聚合物小分子非键相互作用及蛋白质配体结合动力学的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物大分子和环境中其他小分子的相互作用,大体包括非键相互作用和化学反应两类,对大分子的结构性能、溶解性以及化学性质有着深刻的影响。本论文针对这两类相互作用,对于前者侧重于外部环境条件,如温度,离子环境对它的影响;对于后者则主要着眼于其动力学过程,进行了一系列动力学模拟研究。
     对氢键主导的大分子而言,它和环境中其他分子的相互作用以氢键相互作用为主。以纤维素和尿素分子在尿素碱溶液中的相互作用为例,研究此相互作用对氢键主导大分子结构及溶解性能的影响。本论文中,我们的结果展现了尿素分子对纤维素长链的包合作用及它的温度性质,进一步揭示他们之间单一的氢键形成方式,证明尿素分子独特的共轭键结构是其对纤维素包合作用的来源。这些发现有助于理解纤维素溶解于尿素碱溶液中的溶解机理及尿素分子在纤维素溶解过程中的作用并且加深了对氢键主导大分子和极性小分子相互作用的认识。
     除了氢键相互作用,非键作用的另一重要方面是静电相互作用。本论文的第三章,我们使用拉伸分子动力学研究了凝血酶适配体在二价镁离子的稳定作用下的四倍体结构。给予这个结构一个外力,实现了在分子动力学模拟的时间尺度内对适配体和金属离子之间静电相互作用的研究。我们的结果发现二价镁离子和凝血酶适配体间静电相互作用强烈,但当周围环境中有对适配体四倍体结构影响巨大的钾离子存在时,这一静电作用有被压制的趋势。在外力作用下,不同离子环境中的四倍体结构呈现不同的展开路径。
     对于大分子化学反应的研究,我们更侧重于它的动力学方面。本论文第四章中,我们使用布朗动力学研究了将蛋白质的结构转变和蛋白质配体结合综合考虑下蛋白质和配体分子结合速率常数的计算。在模拟中,我使用了Zhou提供的dual-transition-rates模型,并将反应区域限制在小角度范围内。这使得我们的模型更加趋近于现实条件——蛋白质配体分子的定点结合。模拟结果验证了Zhou的理论推导:当体系中存在一个外势,使得蛋白质在配体分子接近时倾向于和配体分子结合的闭合态结构而在配体分子远离时倾向于不能结合的开放态结构,对于反应区域是蛋白质分子外的整个球壳的情况,蛋白质和配体分子的结合速率常数有精确的分析解;但对于小角度反应区域,只能使用结构转变速率极快和极慢两个极限条件下的结合速率常数来逼近近似,这一近似在反应区域角度越小的情况下越适用。
     本论文第五章节,我们依然使用布朗动力学研究了通过柔性链链接的两个蛋白质子区域和配体分子的结合动力学。在这个模型中,我们使用蠕虫链模型模拟蛋白质中的柔性链,并改变蠕虫链链长或持续长度(柔性)以研究柔性链性质对结合速率常数的影响。我们发现对于任意固定链长,改变蠕虫链模型的持续长度(柔性)或者对任意持续长度,改变蠕虫链模型的链长,都能找到一种情况使得蛋白质和配体分子的结合速率常数达到极大值。
The interaction between biomacromolecules and other molecules in theenvironment, containing non-bonded interaction and chemical reaction, plays a verysignificant role in the conformational stability, solubility and chemical properties ofthe macromolecules. We focus on these two kind interactions by means of dynamicssimulations. For the former, ambient conditions as temperature and ions conditionare considered and for the later, the dynamics process is the focus.
     The hydrogen bonding interaction is the main part of interactions betweenhydrogen bond dominated macromolecules and other molecules. Its effect on theconformational stability and solubility of macromolecules is investigated by takingthe interaction of cellulose and urea in urea/alkali solvent mixture as an emample.The results display an inclusion complex is formed between them and itstemperature properties. We also find there is only one dominative hydrogen bondingpattern which proves the conjugated bond in urea should be the driving force for theinclusion complex. These finding is very helpful to understand the mechanism ofdissolution of cellulose in urea/alkali solvent mixture and the role that urea playsduring the process.
     The other part of non-bonded interaction is electrostatic interaction. TheG-quadruplex formed by thrombin-binding aptamer (TBA) with Mg2+existing isstudied in the section three. A force is added to this system which allows us to studythe electrostatic interaction between DNA aptamer and metal ions by MolecularDynamics simulations. The results show the electrostatic interaction between TBAand Mg2+is strong, however, when there are K+ions around them, it becomes weaker.With the function of the additional force, the G-quadruplex structures with differentmetal ions around them display different unfolding ways.
     For chemical reaction, we focus on the dynamics process of it. The kinetics ofprotein-ligand binding coupled to conformational change is studied by BrownianDynamics simulations in the Section four. During the simulation,dual-transition-rates model from Zhou is used, and is made more realistic byrestricting the reactive region to a patch. The simulation results show that, for anenergy surface that switches from favoring the nonreactive conformation while theligand is away to favoring the reactive conformation while the ligand is near, the slow limit and fast limit of binding rate constants become close and, thus, providetight bounds to the binding rate constant. They are in excellent agreement with theanalytical theory from Zhou.
     Receptor-binding rate constants of disordered ligands and the protein linkedwith a flexible linker are also investigate by means of Brownian Dynamics inSection five. In the simulation model, we consider the flexible linker of the proteinas a worm-like chain and find that the binding rate constant of the disordered ligandscould reach a maximum by changing the linker contour length or flexibility.
引文
[1] Leach, A. R. 2001. Molecular Modelling: Principles and Applications [Book]. London:Pearson Education.
    [2]徐钟济. 1985.蒙特卡罗方法[Book].上海:上海科学技术出版社.
    [3]杨玉良,张红东. 1993.高分子科学中的Monte Carlo方法[Book].上海:复旦大学出版社.
    [4] Binder, K. 1996. Monte Carlo and Molecular Dynamics Simulations in Polymer Science[Book]. Oxford: Oxford University Press.
    [5] Liu, T. W. 1989. Flexible polymer chain dynamics and rheological properties in steady flows[Journal Article]. Journal of Chemical physics, 90(10): 5826-5842.
    [6] Grassia, P.; Hinch, E. J. 1996. Computer simulations of polymer chain relaxation via Brownianmotion [Journal Article]. Journal of Fluid Mechanics, 308(4): 255-288.
    [7] Doyle, P. S.; Shaqfeh, E. S. G.; Gast, A. P. 1997. Dynamic simulation of freely drainingflexible polymers in steady linear flows [Journal Article]. Journal of Fluid Mechanics, 334(2):251-291.
    [8] Noguchi, H.; Takasu, M. 2001. Fusion pathways of vesicles: A Brownian dynamics simulation[Journal Article]. Journal of Chemical physics, 115(20): 9547-9551.
    [9] Hoogerbrugge, P. J.; Koelman, J. 1992. Simulating microscopic hydrodynamic phenomenawith dissipative particle dynamicsI [Journal Article]. Europhysics Letters, 19(3): 155-160.
    [10] Koelman, J.; Hoogerbrugge, P. J. 1993. Dynamic simulations of hard-sphere suspensionsunder steady shear [Journal Article]. Europhysics Letters, 21(3): 363-368.
    [11] Groot, R. D.; Warren, P. B. 1997. Dissipative particle dynamics: Bridging the gap betweenatomistic and mesoscopic simulation [Journal Article]. Journal of Chemical physics, 107(11):4423-4435.
    [12] Doi M., E. S. F. 1986. The Theory of Polymer Dynamics [Book]. New York: OxfordUniversity Press.
    [13] Fredrickson, G. H.; Ganesan, V.; Drolet, F. 2002. Field-theoretic computer simulationmethods for polymers and complex fluids [Journal Article]. Macromolecules, 35(1): 16-39.
    [14] Alder, B. J.; Wainwright, T. E. 1957. Phase Transition for a Hard Sphere System [JournalArticle]. Journal of Chemical physics, 27(5): 1208-1209.
    [15] Rahman, A. 1964. Correlations in the Motion of Atoms in Liquid Argon [Journal Article].Physical Review, 136(2A): A405.
    [16] Rahman, A.; Stillinger, F. H. 1971. Molecular Dynamics Study of Liquid Water [JournalArticle]. Journal of Chemical physics, 55(7): 3336-3359.
    [17] McCammon, J. A.; Gelin, B. R.; Karplus, M. 1977. Dynamics of folded proteins [JournalArticle]. Nature, 267(5612): 585-590.
    [18] Andersen, H. C. 1980. Molecular dynamics simulations at constant pressure and/ortemperature [Journal Article]. Journal of Chemical physics, 72(4): 2384-2393.
    [19] Parrinello, M.; Rahman, A. 1980. Crystal Structure and Pair Potentials: AMolecular-Dynamics Study [Journal Article]. Physical Review Letters, 45(14): 1196.
    [20] Ashurst, W. T.; Hoover, W. G. 1973. Argon Shear Viscosity via a Lennard-Jones Potentialwith Equilibrium and Nonequilibrium Molecular Dynamics [Journal Article]. PhysicalReview Letters, 31(4): 206.
    [21] Gillan, M. J.; Dixon, M. 1983. The calculation of thermal conductivities by perturbedmolecular dynamics simulation [Journal Article]. Journal of Physics C: Solid State Physics,16(5): 869-878.
    [22] Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Dinola, A.; Haak, J. R. 1984.Molecular dynamics with coupling to all external bath [Journal Article]. Journal of Chemicalphysics, 81(8): 3684-3690.
    [23] Nosé, S. 1984. A unified formulation of the constant temperature molecular dynamicsmethods [Journal Article]. Journal of Chemical physics, 81(1): 511-519.
    [24] Car, R.; Parrinello, M. 1985. Unified Approach for Molecular Dynamics andDensity-Functional Theory [Journal Article]. Physical Review Letters, 55(22): 2471.
    [25] Tahir agin, B. M. P. 1991. Grand Molecular Dynamics: A Method for Open Systems[Journal Article]. Molecular Simulation, 6(1&3): 5-26.
    [26] Ji, J.; Tahir agin, B.; Pettitt, M. 1992. Dynamic simulations of water at constant chemicalpotential [Journal Article]. Journal of Chemical physics, 96(2): 1333-1342.
    [27] Rickman, J. M.; LeSar, R. 2002. Free-energy calculations in materials research [JournalArticle]. Annual Review of Materials Research, 32(2): 195-217.
    [28] Kremer, K. 2003. Computer simulations for macromolecular science [Journal Article].Macromolecular Chemistry and Physics, 204(2): 257-264.
    [29] Moraitakis, G.; Purkiss, A. G.; Goodfellow, J. M. 2003. Simulated dynamics and biologicalmacromolecules [Journal Article]. Reports on Progress in Physics, 66(3): 383-406.
    [30] Berendsen, H. J. C.; Vanderspoel, D.; Vandrunen, R. 1995. GROMACS - A message-passingparallel molecular dynamics implemention [Journal Article]. Computer PhysicsCommunications, 91(1-3): 43-56.
    [31] Vandrunen, R.; Vanderspoel, D.; Berendsen, H. J. C. 1995. GROMACS - A software packageand aparallel computer for molecular dynamics [Journal Article]. Abstracts of Papers of theAmerican Chemical Society, 209(1): 49-COMP.
    [32] Hockney R. W., E. J. W. 1981. Computer simulation using particles [Book]. New York:McGraw-Hill.
    [33] Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham, T. E.; Debolt, S.;Ferguson, D.; Seibel, G.; Kollman, P. 1995. AMBER, A package of computer-programs forapplying molecular mechanics, normal-mode analysis, molecular dynamics and free-energycalculations to simulate the structural and energetic properities of molecules [Journal Article].Computer Physics Communications, 91(1-3): 1-41.
    [34] Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M.1983. CHARMM: A program for macromolecular energy, minimization, and dynamicscalculations [Journal Article]. journal of Computational Chemistry, 4(2): 187-217.
    [35] E., M. J. 1999. A practical introduction to the simulation of molecular systems [Book].BeiJing: Cambridge University Press.
    [36] Emile Apol, R. A., Herman J. C. Berendsen et al. 2010. Gromacs User Manual: Version 4.5[Book]. Sweden: Poyal Institute of Technology and Uppsala University.
    [37] Verlet, L. 1967. Computer "Experiments" on Classical Fluids. I. Thermodynamical Propertiesof Lennard-Jones Molecules [Journal Article]. Physical Review, 159(1): 98.
    [38] Hockney, R. W. 1970. Potential calculation and some applications [Journal Article]. MethodsComputer Physics, 9(1): 136-211.
    [39] Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. 1982. A Computer SimulationMethod for the Calculation of Equilibrium Constants for the Formation of Physical Clustersof Molecules: Application to Small Water Clusters [Journal Article]. Journal of Chemicalphysics, 76(1): 637-649.
    [40] Beeman, D. 1976. Some multistep methods for use in molecular dynamics calculations[Journal Article]. Journal of Computational Physics, 20(2): 130-139.
    [41] Landau L.D., L. E. M. 1980. Statistical Physics [Book]. Pergamon Press.
    [42] Charles, K.; Kroemer, H. 1980. Thermal Physics [Book]. second ed. San Francisco: W.H.Freeman and Company.
    [43] Woodcock, L. V. 1971. Isothermal molecular dynamics calculations for liquid salts [JournalArticle]. Chemical Physics Letters, 10(3): 257-261.
    [44] Ewald, P. 1921. Die Berechnung optischer und elektrostatischer Gitterpotentiale [JournalArticle]. Annals of Physics, 369(1): 253-287.
    [45] Darden, T.; York, D.; Pedersen, L. 1993. Particle Mesh Ewald - an N.log(N) method forEwald sums in large systems [Journal Article]. Journal of Chemical physics, 98(12):10089-10092.
    [46] Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Hermans, J. 1981.Intermolecular Forces [Book]. Dordrecht: D. Reidel Publishing Company.
    [47] Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. 1987. The missing term in effective pairpotentials [Journal Article]. Journal of Physical Chemistry, 91(24): 6269-6271.
    [48] Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D. e. a. 1983. Comparison of simplepotential functions for simulating liquid water [Journal Article]. Journal of Chemical physics,79(2): 926-935.
    [49] William, L. J. 1986. Optimized Intermolecular Potential Functions for Liquid Alcohols[Journal Article]. Journal of Physical Chemistry, 90(7): 1276-1284.
    [50] Gunsterena, v.; Berendsena, H. J. C. 1977. Algorithms for macromolecular dynamics andconstraint dynamics [Journal Article]. Molecular Physics, 34(5): 1311-1327.
    [51] Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. 1977. Numerical Integration of the CartesianEquations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes[Journal Article]. Journal of Computational Physics, 23(3): 327-341.
    [52] Andersen, H. C. 1983. Rattle: a velocity version of the shake algorithm for moleculardynamics calculations [Journal Article]. Journal of Computational Physics, 52(1): 24-34.
    [53] Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. 1997. LINCS: A linearconstraint solver for molecular simulations [Journal Article]. journal of ComputationalChemistry, 18(12): 1463-1472.
    [54] McCammon J. A., H. S. C. 1987. Dynamics of Proteins and Nucleic Acids [Book]. Camridge:Camridge University Press.
    [55] R., L. A. 2001. Molecular Modelling: Principles and Applications [Book]. London: PearsonEducation.
    [56] Ermak, D. L. 1975. A computer simulation of charged particles in solution. [Journal Article].Journal of Chemical physics, 62(10): 4189-4203.
    [57] Ermak, D. L.; McCammon, J. A. 1978. Brownian dynamics with hydrodynamic interactions[Journal Article]. Journal of Chemical physics, 69(4): 1352-1360.
    [58]杨淑惠. 2005.植物纤维化学[Book].北京:中国轻工业出版社.
    [59] Heinze, T.; Liebert, T. 2001. Unconventional methods in cellulose functionalization [JournalArticle]. Progress in Polymer Science, 26(9): 1689-1762.
    [60] Nakao, T.; Okano, T.; Nishimura, H. 1985. Effect of heat treatment on cellulose crystallitesof wood [Journal Article]. Journal of Polymer Science:Polymer letters Edition, 23(12):647-649.
    [61] Cai, J.; Liu, Y. T.; Zhang, L. N. 2006. Dilute solution properties of cellulose in LiOH/ureaaqueous system [Journal Article]. Journal of Polymer Science Part B-Polymer Physics,44(21): 3093-3101.
    [62] Cai, J.; Zhang, L. 2006. Unique gelation behavior of cellulose in NaOH/Urea aqueoussolution [Journal Article]. Biomacromolecules, 7(1): 183-189.
    [63] Ruan, D.; Zhang, L. N.; Lue, A.; Zhou, J. P.; Chen, H.; Chen, X. M.; Chu, B.; Kondo, T.2006. A rapid process for producing cellulose multi-filament fibers from a NaOH/thioureasolvent system [Journal Article]. Macromolecular Rapid Communications, 27(17):1495-1500.
    [64] Zhang, L. N. 2010. New Functional Material from Cellolose [Book]. Guangzhou: SouthChina Univ Technology Press.
    [65] Cai, J.; Zhang, L. N.; Zhou, J. P.; Qi, H. S.; Chen, H.; Kondo, T.; Chen, X. M.; Chu, B. 2007.Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:Structure and properties [Journal Article]. Advanced Materials, 19(6): 821-825.
    [66] F., V. 1991. Supramolecular Chemistry [Book]. New York: Chichiesse.
    [67]徐筱杰. 2000.超分子建筑——从分子到材料[Book].北京:科学技术文献出版社.
    [68] Cram, D. J.; Cram, J. M. 1994. Container Molecules and Their Guests [Book]. Cambridge:The Royal Society of Chemistry.
    [69] Lehn, J. M. 1995. Supramoleeular Chemistry:Concepts and Perspectives [Book]. Weinheim:VCH.
    [70] P., C. J. 1988. The Discovery of Crown Ethers [Journal Article]. Science, 241(4865):536-540.
    [71] Harris, K. D. M.; Thomas, J. M. 1990. Structural aspects of urea inclusion-compounds andtheir investigation by X-Ray-Diffraction-A general discussion [Journal Article]. Journal ofthe Chemical Society-Faraday Transactions, 86(17): 2985-2996.
    [72]李琦,石梅,麦松威. 2002.尿素/硫脲/硒脲晶体及其管状包合物的结构化学[JournalArticle].自然科学进展, 12(4): 337-343.
    [73] Gellert, M.; Lipsett, M. N.; Davies, D. R. 1962. Helix formation by guanylic acid [JournalArticle]. Proceedings of the National Academy of Sciences, 48(12): 2013-2018.
    [74] Arnott, S.; Chandrasekaran, R.; Marttila, C. M. 1974. Structures for polyinosinic acid andpolyguanylic acid [Journal Article]. Biochemical Journal, 141(2): 537-543.
    [75] Zimmerman, S. B. 1975. An“acid”structure for polyriboguanylic acid observed by X-raydiffraction [Journal Article]. Biopolymers, 14(4): 889-890.
    [76] Tougard, P.; Chantot, J.-F.; Guschlbauer, W. 1973. Nucleoside conformations: X. An X-rayfiber diffraction study of the gels of guanine nucleosides [Journal Article]. Biochimica etBiophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 308(1): 9-16.
    [77] Zimmerman, S. B.; Cohen, G. H.; Davies, D. R. 1975. X-ray fiber diffraction andmodel-building study of polyguanylic acid and polyinosinic acid [Journal Article]. Journal ofMolecular Biology, 92(2): 181-184.
    [78] Neidle, S.; Balasubramanian, S. 2006. Quadruplex Nucleic Acids [Book]. London: RoyalSociety of Chemistry.
    [79] Aboulela, F.; Murchie, A. I. H.; Lilley, D. M. J. 1992. NMR-Study of parallel-strandedtetraplex formation by the hexadeoxynucleotide d(TG4T) [Journal Article]. Nature,360(6401): 280-282.
    [80] Cheong, C. J.; Moore, P. B. 1992. Solution structure of an unusually stable RNA tetraplexcontainning G-quartet and U-quartet structures [Journal Article]. Biochemistry, 31(36):8406-8414.
    [81] Kang, C.; Zhang, X. H.; Ratliff, R.; Moyzis, R.; Rich, A. 1992. Crystal-structure of4-stranded oxytricha telomeric DNA [Journal Article]. Nature, 356(6365): 126-131.
    [82] Wang, Y.; Patel, D. J. 1992. Guanine residues in d(T2AG3) and d(T2G4) formparallel-stranded potassium cation stabilized G-quadruplexes with antiglycosidic torsionangles in solution [Journal Article]. Biochemistry, 31(35): 8112-8119.
    [83] Macaya, R. F.; Schultze, P.; Smith, F. W.; Roe, J. A.; Feigon, J. 1993. Thrombin-bindingDNA aptamer forms a unimolecular quadruplex structure in solution [Journal Article].Proceedings of the National Academy of Sciences of the United States of America, 90(8):3745-3749.
    [84] Wang, Y.; Patel, D. J. 1993. Solution structure of the human telomeric repeat dAG(3)(T(2)AG(3))3 G-tetraplex [Journal Article]. Structure, 1(4): 263-282.
    [85] Aboulela, F.; Murchie, A. I. H.; Norman, D. G.; Lilley, D. M. J. 1994. Soulution strucuture ofa parallel-stranded tetraplex formed by d(TG4T) in the presence of sodium-ions by NMRSpectroscopy [Journal Article]. Journal of Molecular Biology, 243(3): 458-471.
    [86] Laughlan, G.; Murchie, A. I. H.; Norman, D. G.; Moore, M. H.; Moody, P. C. E.; Lilley, D.M. J.; Luisi, B. 1994. The high-resolution crystal-structure of a parallel-stranded guaninetetraplex [Journal Article]. Science, 265(5171): 520-524.
    [87] Schultze, P.; Smith, F. W.; Feigon, J. 1994. Refined solution structure of the dimericquadruplex formed from the oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG)[Journal Article]. Structure, 2(3): 221-233.
    [88] Guschlbauer, W.; Chantot, J. F.; Thiele, D. 1990. 4-Stranded nucleic-acid structures 25 yearslater-from guanosine gels to telomer DNA [Journal Article]. Journal of BiomolecularStructure & Dynamics, 8(3): 491-511.
    [89] Sen, D.; Gilbert, W. 1992. Guanine quartet structures [Journal Article]. Methods inEnzymology, 211(1): 191-199.
    [90] Williamson, J. R. 1994. G-Quartet structures in telomeric DNA [Journal Article]. AnnualReview of Biophysics and Biomolecular Structure, 23(3): 703-730.
    [91] Gilbert, D. E.; Feigon, J. 1999. Multistranded DNA structures [Journal Article]. CurrentOpinion in Structural Biology, 9(3): 305-314.
    [92] Simonsson, T. 2001. G-quadruplex DNA structures - Variations on a theme [Journal Article].Biological Chemistry, 382(4): 621-628.
    [93] Neidle, S.; Parkinson, G. N. 2003. The structure of telomeric DNA [Journal Article]. CurrentOpinion in Structural Biology, 13(3): 275-283.
    [94] Davis, J. T. 2004. G-quartets 40 years later: From 5 '-GMP to molecular biology andsupramolecular chemistry [Journal Article]. Angewandte Chemie-International Edition, 43(6):668-698.
    [95] Phillips, K.; Dauter, Z.; Murchie, A. I. H.; Lilley, D. M. J.; Luisi, B. 1997. The crystalstructure of a parallel-stranded guanine tetraplex at 0.95 angstrom resolution [Journal Article].Journal of Molecular Biology, 273(1): 171-182.
    [96] Cai, M. M.; Shi, X. D.; Sidorov, V.; Fabris, D.; Lam, Y. F.; Davis, J. T. 2002. Cation-directedself-assembly of lipophilic nucleosides: the cation's central role in the structure and dynamicsof a hydrogen-bonded assembly [Journal Article]. Tetrahedron, 58(4): 661-671.
    [97] Wlodarczyk, A.; Grzybowski, P.; Patkowski, A.; Dobek, A. 2005. Effect of ions on thepolymorphism, effective charge, and stability of human telomeric DNA. Photon correlationspectroscopy and circular dichroism studies [Journal Article]. Journal of Physical ChemistryB, 109(8): 3594-3605.
    [98] Nagesh, N.; Chatterji, D. 1995. Ammonium ion at low concentration stabilizes theG-quadruplex formation by the telomeric sequence [Journal Article]. Journal of Biochemicaland Biophysical Methods, 30(1): 1-8.
    [99] Lee, J. S. 1990. The stability of polypurine tetraplexes in the presence of monovalent anddivalent cations [Journal Article]. Nucleic Acids Research, 18(20): 6057-6060.
    [100] Basu, S.; Szewczak, A. A.; Cocco, M.; Strobel, S. A. 2000. Direct detection of monovalentmetal ion binding to a DNA G-quartet by Tl-205 NMR [Journal Article]. Journal of theAmerican Chemical Society, 122(13): 3240-3241.
    [101] Chen, F. M. 1992. Sr2+ facilitates intermolecular G-quadruplex formation of telomericsequences [Journal Article]. Biochemistry, 31(15): 3769-3776.
    [102] Venczel, E. A.; Sen, D. 1993. Parallel and antiparallel G-DNA structures from a complextelomeric sequence [Journal Article]. Biochemistry, 32(24): 6220-6228.
    [103] Smirnov, I.; Shafer, R. H. 2000. Lead is unusually effective in sequence-specific folding ofDNA [Journal Article]. Journal of Molecular Biology, 296(1): 1-5.
    [104] Cavallari, M.; Calzolari, A.; Garbesi, A.; Di Felice, R. 2006. Stability and migration ofmetal ions in G4-wires by molecular dynamics simulations [Journal Article]. Journal ofPhysical Chemistry B, 110(51): 26337-26348.
    [105] Haider, S.; Parkinson, G. N.; Neidle, S. 2002. Crystal structure of the potassium form of anOxytricha nova G-quadruplex [Journal Article]. Journal of Molecular Biology, 320(2):189-200.
    [106] Schultze, P.; Hud, N. V.; Smith, F. W.; Feigon, J. 1999. The effect of sodium, potassium andammonium ions on the conformation of the dimeric quadruplex formed by the Oxytrichanova telomere repeat oligonucleotide d(G(4)T(4)G(4)) [Journal Article]. Nucleic AcidsResearch, 27(15): 3018-3028.
    [107] Chantot, J.-F.; Guschlbauer, W. 1969. Physicochemical properties of nucleosides 3. Gelformation by 8-bromoguanosine [Journal Article]. FEBS Letters, 4(3): 173-176.
    [108] Wong, A.; Wu, G. 2003. Selective binding of monovalent cations to the stacking G-quartetstructure formed by guanosine 5 '-monophosphate: A solid-state NMR study [Journal Article].Journal of the American Chemical Society, 125(45): 13895-13905.
    [109] Hardin, C. C.; Corregan, M.; Brown, B. A.; Frederick, L. N. 1993. Cytosinecytosine+base-pairing stabilizes and quadruplexes and cytosine methylation greatly enhancesthe effect [Journal Article]. Biochemistry, 32(22): 5870-5880.
    [110] Hardin, C. C.; Watson, T.; Corregan, M.; Bailey, C. 1992. Cation-dependent transitionbetween the quadruplex and watson-crick hairpin forms of d(CGCG3GCG) [Journal Article].Biochemistry, 31(3): 833-841.
    [111] Kotch, F. W.; Fettinger, J. C.; Davis, J. T. 2000. A lead-filled G-quadruplex: Insight into theG-quartet's selectivity for Pb2+ over K+ [Journal Article]. Organic Letters, 2(21): 3277-3280.
    [112] Miyoshi, D.; Nakao, A.; Toda, T.; Sugimoto, N. 2001. Effect of divalent cations onantiparallel G-quartet structure of d(G(4)T(4)C(4)) [Journal Article]. FEBS Letters, 496(2-3):128-133.
    [113] Li, W.; Miyoshi, D.; Nakano, S.; Sugimoto, N. 2003. Structural competition involvingG-quadruplex DNA and its complement [Journal Article]. Biochemistry, 42(40):11736-11744.
    [114] Miyoshi, D.; Matsumura, S.; Li, W.; Sugimoto, N. 2003. Structural polymorphism oftelomeric DNA regulated by pH and divalent cation [Journal Article]. NucleosidesNucleotides & Nucleic Acids, 22(2): 203-221.
    [115] Miyoshi, D.; Nakao, A.; Sugimoto, N. 2003. Structural transition from antiparallel toparallel G-quadruplex of d(G(4)T(4)G(4)) induced by Ca2+ [Journal Article]. Nucleic AcidsResearch, 31(4): 1156-1163.
    [116] Blume, S. W.; Guarcello, V.; Zacharias, W.; Miller, D. M. 1997. Divalent transition metalcations counteract potassium-induced quadruplex assembly of oligo(dG) sequences [JournalArticle]. Nucleic Acids Research, 25(3): 617-625.
    [117] Luty, B. A.; McCammon, J. A.; Zhou, H. X. 1992. Diffusive reaction-rates from browniandynamics simulations-replacing the outer cutoff surface by an analytical treatment [JournalArticle]. Journal of Chemical physics, 97(8): 5682-5686.
    [118] Getzoff, E. D.; Cabelli, D. E.; Fisher, C. L.; Parge, H. E.; Viezzoli, M. S.; Banci, L.;Hallewell, R. A. 1992. Faster superoxide-dismutase mutants designed by enhancingelectrostatic guidance [Journal Article]. Nature, 358(6384): 347-351.
    [119] Smoluchowski, v. 1906. Zur kinetischen Theorie der Brownschen Molekularbewegung undder Suspensionen [Journal Article]. Annalen der Physik, 326(14): 756–780.
    [120] Zhou, H. X. 1990. Kinetics of diffusion-influenced reactions studied by Brownian dynamics[Journal Article]. Journal of Physical Chemistry, 94(25): 8794-8800.
    [121] Zhou, H. X. 1993. Brownian dynamics study of the influences of electrostatic interactionand diffusion on protein-protein association kinetics [Journal Article]. Biophysical Journal,64(6): 1711-1726.
    [122] Zhou, H. X.; Szabo, A. 1996. Theory and simulation of stochastically-gateddiffusion-influenced reactions [Journal Article]. Journal of Physical Chemistry, 100(7):2597-2604.
    [123] Northrup, S. H.; Allison, S. A.; McCammon, J. A. 1984. Brownian dynamics simulation ofdiffusion-influenced bimolecular reactions [Journal Article]. The Journal of ChemicalPhysics, 80(4): 1517-1524.
    [124] Zhou, H. X. 1998. Comparison of three Brownian-dynamics algorithms for calculating rateconstants of diffusion-influenced reactions [Journal Article]. Journal of Chemical physics,108(19): 8139-8145.
    [125] Szabo, A. 1989. Theory of diffusion-influenced fluorescence quenching [Journal Article].Journal of Physical Chemistry, 93(19): 6929-6939.
    [126] Smoluchowski, M. Z. 1917. Versuch Einer Mathematischen Theorie DerKoagulationskinetik Kolloider Losunger [Journal Article]. Zeitschrift fur PhysikalischeChemie, 92(2): 129-142.
    [127] Collins F.C., K. G. E. 1949. Diffusion-controlled reaction rates [Journal Article]. Journal OfColloid Science, 4(2): 425-437.
    [128] Onsager, L. 1938. Initial Recombination of Ions [Journal Article]. Physical Review, 54(8):554.
    [129] Tachiya, M. 1978. General method for calculating the escape probability indiffusion-controlled reactions [Journal Article]. The Journal of Chemical Physics, 69(6):2375-2376.
    [130] Gardiner, C. W. 1985. Handbook of Stochastic Methods [Book]. 2nd ed. Berlin:Springer-Verlag.
    [131] Morse P. M., F. H. 1953. Methods of Theoretical Physics [Book]. New York: McGraw-Hill.
    [132] Zhou, H.-X.; Szabo, A. 1990. Mean field theory of transient fluorescence quenching in thefrequency domain [Journal Article]. The Journal of Chemical Physics, 92(6): 3874-3880.
    [133] Wilemski, G.; Fixman, M. 1973. General theory of diffusion-controlled reactions [JournalArticle]. The Journal of Chemical Physics, 58(9): 4009-4019.
    [134] Lamm, G.; Schulten, K. 1983. Extended Brownian dynamics. II. Reactive, nonlineardiffusion [Journal Article]. The Journal of Chemical Physics, 78(5): 2713-2734.
    [135] Agmon, N.; Szabo, A. 1990. Theory of reversible diffusion-influenced reactions [JournalArticle]. The Journal of Chemical Physics, 92(9): 5270-5284.
    [136] Shoup D, S. A. 1982. Role of diffusion in ligand binding to macromolecules and cell-boundreceptors [Journal Article]. Journal of Electroanalytical Chemistry, 140(2): 237-245.
    [137] Pabo, C. O.; Peisach, E.; Grant, R. A. 2001. Design and selection of novel Cys(2)His(2) zincfinger proteins [Journal Article]. Annual Review of Biochemistry, 70(2): 313-340.
    [138] Jencks, W. P. 1981. On the attribution and additivity of binding energies [Journal Article].Proceedings of the National Academy of Sciences, 78(7): 4046–4050.
    [139] Bobrovnik, S. A. 2007. The influence of rigid or flexible linkage between two ligands on theeffective affinity and avidity for reversible interactions with bivalent receptors [JournalArticle]. Journal of Molecular Recognition, 20(4): 253-262.
    [140] Pisarchick, M. L.; Thompson, N. L. 1990. Binding of a monoclonal-antibody and its fabfragment to supported phospholipid monolayers measured by total internal reflectionfluorescence microscopy [Journal Article]. Biophysical Journal, 58(5): 1235-1249.
    [141] Kaufman E. N., J. R. K. 1992. Effect of bivalent interaction upon apparent antibody affinity:experimental confirmation of theory using fluorescence photobleaching and implications forantibody binding assays [Journal Article]. Cancer Research, 52(15): 4157-4167.
    [142] S., K. J.; O., P. C. 1998. Getting a handhold on DNA: design of poly-zinc finger proteinswith femtomolar dissociation constants [Journal Article]. Proceedings of the NationalAcademy of Sciences, 95(6): 2812-2817.
    [143] Wolfe S. A., R. E. I., Pabo C. O. 2000. Combining structure-based design with phagedisplay to create new Cys(2)His(2) zinc finger dimers [Journal Article]. Structure, 8(7):739-750.
    [1] Suto, S.; Obara, K.; Nishitani, S.; Karasawa, M. 1986. Viscometric behavior ofliquid-crystalline solutions of hydroxypropyl cellulose in N,N-dimethylacetamide and indimethylsulfoxide: effects of temperature and concentration [Journal Article]. Journal ofPolymer Science, Part B (Polymer Physics), 24(8): 1849-1857.
    [2] Makhatadze, G. I.; Privalov, P. L. 1992. Protein interactions with urea and guanidiniumchloride-a calorimetric study [Journal Article]. Journal of Molecular Biology, 226(2):491-505.
    [3] Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. 2002. Dissolution of cellose withionic liquids [Journal Article]. Journal of the American Chemical Society, 124(18):4974-4975.
    [4] Zou, Q.; Bennion, B. J.; Daggett, V.; Murphy, K. P. 2002. The molecular mechanism ofstabilization of proteins by TMAO and its ability to counteract the effects of urea [JournalArticle]. Journal of the American Chemical Society, 124(7): 1192-1202.
    [5] Panuszko, A.; Bruzdziak, P.; Zielkiewicz, J.; Wyrzykowski, D.; Stangret, J. 2009. Effects ofUrea and Trimethylamine-N-oxide on the Properties of Water and the Secondary Structureof Hen Egg White Lysozyme [Journal Article]. Journal of Physical Chemistry B, 113(44):14797-14809.
    [6] Ishida, T.; Rossky, P. J.; Castner, E. W. 2004. A Theoretical investigation of the shape andhydration properties of aqueous urea: Evidence for nonplanar urea geometry [JournalArticle]. Journal of Physical Chemistry B, 108(45): 17583-17590.
    [7] Chakraborty, A.; Sarkar, M.; Basak, S. 2005. Stabilizing effect of low concentrations of ureaon reverse micelles [Journal Article]. Journal of Colloid and Interface Science, 287(1):312-317.
    [8] Wallqvist, A.; Covell, D. G.; Thirumalai, D. 1998. Hydrophobic interactions in aqueous ureasolutions with implications for the mechanism of protein denaturation [Journal Article].Journal of the American Chemical Society, 120(2): 427-428.
    [9] Zou, Q.; Habermann-Rottinghaus, S. M.; Murphy, K. P. 1998. Urea effects on proteinstability: Hydrogen bonding and the hydrophobic effect [Journal Article]. Proteins-StructureFunction and Genetics, 31(2): 107-115.
    [10] Ikeguchi, M.; Nakamura, S.; Shimizu, K. 2001. Molecular dynamics study on hydrophobiceffects in aqueous urea solutions [Journal Article]. Journal of the American ChemicalSociety, 123(4): 677-682.
    [11] Liu, H. B.; Sale, K. L.; Holmes, B. M.; Simmons, B. A.; Singh, S. 2010. Understanding theInteractions of Cellulose with Ionic Liquids: A Molecular Dynamics Study [Journal Article].Journal of Physical Chemistry B, 114(12): 4293-4301.
    [12] Dadi, A. P.; Varanasi, S.; Schall, C. A. 2006. Enhancement of cellulose saccharificationkinetics using an ionic liquid pretreatment step [Journal Article]. Biotechnology andBioengineering, 95(5): 904-910.
    [13] Dadi, A. P.; Schall, C. A.; Varanasi, S. 2007. Mitigation of cellulose recalcitrance toenzymatic hydrolysis by ionic liquid pretreatment [Journal Article]. Applied Biochemistryand Biotechnology, 137(2): 407-421.
    [14] Bergenstrahle, M.; Wohlert, J.; Himmel, M. E.; Brady, J. W. 2010. Simulation studies of theinsolubility of cellulose [Journal Article]. Carbohydrate Research, 345(14): 2060-2066.
    [15] Cai, J.; Zhang, L. N.; Zhou, J. P.; Qi, H. S.; Chen, H.; Kondo, T.; Chen, X. M.; Chu, B. 2007.Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution:Structure and properties [Journal Article]. Advanced Materials, 19(6): 821-+.
    [16] Cai, J.; Zhang, L. N.; Chang, C. Y.; Cheng, G. Z.; Chen, X. M.; Chu, B. 2007.Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at lowtemperature [Journal Article]. Chemphyschem, 8(10): 1572-1579.
    [17] Harris, K. D. M.; Thomas, J. M. 1990. Stuctural aspects of urea inclusion compounds andtheir investigation by X-Ray diffraction- a general discussion [Journal Article]. Journal ofthe Chemical Society-Faraday Transactions, 86(17): 2985-2996.
    [18] Harris, K. D. M. 1997. Meldola lecture: understanding the properties of urea and thioureainclusion compounds [Journal Article]. Chemical Society Reviews, 26(4): 279-289.
    [19] Harris, K. D. M. 2003. Local structural aspects of one-dimensional solid inclusioncompounds [Journal Article]. Phase Transitions, 76(3): 205-218.
    [20] Heiner, A. P.; Sugiyama, J.; Teleman, O. 1995. Crystalline Cellulose I-Alpha and I-BetaStudied by Molecular-Dynamics Simulation [Journal Article]. Carbohydrate Research,273(2): 207-223.
    [21] Hardy, B. J.; Sarko, A. 1996. Molecular dynamics simulations and diffraction-based analysisof the native cellulose fibre: structural modelling of the I-[alpha] and I-[beta] phases andtheir interconversion [Journal Article]. Polymer, 37(10): 1833-1839.
    [22] Chen, W.; Lickfield, G. C.; Yang, C. Q. 2004. Molecular modeling of cellulose inamorphous state part II: effects of rigid and flexible crosslinks on cellulose [Journal Article].Polymer, 45(21): 7357-7365.
    [23] Tanaka, F.; Okamura, K. 2005. Characterization of cellulose molecules in bio-systemstudied by modeling methods [Journal Article]. Cellulose, 12(3): 243-252.
    [24] Humeres, E.; Mascayano, C.; Riadi, G.; Gonzalez-Nilo, F. 2006. Molecular dynamicssimulation of the aqueous solvation shell of cellulose and xanthate ester derivatives [JournalArticle]. Journal of Physical Organic Chemistry, 19(12): 896-901.
    [25] Bertran, C. A.; Cirino, J. J. V.; Freitas, L. C. G. 2002. Theoretical studies of concentratedaqueous urea solutions using computacional Monte Carlo simulation [Journal Article].Journal of the Brazilian Chemical Society, 13(2): 238-244.
    [26] Caballero-Herrera, A.; Nilsson, L. 2006. Urea parametrization for molecular dynamicssimulations [Journal Article]. Journal of Molecular Structure-Theochem, 758(2-3): 139-148.
    [27] Souaille, M.; Smith, J. C.; Guillaume, F. 1997. Simulation of Collective Dynamics ofn-Nonadecane in the Urea Inclusion Compound [Journal Article]. Journal of PhysicalChemistry B, 101(34): 6753–6757.
    [28] Idrissi, A.; Cinar, E.; Longelin, S.; Damay, P. 2004. The effect of temperature on urea-ureainteractions in water: a molecular dynamics simulation [Journal Article]. Journal ofMolecular Liquids, 110(1-3): 201-208.
    [29] Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C.2005. GROMACS: Fast, flexible, and free [Journal Article]. Journal of ComputationalChemistry, 26(16): 1701-1718.
    [30] Berendsen, H. J. C.; Vanderspoel, D.; Vandrunen, R. 1995. Gromacs - a Message-PassingParallel Molecular-Dynamics Implementation [Journal Article]. Computer PhysicsCommunications, 91(1-3): 43-56.
    [31] Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. 1987. The missing term in effective pairpotentials [Journal Article]. Journal of Physical Chemistry, 91(24): 6269-6271.
    [32] Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. 1997. LINCS: A linear constraintsolver for molecular simulations [Journal Article]. Journal of Computational Chemistry,18(12): 1463-1472.
    [33] Darden, T.; York, D.; Pedersen, L. 1993. Particle Mesh Ewald - an N.Log(N) Method forEwald Sums in Large Systems [Journal Article]. Journal of Chemical Physics, 98(12):10089-10092.
    [34] Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. 1984.Molecular dynamics with coupling to an external bath [Journal Article]. Journal ofChemical Physics, 81(8): 3684-3690.
    [35] Mahoney, M. W.; Jorgensen, W. L. 2001. Diffusion constant of the TIP5P model of liquidwater [Journal Article]. Journal of Chemical Physics, 114(1): 363-366.
    [36] Chen, X.; Burger, C.; Fang, D.; Ruan, D.; Zhang, L.; Hsiao, B. S.; Chu, B. 2006. X-raystudies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thioureaaqueous solutions [Journal Article]. Polymer, 47(8): 2839-2848.
    [37] Ruan, D.; Lue, A.; Zhang, L. 2008. Gelation behaviors of cellulose solution dissolved inaqueous NaOH/thiourea at low temperature [Journal Article]. Polymer, 49(4): 1027-1036.
    [38] Brustolon, M.; Maniero, A. L.; Marcomini, A.; Segre, U. 1996. Structure and dynamics ofhydrogen bonding guests in urea inclusion compounds [Journal Article]. Journal ofMaterials Chemistry, 6(10): 1723-1729.
    [1] Sen, D.; Gilbert, W. 1992. Guanine quartet structures [Journal Article]. Methods inEnzymology, 211(1): 191-199.
    [2] Williamson, J. R. 1994. G-Quartet structures in telomeric DNA [Journal Article]. AnnualReview of Biophysics and Biomolecular Structure, 23(3): 703-730.
    [3] Gilbert, D. E.; Feigon, J. 1999. Multistranded DNA structures [Journal Article]. CurrentOpinion in Structural Biology, 9(3): 305-314.
    [4] Neidle, S.; Parkinson, G. N. 2003. The structure of telomeric DNA [Journal Article]. CurrentOpinion in Structural Biology, 13(3): 275-283.
    [5] Macaya, R. F.; Schultze, P.; Smith, F. W.; Roe, J. A.; Feigon, J. 1993. Thrombin-binding DNAaptamer forms a unimolecular quadruplex structure in solution [Journal Article].Proceedings of the National Academy of Sciences of the United States of America, 90(8):3745-3749.
    [6] Vairamani, M.; Gross, M. L. 2003. G-quadruplex formation of thrombin-binding aptamerdetected by electrospray ionization mass spectrometry [Journal Article]. Journal of theAmerican Chemical Society, 125(1): 42-43.
    [7] Davis, J. T. 2004. G-quartets 40 years later: From 5 '-GMP to molecular biology andsupramolecular chemistry [Journal Article]. Angewandte Chemie-International Edition,43(6): 668-698.
    [8] Reshetnikov, R.; Golovin, A.; Spiridonova, V.; Kopylov, A.; Sponer, J. 2010. StructuralDynamics of Thrombin-Binding DNA Aptamer d(GGTTGGTGTGGTTGG) QuadruplexDNA Studied by Large-Scale Explicit Solvent Simulations [Journal Article]. Journal ofChemical Theory and Computation, 6(10): 3003-3014.
    [9] Ross, W. S.; Hardin, C. C. 1994. Ion-Induced Stabilization of the G-DNA Quadruplex: FreeEnergy Perturbation Studies [Journal Article]. Journal of the American Chemical Society,116(14): 6070–6080.
    [10] Hardin, C. C.; Watson, T.; Corregan, M.; Bailey, C. 1992. Cation-dependent transitionbetween the quadruplex and watson-crick hairpin forms of d(CGCG3GCG) [JournalArticle]. Biochemistry, 31(3): 833-841.
    [11] Hardin, C. C.; Corregan, M.; Brown, B. A.; Frederick, L. N. 1993. Cytosinecytosine+base-pairing stabilizes and quadruplexes and cytosine methylation greatlyenhances the effect [Journal Article]. Biochemistry, 32(22): 5870-5880.
    [12] Aboulela, F.; Murchie, A. I. H.; Norman, D. G.; Lilley, D. M. J. 1994. Soulution strucutureof a parallel-stranded tetraplex formed by d(TG4T) in the presence of sodium-ions by NMRSpectroscopy [Journal Article]. Journal of Molecular Biology, 243(3): 458-471.
    [13] Basu, S.; Szewczak, A. A.; Cocco, M.; Strobel, S. A. 2000. Direct detection of monovalentmetal ion binding to a DNA G-quartet by Tl-205 NMR [Journal Article]. Journal of theAmerican Chemical Society, 122(13): 3240-3241.
    [14] Harris, K. D. M.; Thomas, J. M. 1990. Structural aspects of urea inclusion-compounds andtheir investigation by X-Ray-Diffraction-A general discussion [Journal Article]. Journal ofthe Chemical Society-Faraday Transactions, 86(17): 2985-2996.
    [15] Kelly, J. A.; Feigon, J.; Yeates, T. O. 1996. Reconciliation of the X-ray and NMR structuresof the thrombin-binding aptamer d(GGTTGGTGTGGTTGG) [Journal Article]. Journal ofMolecular Biology, 256(3): 417-422.
    [16] Hong, E. S.; Yoon, H. J.; Kim, B.; Yim, Y. H.; So, H. Y.; Shin, S. K. 2010. MassSpectrometric Studies of Alkali Metal Ion Binding on Thrombin-Binding Aptamer DNA[Journal Article]. Journal of the American Society for Mass Spectrometry, 21(7):1245-1255.
    [17] Pagba, C. V.; Lane, S. M.; Wachsmann-Hogiu, S. 2010. Raman and surface-enhancedRaman spectroscopic studies of the 15-mer DNA thrombin-binding aptamer [JournalArticle]. Journal of Raman Spectroscopy, 41(3): 241-247.
    [18] Jayapal, P.; Mayer, G.; Heckel, A.; Wennmohs, F. 2009. Structure-activity relationships of acaged thrombin binding DNA aptamer: Insight gained from molecular dynamics simulationstudies [Journal Article]. Journal of Structural Biology, 166(3): 241-250.
    [19] Reshetnikov, R. V.; Golovin, A. V.; Kopylov, A. M. 2010. Comparison of models ofthrombin-binding 15-mer DNA aptamer by molecular dynamics simulation [Journal Article].Biochemistry-Moscow, 75(8): 1017-1024.
    [20] Cavallari, M.; Calzolari, A.; Garbesi, A.; Di Felice, R. 2006. Stability and migration ofmetal ions in G4-wires by molecular dynamics simulations [Journal Article]. Journal ofPhysical Chemistry B, 110(51): 26337-26348.
    [21] Li, H.; Cao, E. H.; Gisler, T. 2009. Force-induced unfolding of human telomericG-quadruplex: A steered molecular dynamics simulation study [Journal Article].Biochemical and Biophysical Research Communications, 379(1): 70-75.
    [22] Padmanabhan, K.; Padmanabhan, K. P.; Ferrara, J. D.; Sadler, J. E.; Tulinsky, A. 1993. Thestructure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer [JournalArticle]. Journal of Biological Chemistry, 268(24): 17651-17654.
    [23] Emile Apol, R. A., Herman J. C. Berendsen et al. 2010. Gromacs User Manual: Version 4.5[Book]. Sweden: Poyal Institute of Technology and Uppsala University.
    [24] Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C.2005. GROMACS: Fast, flexible, and free [Journal Article]. Journal of ComputationalChemistry, 26(16): 1701-1718.
    [25] Comell,W.D.; Cieplak, P.; Bayly, C. I.; Gould,I.IL; Merz,K.M.; Fcrguson,D.M.;Spollmeyer, D. C.; Fox,T.; Caldwell,J.W.; Kollman, P. A. 1995. A second generationforce field for the simulation of proteins,nucleic acids,and organic molecules [JournalArticle]. Journal of the American Chemical Society, 117(19): 5179-5197.
    [26] Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D. e. a. 1983. Comparison of simplepotential functions for simulating liquid water [Journal Article]. Journal of Chemicalphysics, 79(2): 926-935.
    [27] William, L. J. 1986. Optimized Intermolecular Potential Functions for Liquid Alcohols[Journal Article]. Journal of Physical Chemistry, 90(7): 1276-1284.
    [28] Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. 1997. LINCS: A linearconstraint solver for molecular simulations [Journal Article]. Journal of ComputationalChemistry, 18(12): 1463-1472.
    [29] Darden, T.; York, D.; Pedersen, L. 1993. Particle Mesh Ewald - an N.log(N) method forEwald sums in large systems [Journal Article]. Journal of Chemical physics, 98(12):10089-10092.
    [1] Zhou, H. X. 2010. From Induced Fit to Conformational Selection: A Continuum of BindingMechanism Controlled by the Timescale of Conformational Transitions [Journal Article].Biophysical Journal, 98(6): L15-L17.
    [2] Berl, V.; Huc, I.; Lehn, J. M.; DeCian, A.; Fischer, J. 1999. Induced fit selection of abarbiturate receptor from a dynamic structural and conformational/configurational library[Journal Article]. European Journal of Organic Chemistry, 1999(11): 3089-3094.
    [3] Okazaki, K. I.; Takada, S. 2008. Dynamic energy landscape view of coupled binding andprotein conformational change: Induced-fit versus population-shift mechanisms [JournalArticle]. Proceedings of the National Academy of Sciences of the United States of America,105(32): 11182-11187.
    [4] Sullivan, S. M.; Holyoak, T. 2008. Enzymes with lid-gated active sites must operate by aninduced fit mechanism instead of conformational selection [Journal Article]. Proceedings ofthe National Academy of Sciences of the United States of America, 105(37): 13829-13834.
    [5] Hammes, G. G.; Chang, Y. C.; Oas, T. G. 2009. Conformational selection or induced fit: Aflux description of reaction mechanism [Journal Article]. Proceedings of the NationalAcademy of Sciences of the United States of America, 106(33): 13737-13741.
    [6] Latham, M. P.; Zimmermann, G. R.; Pardi, A. 2009. NMR Chemical Exchange as a Probe forLigand-Binding Kinetics in a Theophylline-Binding RNA Aptamer [Journal Article].Journal of the American Chemical Society, 131(14): 5052-5053.
    [7] Csermely, P.; Palotai, R.; Nussinov, R. 2010. Induced fit, conformational selection andindependent dynamic segments: an extended view of binding events [Journal Article].Trends in Biochemical Sciences, 35(10): 539-546.
    [8] Qin, F.; Chen, Y.; Wu, M. Y.; Li, Y. X.; Zhang, J.; Chen, H. F. 2010. Induced fit orconformational selection for RNA/U1A folding [Journal Article]. Rna-a Publication of theRna Society, 16(5): 1053-1061.
    [9] Qin, F.; Jiang, Y. B.; Chen, Y.; Wu, M. Y.; Yan, G. W.; Ye, W. J.; Li, Y. X.; Zhang, J. A.; Chen,H. F. 2011. Conformational selection or induced fit for Brinker and DNA recognition[Journal Article]. Physical Chemistry Chemical Physics, 13(4): 1407-1412.
    [10] Espinoza-Fonseca, L. M. 2009. Reconciling binding mechanisms of intrinsically disorderedproteins [Journal Article]. Biochemical and Biophysical Research Communications, 382(3):479-482.
    [11] Cai, L.; Zhou, H. X. 2011. Theory and simulation on the kinetics of protein-ligand bindingcoupled to conformational change [Journal Article]. Journal of Chemical Physics, 134(10).
    [12] Zhou, H. X. 1996. Effect of interaction potentials in diffusion-influenced reactions withsmall reactive regions [Journal Article]. Journal of Chemical Physics, 105(16): 7235-7237.
    [13] Zhou, H. X. 1997. Enhancement of protein-protein association rate by interaction potential:Accuracy of prediction based on local Boltzmann factor [Journal Article]. BiophysicalJournal, 73(5): 2441-2445.
    [14] Ermak, D. L. 1975. A computer simulation of charged particles in solution. [Journal Article].Journal of Chemical Physics, 62(10): 4189-4203.
    [15] Ermak, D. L.; McCammon, J. A. 1978. Brownian dynamics with hydrodynamic interactions[Journal Article]. Journal of Chemical Physics, 69(4): 1352-1360.
    [1] Schreiber, G.; Haran, G.; Zhou, H. X. 2009. Fundamental Aspects of Protein-ProteinAssociation Kinetics [Journal Article]. Chemical Reviews, 109(3): 839-860.
    [2] Shoemaker, B. A.; Portman, J. J.; Wolynes, P. G. 2000. Speeding molecular recognition byusing the folding funnel: The fly-casting mechanism [Journal Article]. Proceedings of theNational Academy of Sciences of the United States of America, 97(16): 8868-8873.
    [3] Zhou, H. X. 2002. Model for the binding of the inactivation N-terminal to the ion pore ofshaker potassium channel: Both electrostatic attraction and covalent linkage are required forrapid inactivation [Journal Article]. Journal of Physical Chemistry B, 106(9): 2393-2397.
    [4] Zhou, H. X. 2003. Quantitative account of the enhanced affinity of two linked scFvs specificfor different epitopes on the same antigen [Journal Article]. Journal of Molecular Biology,329(1): 1-8.
    [5] Wang, J.; Xu, L.; Wang, E. 2007. Optimal specificity and function for flexible biomolecularrecognition [Journal Article]. Biophysical Journal, 92(12): L109-L111.
    [6] Turjanski, A. G.; Gutkind, J. S.; Best, R. B.; Hummer, G. 2008. Binding-induced folding of anatively unstructured transcription factor [Journal Article]. Plos Computational Biology,4(4): e1000060.
    [7] Chen, J. H. 2009. Intrinsically Disordered p53 Extreme C-Terminus Binds to S100B(betabeta) through "Fly-Casting" [Journal Article]. Journal of the American Chemical Society,131(6): 2088-2089.
    [8] Huang, Y. Q.; Liu, Z. R. 2009. Kinetic Advantage of Intrinsically Disordered Proteins inCoupled Folding-Binding Process: A Critical Assessment of the "Fly-Casting" Mechanism[Journal Article]. Journal of Molecular Biology, 393(5): 1143-1159.
    [9] Zhou, H. X. 2001. The affinity-enhancing roles of flexible linkers in two-domainDNA-Binding proteins [Journal Article]. Biochemistry, 40(50): 15069-15073.
    [10] Cai, L.; Zhou, H. X. 2011. Optimal Receptor-Binding Rate Constants of Bivalent Ligandsand Disordered Proteins [Journal Article]. Under review.
    [11] Zhou, H. X. 2001. Loops in proteins can be modeled as worm-like chains [Journal Article].Journal of Physical Chemistry B, 105(29): 6763-6766.
    [12] Colby, M. R. a. R. C. 2003. Polymer Physics [Book]. Oxford: Oxford University Press.
    [13] Doi, M.; Edwards, S. F. 1988. The Theory of Polymer Dynamics [Book]. Oxford: OxfordUniversity Press.
    [14] Szabo, A.; Schulten, K.; Schulten, Z. 1980. First passage time approach to diffusioncontrolled reactions [Journal Article]. The Journal of Chemical Physics, 72(8): 4350-4357.
    [15] Zhou, H. X. 1990. Kinetics of diffusion-influenced reactions studied by Brownian dynamics[Journal Article]. Journal of Physical Chemistry, 94(25): 8794-8800.
    [16] Ermak, D. L. 1975. A computer simulation of charged particles in solution. [Journal Article].Journal of Chemical Physics, 62(10): 4189-4203.
    [17] Ermak, D. L.; McCammon, J. A. 1978. Brownian dynamics with hydrodynamic interactions[Journal Article]. Journal of Chemical Physics, 69(4): 1352-1360.
    [18] Cai, L.; Zhou, H. X. 2011. Theory and simulation on the kinetics of protein-ligand bindingcoupled to conformational change [Journal Article]. Journal of Chemical Physics, 134(10).