, Kawauchi A, et al. Significant antitumoral activity of cationic multilamellar liposomes containing human IFN-beta gene against human renal cell carcinoma. Clin-Cancer-Res,2003;9(3): 1129-1135
    47. Jiang C, Matsuo H, Koyabu N, et al. Transluminal gene transfer into brain capillary endothelial cells in vivo with HVJ-liposomes. J-Drug-Target, 2002; 10(4): 345-352
    48. Magnusson M, Johansson E, Berg M, et al. The plasmid pcDNA3 differentially induces production of interferon-alpha and interleukin-6 in cultures of porcine leukocytes. Vet-Immunol-Immunopathol,2001;78(1):45-56
    49. Tsai MK, Lin RH, Hsu BR, et al. Lipofection of pcDNA3-CTLA4-Ig into B cells promotes allogeneic hyporesponsiveness. Transplant-Proc,2003; 35(1): 548-549
    50.卢圣栋.现代分子生物学实验技术.北京,中国协和医科大学出版社.1999.9第二版:435
    51. Yan SE Tritto I, Pinsky D, et al. Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. J-Biol-Chem,
    
    1995; 270(19): 11463-11471
    52. Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta-Physiol-Scand,2003; 177(4): 437-447
    53. Li S, Ma Z. Nonviral gene therapy. Curr-Gene-Ther,2001; 1 (2):201-226
    54. Fukuda K, Sakamoto N, Narita T, et al. Application of efficient and specific gene transfer systems and organ culture techniques for the elucidation of mechanisms of epithelial-mesenchymal interaction in the developing gut. Dev-Growth-Differ,2000;42(3): 207-211
    55. Audouy SA, deoLeij LF, Hoekstra D, et al. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm-Res, 2002; 19(11): 1599-1605
    56. Katsel PL, Greenstein RJ. Eukaryotic gene transfer with liposomes: effect of differences in lipid structure. Biotechnol-Annu-Rev,2000;5:197-220
    57. Hug P, Sleight RG. Liposomes for the transformation of eukaryotic cells. Biochim-Biophys-Acta,1991; 1097(1): 1-17
    58. Goldman LA, Cutrone EC, Kotenko SV, et al. Modifications of vectors pEF-BOS, pcDNA1 and pcDNA3 result in improved convenience and expression. Biotechniques,1996;21(6):1013-1015
    59. Truong T, Sun G, Doorly M, et al. Modulation of DNA damage-induced apoptosis by cell adhesion is independently mediated by p53 and c-Abl. Proc-Natl-Acad-Sci-U-S-A U-S-A, 2003; 100(18):10281-10286
    60. Bennett MR. Mechanisms of p53-induced apoptosis. Biochem- Pharmacol,1999; 58(7):1089-1095
    61. Lee JS, Kim HS, Jung JJ, et al. Expression of vascular endothelial growth factor in adenocarcinomas of the uterine cervix and its relation to angiogenesis and p53 and c-erbB-2 protein expression. Gynecol-Oncol,2002;85(3):469-475
    62. Joo YE, Sohn YH, Joo SY, et al. The role of vascular endothelial growth factor (VEGF) and p53 status for angiogenesis in gastric cancer. Korean-J-Intern-Med,2002;17 (4):211-219
    63. Duda DG, Sunamura M, Lozonschi L, et al. Overexpression of the p53-inducible brain-specific angiogenesis inhibitor 1 suppresses efficiently tumour angiogenesis. Br-J-Cancer,2002;86(3): 490-496
    
    
    64. Strohmeyer D, Rossing C, Bauerfeind A, et al. Vascular endothelial growth factor and its correlation with angiogenesis and p53 expression in prostate cancer. Prostate,2000; 45(3): 216-224
    65. Hegde PU, Brenski AC, Caldarelli DD, et al. Tumor angiogenesis and p53 mutations: prognosis in head and neck cancer. Arch-Otolaryngol-Head-Neck-Surg,1998;124(1):80-85
    66. Ono M, Kuwano M. Tumor angiogenesis and tumor angiogenesis inhibitors. Gan-To-KagakuoRyoho, 2001; 28(5): 584-590
    67. Neufeld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor (VEGF) and its receptors. FASEB-J, 1999; 13(1): 9-22
    68. Li Z, Shimada Y, Uchida S, et al. TGF-alpha as well as VEGF, PD-ECGF and bFGF contribute to angiogenesis of esophageal squamous cell carcinoma. Int-J-Oncol, 2000; 17(3):453-460
    69. Klagsbrun M. Mediators of angiogenesis: the biological significance of basic fibroblast growth factor (bFGF)-heparin and heparan sulfate interactions. Semin-Cancer-Biol, 1992;3(2):81-87
    70. Straume O, Akslen LA. Expresson of vascular endothelial growth factor, its receptors (FLT-1, KDR) and TSP-1 related to microvessel density and patient outcome in vertical growth phase melanomas. Am-J-Pathol, 2001; 159(1):223-235
    71. Wang TN, Qian X, Granick MS, et al. Thrombospondin-1 (TSP-1) promotes the invasive properties of human breast cancer. J-Surg-Res,1996; 63(1): 39-43
    72. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med, 1995;1 (1):27-31
    73. Cao Y, Linden P, Famebo J, et al. Vascular endothelial growth factor C induce angiogenesis in vivo. Proc Natl Acad Sci USA,1998;95(24): 14389-14394
    74. Folkman J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N-Engl-J-Med,1995;333 (26): 1757-1763
    75. Carron CP, Meyer DM, Pegg JA, et al. A peptidomimetic antagonist of the integrin alpha(v)beta3 inhibits Leydig cell tumor growth and the development of hypercalcemia of malignancy. Cancer-Res,1998;58(9): 1930-1935
    76. Thaloor D, Singh AK, Sidhu GS, et al. Inhibition of angiogenic differentiation of
    
    human umbilical vein endothelial cells by curcumin. Cell-Growth-Differ,1998; 9(4):305-312
    77. Ohm JE, Carbone DP. VEGF as a mediator of tumor-associated immunodeficiency. Immunol-Res,2001;23 (2-3): 263-272
    78. Matsumoto T, Claesson-Welsh L. VEGF receptor signal transduction. Sci-STKE,2001; 2001(112):RE21
    79. Shiokawa K, Asano M, Shiozaki C. Function, molecular structure and gene expression of fibroblast growth factor (FGF/HBGF). Nippon-Rinsho, 1992;50(8): 1893-1901
    80. Lamb KA, Rizzino A. Effects of differentiation on the transcriptional regulation of the FGF-4 gene: critical roles played by a distal enhancer. Mol-Reprod-Dev,1998;51(2):218-224
    81. Presta M, Belleri M, Vecchi A, et al. Noncompetitive, chemokine-mediated inhibition of basic fibroblast growth factor-induced endothelial cell proliferation. J-Biol-Chem, 1998; 273(14):7911-7919
    82. Coutts JC, Gallagher JT. Receptors for fibroblast growth factors. Immunol-Cell-Bio, 1995;73(6):584-589
    83. Thompson LD, Pantoliano MW, Springer BA. Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain. Biochemistry,1994;33(13):3831-3840
    84. Gualandris A, Rusnati M, Belleri M, et al. Basic fibroblast growth factor overexpression in endothelial cells: an autocrine mechanism for angiogenesis and angioproliferative diseases. Cell-Growth-Differ, 1996; 1996;7 (2): 147-160
    85. Coltrini D, Gualandris A, Nelli EE, et al. Growth advantage and vascularization induced by basic fibroblast growth factor overexpression in endometrial HEC-1-B cells: an export-dependent mechanism of action. Cancer-Res,1995;55(20):4729-4738
    86. Statuto M, Ennas MG, Zamboni G; et al. Basic fibroblast growth factor in human pheochromocytoma: a biochemical and immunohistochemical study. Int-J-Cancer, 1993;53(1):5-10
    87. Mosher DE Physiology of thrombospondin. Annu-Rev-Med, 1990;41:85-97
    88. Good DJ, Polverini PJ, Rastinejad F, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically functionally indistinguishable from a fragment of
    
    thrombospondin. Proc-Natl-Acad-Sci-U-S-A, 1990; 87(17):6624-6628
    89. Sage EH, Bornstein P. Extracellular proteins that modulate cell-matrix interactions.SPARC, tenascin, and thrombospondin. J-Biol-Chem, 1991; 266(23): 14831-14834
    90. Petrenko O, Zaika A, Moll UM. deltaNp73 facilitates cell immortalization and cooperates with oncogenic Ras in cellular transformation in vivo.Mol-Cell-Bio,2003; 23(16):5540-5555
    91.蔡文琴,王伯法.实用免疫细胞化学与核酸分子杂交技术.成都,四川科学技术出版社.1994.5第一版:514-515
    92. Takahashi Y, Kitadai Y, Bucana CD, et al. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer-Res, 1995;55(18):3964-3968
    93.周俭,汤钊猷,樊嘉,等.三种血管生长因子与肝癌微血管密度及门静脉癌栓形成的关系.中华医学杂志,2001;81(8):462-464
    94. Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J-Natl-Cancer-Inst, 1992;84(24): 1875-1887
    95. Maeda K, Chung YS, Ogawa Y, et al. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer, 1996;77 (5): 858-863
    96. Kovalev S, Marchenko N, Swendeman S, et al. Expression level, allelic origin, and mutation analysis of the p73 gene in neuroblastoma tumors and cell lines. Cell-Growth-Differ, 1998;9 (11): 897-903
    97. Sunahara M, Ichimiya S, Nimura Y, et al. Mutational analysis of the p73 gene localized at chromosome 1p36.3 in colorectal carcinomas. Int-J-Oncol, 1998; 13(2): 319-323
    98. Zhang H, Rosdahl I. Expression of oncogenes, tumour suppressor, mismatch repair and apoptosis-related genes in primary and metastatic melanoma cells. Int-J-Oncol,2001; 19(6):1149-1153
    99. Pan H, Liao S J, Lai WY, et al. Overexpression but lack of mutation and methylation of p73 in hepatocellular carcinoma. Acta-Oncol, 2002; 41(6): 550-555
    100. Dominguez G, Silva JM, Silva J, et al. Wild type p73 overexpression and high-grade malignancy in breast cancer. Breast-Cancer-Res-Treat,2001; 66(3): 183-190
    101. Scaruffi P, Casciano I, Masiero L, et al. Lack of p73 expression in mature B-ALL and
    
    identification of three new splicing variants restricted to pre B and C-ALL indicate a role of p73 in B cell ALL differentiation. Leukemia, 2000; 14(3):518-519
    102. Chizhikov VV, Zborovskaia IB, Tatosian AG, et al. p73 gene: deletion and expression in non-small cell lung cancer cells. Mol-Biol-(Mosk),2000;34(3):469-473
    103. Salimath B, Marme D, Finkenzeller G. Expression of the vascular endothelial growth factor gene is inhibited by p73. Oncogene,2000; 19(31):3470-3476
    104. Vikhanskaya F, Bani MR, Borsotti P, et al. p73 Overexpression increases VEGF and reduces thrombospondin-1 production: implications for tumor angiogenesis. Oncogene,2001; 20(50): 7293-7300
    105. Guan M, Peng HX, Yu B, et al. p73 Overexpression and angiogenesis in human colorectal carcinoma. Jpn-J-Clin-Oncol, 2003;33(5):215-220
    106. Holt SE, Glinsky VV, Ivanova AB, et al. Resistance to apoptosis in human cells conferred by telomerase function and telomere stability. Mol-Carcinog, 1999; 25(4):241-248
    107. Lu CH, Lin SJ, Chert YL, et al. Modified quantitative detection of apoptosis in coronary atherosclerosis. Zhonghua-Yi-Xue-Za-Zhi -(Taipei), 2002; 65(3):93-100.
    108. Isner JM, Kearney M, Bortman S, et al. Apoptosis in human atherosclerosis and restenosis. Circulation, 1995;91 (11): 2703-2711
    109. Yuan ZM, Shioya H, Ishiko T, et al. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature,1999; 399(6738): 814-817