纳米金比色法检测克伦特罗和凝血酶
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米金比色法具有简单、快速、成本低廉等优点,引起研究者广泛关注。本论文以纳米金粒子作为比色探针,建立了检测克伦特罗和凝血酶的新分析方法。
     一、以表面带负电荷纳米金粒子为比色探针检测克伦特罗
     克伦特罗俗称“瘦肉精”,能使动物体内的脂肪转化为蛋白质。为了增加动物的瘦肉量,克伦特罗被非法地添加到饲料中。然而,食用含克伦特罗残留的肉制品会导致中毒。因此建立简单、快速、灵敏测定克伦特罗的分析方法具有重要的意义。本文发现克伦特罗可以使纳米金粒子发生团聚,从而使纳米金溶液的颜色从红色变为蓝色。据此现象,建立了一种测定克伦特罗的新方法。在优化的实验条件下,克伦特罗的浓度在2.0×10-9-1.0×10-6M范围内与纳米金溶液的吸光度比值(A640/A520)呈良好的线性关系,方法检出限为0.61nM。本法无需大型仪器,具有简单、快速、灵敏度高等优点,已应用于猪尿液中克伦特罗的检测,结果令人满意。
     二、基于表面带正电荷纳米金粒子与凝血酶适配体的相互作用比色法测定凝血酶
     凝血酶是一种丝氨酸蛋白酶,在心血管疾病的形成以及血液凝固、炎症和创伤愈合等生理和病理过程中起到重要作用。我们制备了表面带正电荷的纳米金粒子。实验发现单链DNA(一种聚阴离子)可以通过静电作用引起正电荷纳米金粒子团聚。本文以凝血酶适配体作为模型体系,将纳米金比色法与适配体的分子识别相结合构建测定凝血酶的新方法。实验结果表明游离的凝血酶适配体可以使纳米金粒子团聚,而凝血酶适配体与凝血酶结合后不能使纳米金粒子团聚,且纳米金粒子的团聚程度与凝血酶浓度密切相关。在优化的实验条件下,凝血酶浓度在0.5-400nM范围内与纳米金溶液的吸光度比值(A650/A524)呈良好的线性关系。且裸眼可检测浓度为50nM的凝血酶。本法无需标记、简单、快速,在生物传感中具有很好的应用前景。
The gold nanoparticles (AuNPs) colorimetric method has aroused attention because of its many advantages, such as special spectral properties, rapidly, simplicity, and no large-scale instrument. In this paper, we explored the AuNPs-based colorimetric assays for clenbuterol and thrombin.
     1. Simple and sensitive detection of clenbuterol using gold nanoparticles as colorimetric probes
     A simple and sensitive method for the detection of clenbuterol was described using AuNPs as the colorimetric probes. Clenbuterol could induce the aggregation of AuNPs, resulting in a color change from red to blue or purple. The concentration of clenbuterol could be determined with the naked eye or the UV-vis spectrometer. Results showed that a linear response toward clenbuterol concentration in the range from2.0×10-9M to1.0×10-6M with the detection limit of0.61nM. This method had such advantages as sensitive, simple, inexpensive and wide linear range, which provided a potentially useful tool for the clenbuterol detection. The mechanism of the aggregation of the AuNPs in this system was discussed.
     2. Simple and sensitive aptamer-based sensing of thrombin with positive-charged gold nanoparticle as colorimetric probes
     In this work, a simple and sensitive aptamer-based colorimetric method for thrombin detection using positive-charged gold nanoparticle probes has been reported. In the absence of thrombin, the negatively-charged thrombin aptamer (TBA) has strong binding ability to the surface of positively-charged AuNPs through electrostatic interaction, which leads to their aggregation and a consequent an obvious color change of positively-charged AuNPs from wine red to blue. In the prescence of thrombin, thrombin would interact with TBA and induce TBA to fold into a G-quadruplex structure, and the G-quadruplex could not induce the aggration of AuNPs. This color change was dependent on the concentration of thrombin, realizing the detection of thrombin in a very convenient way. A linear range from0.5to400nM is obtained for thrombin, which is as low as the most sensitive methods. Significant color change is visible at as low as50nM. This method has such advantages as sensitive, simple, and inexpensive, which provides a potentially useful tool for the thrombin detection.
引文
[1]B. I. Zande, R. M. Hikmet, L. Pages. Optical properties of aligned rod-shaped gold particles dispersed in poly (viny alcohol) films [J]. J. Phys. Chem. B,1999, 103 (28):5761-5767.
    [2]S. Nie, S. R. Emory. Probing single molecules and single nanoparticles by SERS [J]. Science,1997,275(5303):1102-1106.
    [3]M. C. Daniel, D. Astruc. Gold nanoparticles:assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem. Rev.,2004,104(1):293-346.
    [4]D. Ashley. Gold nanoparticle-quantum dot-polystyrene microspheres as fluorescence esonance energy transfer probes for bioassays [J]. J. Am. Chem. Soc., 2011,133(7):2028-2030.
    [5]B. K. Clark, B. W. Gregory, A. Avila. Image potential surface states localized at chemisorbed dielectric-metal interfaces [J]. Langmuir,2002,18(12):4709-4719.
    [6]王广厚.原子团簇的稳定结构和幻数[J].物理学进展,2000,20(1):52-78.
    [7]J. J. Storhoff, A. D. Lucas, V. Garimella, Y. P. Bao, U. R. Muller. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes [J]. Nat. Biotechnol.,2004,22,883-887.
    [8]刘刚,潘敦,刘丽,宋世平,王丽华,樊春海.纳米金与生物分子的相互作用及生物传感检测[J].纳米材料与应用,2009,6(3):6-10.
    [9]周全法,刘维桥,尚通明等.贵金属纳米材料[M].化学工业出版社,2008.
    [10]R. C. Jin, G. S. Wu, Z. Li, A. Mirkin, C. Schatz. What controls the melting properties of DNA-linked gold nanoparticles assemblies? [J]. J. Am. Chem. Soc., 2003,125(6):1643-1654.
    [11]L. Li and B. X. Li. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes [J]. Analyst,2009,134(7) 1361-1365.
    [12]谭碧生,曹晓红,莫志宏.金纳米粒子的制备方法及在DNA检测中的应用[J].重庆大学学报,2003,26(4):58-62.
    [13]王世敏,许世勋,傅晶.纳米材料制备技术[M].化学工业出版社,2002
    [14]A. Henglein, M. Giersig. Formation of colloidal silver nanoparticles:capping action of citrate [J]. J. Phys. Chem. B,1999,103(44):9533-9539.
    [15]侯士敏,陶成钢,刘虹雯,等.高定向石墨表面金纳米粒子和金纳米线的研究[J].物理学报,2001,50(2):223-224.
    [16]孙双姣,蒋治良.金纳米微粒的制备和表征及其在生化分析中的应用[J].贵金属,2005,26(3):55-65.
    [17]F. Mafune, J. Kohno, Y. Takeda. Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant [J]. J. Phys. Chem. B,2001,105(22): 5114-5120.
    [18]T. Sainsbury, T. Ikuno, D. Okawa, D. Pacile, M. J. Fre'chet, and Z. Alex. Self-assembly of gold nanoparticles at the surface of amine-and thiol-functionalized boron nitride nanotubes [J]. J. Phys. Chem. C,2007,111(35): 12992-12999.
    [19]I. Gittins, and C. Frank. Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media [J]. Angew. Chem.,2001,40(16):3001-3004.
    [20]V. Leff, L. Brandt, and R. James. Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines [J]. Langmuir,1996,12(20):4723-4730.
    [21]P. Raveendran, F. Jie, and L. Wallen. Completely "green" synthesis and stabilization of metal nanoparticles [J]. J. Am. Chem. Soc.,2003,125(46): 13940-13941.
    [22]M. Brust, M. Walker, D. Bethell, J. Schiffrin and R. Whyman. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system [J]. Chem. Commun,1994,801-802.
    [23]Q. Yuan, J. Shah, S. Hein, R. D. K. Misra. Controlled and extended drug release behavior of chitosan-based nanoparticle carrier [J]. Acta Biomater.,2010,6(3): 1140-1148.
    [24]H. Z. Huang and X. R. Yang. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate [J]. Biomacromolecules,2004,5(6): 2340-2346.
    [25]吕晓丽,王大鹏,康立娟,孙德武.一种简单合成氨基葡聚糖保护的金颗粒的方法[J].吉林师范大学学报(自然科学版),2006,(1):68-69.
    [26]J. C. Duan, J. Matthew, C. Y. Chen, and Q. J. Cheng. CHCA-modified Au nanoparticles for laser desorption ionization mass spectrometric analysis of peptides [J]. J. Am. Soc. Mass. Spectrom.,2009,20(8):1530-1539.
    [27]M. S. Han, A. K. Jean, B. K. Oh, J. Heo, and C. A. Mirkin. Colorimetric screening of DNA-binding molecules with gold nanoparticle probes [J]. Angew. Chem., 2006,45(11):1807-1810.
    [28]T. Kawano, M. Yamagata, H. Takahashi, Y. Niidome, S. Yamada, Y. Katayama, T. Niidome. Stabilizing of plasmid DNA in vivo by PEG-modified cationic gold nanoparticles and the gene expression assisted with electrical pulses [J]. J. Control. Release.,2006,111(3):382-389.
    [29]S. Link, Z. L. Wang, M. A. Elsayed. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition [J]. J. Phys. Chem. B,1999,103(18):3529-3533.
    [30]江龙.胶体化学概论[M].科学出版社,2002.
    [31]朱健,王永昌,王勤.胶体金纳米颗粒的荧光光谱特性[J].光子学报,2003,32(3):58-62.
    [32]C. L. Chiang. Controlled growth of gold nanoparticles in aerosol-OT/sorbitan monooleate/isooctane mixed reverse micelles [J]. Colloid. Interface. Sci.,2000, 230(1):60-66.
    [33]J. Lin, W. L. O. Zhou, C. J. Connor. Synthesis and self-organization of gold nanoparticles into superlattices from CTAB reverse micelles [J]. World scientific Publishing Co. Pte. Ltd.,1999,405-410.
    [34]K. R. Brown, M. J. Natan. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surface [J]. Langmuir,1998,14(4):726-728.
    [35]N. R. Jana, L. Gearheart, C. J. Murphy. Seeding growth for size control of 5-40 nm diameter gold nanoparticles [J]. Langmuir,2001,17(22):6782-6786.
    [36]Z. M. Qi, H. S. Zhou. Characterization of gold nanoparticles synthesized using sucrose by seeding formation in the solid phase and seeding growth in aqueous solution [J]. J. Phys. Chem. B,2004, (108):7006-7011.
    [37]G. Tsutsui, S. J. Huang, H. Sakaue. Well-sized-controlled colloidal gold nanoparticles dispersed in organic solvent [J]. J. Appl. Phys.,2001,40(1): 346-349.
    [38]L. N. Ma, D. J. Liu, Z. X. Wang. Synthesis and applications of gold nanoparticle probes [J].Chin. J. Anal. Chem.,2010,38(1),1-7.
    [39]K. Esumi, A. Kameo, A. Suzki. Preparation of gold nanoparticles using 2-vinylpyridine telomers possessing multi-hydrocarbon chains as stabilizer [J]. Colloid. Surf. A,2001,176(3):233-237.
    [40]邵桂妮,张兴堂,刘兵等.溶胶凝胶-模板法制备一维金纳米材料[J].现代化工,2006,26(1):44-46.
    [41]兰新哲,金志浩.PVP保护还原法制备纳米金溶胶[J].稀有金属材料与工程,2003,32(1):50-53.
    [42]A. Pal. Photochemical synthesis of gold nanoparticles via controlled nucleation using a bioactive molecule [J]. Mater. Lett.,2004,58(3):529-534.
    [43]X. C. Xu, W. S. Yang. Liu synthesis of a high-permeance zeolite membrane by microwave heating [J]. J. Adv. Mater.,2000,3(12):195-197.
    [44]C. A. Mirkin, R. L. Singer, R. C. Mucic. DNA based method for rationally assembling nanoparticles into macroscopic materials [J]. Nature,1996,382(6592): 607-609.
    [45]赫丽娜,刘帅,孙瑾.纳米金溶胶的制备与应用研究[J].科技信息,2009,13,30-31.
    [46]M. Nakamoto, Y. S. Kashiwagi, M. Yamamoto. Synthesis and size regulation of gold nanoparticles by controlled thermolysis of ammonium gold(I) thiolate in the absence or presence of amines [J]. Inorg. Chim. Acta,2005,358(14):4229-4236.
    [47]L. R. Nathaniel and A. C. Mirkin. Nanostructures in Biodiagnostics [J]. Chem. Rev.,2005,105(4):,1547-1562.
    [48]杨云,聂立波.纳米金在生物标记分析中的应用进展[J].株洲工学院学报,2006,20(4):123-127.
    [49]梁月园,蒋治良,江波.纳米金标记分析[J].分析测试技术与仪器,2007,13(3):163-168.
    [50]S. K. Ghosh and T. Pal. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:from theory to applications [J]. Chem. Rev.,2007, 107(11):4797-4862.
    [51]Y. S. Xia, L. Song, and C. Q. Zhu. Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly [J]. Anal. Chem.,2011,83(4):1401-1407.
    [52]Y. Jv, B. X. Li and R. Cao. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection [J]. Chem. Commun.,2010,46(42):8017-8019.
    [53]Z. F. Zhang, H. Cui, C. Z. Lai, and L. J. Liu. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications [J]. Anal. Chem.,2005,77(10): 3324-3329.
    [54]Y. Y. Qi, B. X. Li, Z. J. Zhang. Label-free and homogeneous DNA hybridization detection using gold nanoparticles-based chemiluiminescence system [J]. Biosens. Bioelectron.,2009,24(12):3571-3586.
    [55]顾海鹰,俞爱民,陈洪渊.乳酸脱氢酶在纳米金胶上的组装及应用研究[J].南通医学院学报,2002,22(4):365-367.
    [56]S. H. Lee, K. H. Bae, S. H. Kim, K. R. Lee, T. G. Park. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers [J]. Int. J. Pharm.,2008,364(1):94-101.
    [57]Y. Jin, H. Y. Li, and J. Y. Bai. Homogeneous selecting of a quadruplex-binding ligand-based gold nanoparticle fluorescence resonance energy transfer assay [J]. Anal. Chem.,2009,81(14):5709-5715
    [58]B. Dubertret, M. Calame, A. J. Libchaber. Single-mismatch detection using gold-quenched fluorescent oligonucleotides [J]. Nat. Biotechnol.,2001,19(4): 365-370.
    [59]L. Wang, E. K. Wang. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode[J]. Electrochem. Commun.,2004,6(2),225-229.
    [60]J. H. Kim, C. Joung, C. G. Sig. Conduetimetric membranestrip immunosensor with polyani-line-bound gold colloides as singnal generator [J]. Biosens. Bioelectron.,2000,14(12):907-915.
    [61]K. Brainina, A. Kozitsina, J. Beikin. Electrochemical immunosensor forest-spring encephalitis based on protein a labeled with colloidal gold [J]. Anal. Bioanal. Chem.,2003,376(4):481-485.
    [62]R. Elghanian, J. J. Storhoff, R. C. Mucic. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J]. Science,1997,277(10):1078-1081.
    [63]M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers and R. G. Nuzzo. Nanostructured plasmonic sensors [J]. Chem. Rev.,2008, 108(1):494-521.
    [64]W. A. Zhao, M. A. Brook, and Y. F. Li. Design of gold nanoparticle-based colorimetric biosensing assays [J]. ChemBioChem,2008,9(15) 2363-2371.
    [65]R. Jin, G. Wu, Z. Li. What controls the melting properties of DNA-linked gold nanoparticle assemblies? [J]. J. Am. Chem. Soc.,2003,125(6):1643-1654.
    [66]L. Li, B. X. Li, D. Cheng, L. H. Mao. Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe [J]. Food Chem.,2010,122(3): 895-900.
    [67]N. Uehara, K. Ookubo, and T. Shimizu. Colorimetric Assay of glutathione based on the spontaneous disassembly of aggregated gold nanocomposites conjugated with water-soluble polymer [J]. Langmuir,2010,26(9):6818-6825.
    [68]S. Lim, N. Njoki, P. Yi, S. Q. Zhou, and C. J. Zhong. Interparticle interactions in glutathione mediated assembly of gold nanoparticles [J]. Langmuir,2008,24(16): 8857-8863.
    [69]J. B. Liu, X. H. Yang, K. M. Wang, R. H. Yang, H. N. Ji, L. Y. Yang and C. L. Wu. A switchable fluorescent quantum dot probe based on aggregation/disaggregation mechanism [J]. Chem. Commun.,2011,47(3): 935-937.
    [70]W. L. Daniel, M. S. Han,. J. S. Lee, and C. A. Mirkin. Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points [J]. J. Am. Chem. Soc.,2009,131(18):6362-6363.
    [71]C. P. Han, L. L. Zeng, H. B. Li, G. Y. Xie. Colorimetric detection of pollutant aromatic amines isomers with p-sulfonatocalix[6]arene-modified gold nanoparticles [J]. Sens. Actuators B,2009,137(2):704-709.
    [72]A. T. Gates, S. O. Fakayode, M. Lowry, G. M. Ganea, A. Murugeshu, J. W. Robinson, R. M. Strongin and I. M. Warner. Gold nanoparticle sensor for homocysteine thiolactone-induced protein modification [J]. Langmuir,2008,24(8): 4107-4113.
    [73]A. L. Simonian, T. A. Good, S. S. Wang, J. R. Wild. Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides [J]. Anal. Chim. Acta,2005,534(1):69-77.
    [74]J. S. Lee, M. S. Han, and C. A. Mirkin. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles [J]. Angew. Chem.,2007,119(22):4171-4174.
    [75]Z. Chen, S. L. Luo, C. B. Liu, Q. Y. Cai. Simple and sensitive colorimetric detection of cysteine based on ssDNA-stabilized gold nanoparticles [J]. Anal. Bioanal. Chem.,2009,395(2):489-494.
    [76]Y. Sato, K. Hosokawa, M. Maeda. Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip [J]. Colloids Surf. B, 2008,62(1):71-76.
    [77]C. Wang, Y. Chen, T. Wang, Z. Ma, Z. Su. Biorecognition-driven self-assembly of gold nanorods:A rapid and sensitive approach toward antibody sensing [J]. Chem. Mater.,2007,19(24):5809-5811.
    [78]H. Wei, B. Li, J. Li, E. Wang, S. Dong. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes [J]. Chem. Commun.,2007, (36):3735-3737.
    [79]V. Pavlov, Y. Xiao, B. Shlyahovsky, I. Willner. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin [J]. J. Am. Chem. Soc.,2004,126(38):11768-11769.
    [80]J. Oishi, X. Han, J. Kang, Y. Asami, T. Mori, T. Niidome, Y. Katayama. High-throughput colorimetric detection of tyrosine kinase inhibitors based on the aggregation of gold nanoparticles [J]. Anal. Biochem.,2008,373(1):161-163.
    [81]W. Zhao, J. Lam, W. Chiuman, M. A. Brook, Y. Li. Enzymatic cleavage of nucleic acids on gold nanoparticles:A generic platform for facile colorimetric biosensors [J]. Small,2008,4(6):810-816.
    [82]T. A. Taton, C. A. Mirkin, R. L. Letsinger. Scanometric DNA array detection with nanoparticle probes [J]. Science,2000,289(9):1757-1760.
    [83]Z. D. Wang, J. H. Lee, Y. Lu. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme [J]. Adv. Mater.,2008,20(17):3263-3267.
    [84]W. Wang, H. Liu, D. Liu, Y. Xu, Y. Yang, D. Zhou. Use of the interparticle i-motif for the controlled assembly of gold nanoparticles [J]. Langmuir,2007, 23(24):11956-11959.
    [85]F. Seela, S. Budow. pH-dependent assembly of DNA-gold nanoparticles based on the i-motif: A switchable device with the potential of a nanomachine [J]. Helv. Chim. Acta,2006,89(9):1978-1985.
    [86]J. Oishi, Y. Asami, T. Mori, J. Kang, M. Tanabe, T. Niidome, Y. Katayama. Measurement of homogeneous kinase activity for cell lysates based on the aggregation of gold nanoparticles [J]. ChemBioChem.,2007,8(8):875-879.
    [87]J. Liu, Y. Lu. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing [J]. J. Am. Chem. Soc.,2005,127(36): 12677-12683.
    [88]X. Xu, M. Han, C. A. Mirkin. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition [J]. Angew. Chem., 2007,119(19):3538-3540.
    [89]H. X. Li and L. J. Rothberg. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction [J]. J. Am. Chem. Soc.,2004,126(35):10958-10961.
    [90]孙莉萍,张建锋,李辉,王秀燕,张召武,王霜,张其清.金纳米粒子与单链DNA的相互作用[J].高等学校化学学报,2009,30(1),95-99.
    [91]H. X. Li and L. Rothberg. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles [J]. PNAS,2004, 101(39),14036-14039.
    [92]W. Xu, X. J. Xue, T. H. Li, H. Q. Zeng, and X. G. Liu. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification [J]. Angew. Chem.,2009,48(37):1-5.
    [93]R. Kanjanawarut and X. D. Su. Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes [J]. Anal. Chem.,2009, 81(15):6122-6129.
    [94]L. M. Zanoli, R. D. Agata, G. Spoto. Functionalized gold nanoparticles for ultrasensitive DNA detetion [J]. Anal. Bio. Chem.,2012,402(5):1759-1771.
    [95]R. A. Reynolds, C. A. Mirkin, and R. L. Letsinger. Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides [J]. J. Am. Chem. Soc,2000,122(15):3795-3796.
    [96]J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes [J]. J. Am. Chem. Soc.,1998,120(9): 1959-1964.
    [97]J. J. Storhoff, R. Elghanian, C. A. Mirkin and R. L. Letsinger. Sequence-dependent stability of DNA-modified gold nanoparticles [J]. Langmuir, 2002,18(17):6666-6670.
    [98]S. J. Hurst, M. S. Han, A. K. R. Lytton-Jean, and C. A. Mirkin. Screening the sequence selectivity of DNA-binding molecules using a gold nanoparticle-based colorimetric approach [J]. Anal. Chem.,2007,79(18):7201-7205.
    [99]吕伸,王彬,常文保.胶体金免疫分析方法的进展[J].武汉大学学报,2000,46(4):393-399.
    [100]J. Roth, S. Binder. Ultrastructural localization of intracellular antigens by the use of protein a-gold complex [J]. Histochem. Cytochem.,1978,26(12):1074-1081.
    [101]C. S. Holgate. Immunogold-silver staining:new method of immunostaining with enhanced sensitivity [J]. Histochem. Cytochem.,1983,31(7):938-944.
    [102]Y. Liu, Y. Liu, R. L. Mernaugh, X. Q. Zeng. Single chain fragment variable recombinant antibody functionalized gold nanoparticles for a highly sensitive colorimetric immunoassay[J]. Biosens. Bioelectron.,2009,24(9):2853-2857.
    [103]A. Neely, C. Perry, B. Varisli, A. K. Singh, T. Arbneshi, D. Senapati, J. R. Kalluri and P. C. Ray. Ultrasensitive and highly selective detection of alzheimer's disease biomarker using two-photon rayleigh scattering properties of gold nanoparticle [J]. ACS Nano.,2009,3(9):2834-2840.
    [104]A. E. Muniz, C. Paroloa, A. Merkoci. Immunosensing using nanoparticles [J]. Mater. Today,2010,13(7):24-34.
    [105]Y. L. Pan, M. L. Guo, Z. Nie, Y. Huang, Y. Peng, A. F. Liu, M. Qing and S. Z. Yao. Colorimetirc detection of apoptosis based on caspase-3 activity assay using unmodified gold nanoparticles [J]. Chem. Commun.,2012,48(7):997-999.
    [106]Y. M. Chen, C. J. Yu, T. L. Cheng and W. L. Tseng. Colorimetric detection of lysozyme based on electrostatic interaction with human serum albumin-modified gold nanoparticles [J]. Langmuir,2008,24(7):3654-3660.
    [107]J. W. Kim, J. H. Kim, S. J. Chung and B. H. Chung. An operationally simple colorimetric assay of hyaluronidase activity using cationic gold nanoparticles [J]. Analyst,2009,134(7):1291-1293.
    [108]W. A. Zhao, M. M. Ali, S. D. Aguirre, M. A. Brook and Y. F. Li. Paper-based bioassays using gold nanoparticle colorimetric probes [J]. Anal. Chem.,2008, 80(22):8431-8437.
    [109]X. Y. Xu, M. S. Han and C. A. Mirkin. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition [J]. Angew. Chem. Int. Ed.,2007,119(19):3538-3540.
    [110]S. R. Hong, I. Choi, S. S. Lee, Y. I. Yang, T. Kang and J. Yi. Sensitive and colorimetric detection of the structural evolution of superoxide dismutase with gold nanoparticles [J]. Anal. Chem.,2009,81(4):1378-1382.
    [111]R. R. Liu, W. L. Teo, S. Y. Tan, H. J. Feng, B. Xing. Metallic nanoparticles bioassay for enterobacter cloacae P99 β-lactamase activity and inhibitor screening [J]. Analyst,2010,135(5):1031-1036.
    [112]J. H. Lin, C. W. Chang, Z. H. Wu, and W. L. Tseng. Colorimetric assay for s-adenosylhomocysteine hydrolase activity and inhibition using fluorosurfactant-capped gold nanoparticles [J]. Anal. Chem.,2010,82(21): 8775-8779.
    [113]M. Wang, X. G. Gu, G. X. Zhang, D. Q. Zhang, and D. B. Zhu. Continuous colorimetric assay for acetylcholinesterase and inhibitor screening with gold nanoparticles [J]. Langmuir,2009,25(4):2504-2507.
    [114]Z. H. Ban, C. J. Bosques and R. Sasisekharan. A simple assay to probe disease-associated enzyme activity using glycosaminoglycan-assisted synthesized gold nanoparticles [J]. Org. Biomol. Chem.,2008,6(29):4290-4292.
    [115]Y. G. Wu, S. S. Zhan, F. Z. Wang, L. He, W. T. Zhi and P. Zhou. Cationic polymer and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution [J]. Chem. Commun., 2012,48(37):4459-4461.
    [116]T. T. Lou, L. Chen, C. R. Zhang, Q. Kang, H. Y. You, D. Z. Shen and L. X. Chen. A simple and sensitive colorimetric method for detection of mercury ions based on anti-aggregation of gold nanoparticles [J]. Anal. Method,2012,4(2): 488-491.
    [117]L. Li, B. X. Li, Y. Y. Qi, Y. Jin. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe [J]. Anal. Bioanal. Chem.,2009,393(8):2051-2057.
    [118]M. Zhang, Y. Q Liu and B. C. Ye. Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ using peptide-modified gold nanoparticles [J]. Analyst,2012, 137(3):601-607.
    [119]X. K. Li, J. Wang, L. L. Sun and Z. X. Wang. Gold nanoparticle-based colorimetric assay for selective detection of aluminium cation on living cellular surfaces [J]. Chem. Commun.,2010,46(6):988-990.
    [120]Y. Q. Dang, H. W. Li, B. Wang, L. Li, and Y. Q. Wu. Selective detection of trace Cr3+ in aqueous solution by using 5,5'-dithiobis (2-Nitrobenzoic acid)-modified gold nanoparticles [J]. Appl. Mater. Int.,2009,1(7):1533-1538.
    [121]J. W. Liu and Y. Lu. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection [J]. J. Am. Chem. Soc.,2004,126(39):12298-12305.
    [122]J. W. Liu and Y. Lu. A colorimetric lead biosensor using NAzyme-directed assembly of gold nanoparticles [J]. J. Am. Chem. Soc.,2003,125(22): 6642-6643.
    [123]K. W. Huang, C. J. Yua, W. L. Tseng. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion [J]. Biosens. Bioelectron.,2010,25(5):984-989.
    [124]Z. D. Wang, J. H. Lee, and Y. Lu. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme [J]. Adv. Mater.,2008,20(17):3263-3267.
    [125]A. C. Enriquez, I. A. R. Espejel, E. A. Garcia, M. E. Diaz-Garcia. Enhanced resonance light scattering properties of gold nanoparticles due to operative binding [J]. Anal. Bioanal. Chem.,2008,391(3):807-815.
    [126]S. O. Obare, R. E. Hollowell, and C. J. Murphy. Sensing strategy for lithium ion based on gold nanoparticles [J]. Langmuir,2002,18,10407-10410.
    [127]L. H. Wang, X. F. Liu, X. F. Hu, S. P. Song and C. H. Fan. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers [J]. Chem. Commun.,2006,36:3780-3782.
    [128]L. Jiang, J. Guan, L. L. Zhao, J. Li, W. S. Yang. pH-Dependent aggregation of citrate-capped Au nanoparticles induced by Cu2+ ions:The competition effect of hydroxyl groups with the carboxyl groups [J]. Colloids Surf. A,2009,346(3): 216-220.
    [129]Y. Zhou, S. X. Wang, K. Zhang, and X. Y. Jiang. Visual detection of copper(II) by azide-and alkyne-functionalized gold nanoparticles using click chemistry [J]. Angew. Chem.,2008,120(39):7454-7456.
    [130]C. E. Lisowski and J. E. Hutchison. Malonamide-functionalized gold nanoparticles for selective, colorimetric sensing of trivalent lanthanide ions [J]. Anal. Chem.,2009,81(24):10246-10253.
    [131]L. P. Zhang, B. Hu and J. H. Wang. Label-free colorimetric sensing of ascorbic acid based on fenton reaction with unmodified gold nanoparticle probes and multiple molecular logic gates [J]. Anal. Chim. Acta,2012,717(1):127-133.
    [132]H. Y. Su, Q. L. Zheng and H. B. Li. Colorimetric detection and separation of chiral tyrosine based on N-acetyl-L-cysteine modified gold nanoparticles [J]. J. Mater. Chem.,2012,22(14):6546-6548.
    [133]H. H. Cai, H. Wang, J. H. Wang, W. Wei, P. H. Yang and J. Y. Cai. Naked eye detection of glutathione in living cells using rhodamine B-functionalized gold nanoparticles coupled with FRET [J]. Dye. Pigment.,2012,92(1):778-782.
    [134]A. Pandya. Rapid colorimetric detection of sulfide using calyx[4] arene modified gold nanoparticles as a probe [J]. Sens. Actuators B,2012,01(1):23-31.
    [135]X. F. Zhang, H. Zhao, Y. Xue, Z. J. Wu, Y. Zhang, Y. J. He, X. J. Li and Z. B. Yuan. Colorimetric sensing of clenbuterol using gold nanoparticles in the presence of melamine [J]. Biosens. Bioelectron.,2012,34(1):112-117.
    [136]H. J. Mersmann. Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action [J]. J. Anim. Sci.,1998,76(1): 160-172.
    [137]L. E. Watkins, D. J. Jones, D. H. Mowrey, D. B. Andersom and E. L. Veenhuizen. The effect of various levels of ractopamine hydrochloride on the performance and carcass characteristics of finishing swine [J]. J. Anim. Sci,1990, 68(11):3588-3595.
    [138]N. J. Enfeseth, K. O. Lee, W. G. Bergen, W. H. Helferich, B. K. Kundson and R. A. Merkel. Fatty acid profiles of lipid depots and cholesterol concentration in muscle tissue of finishing pigs fed ractopamine [J]. J. Food Sci.,1992,57(5): 1060-1062.
    [139]D. B. Andersom, E. L. Veenhuizen, J. F. Wagner, M. I. Wray and D. H. Mowrey. The effect of ractopamine hydrochloride on nitrogen relention, growth performance and carcass composition of beef cattle [J]. J. Anim. Sci.,1989,67(1): 222-225.
    [140]J. Blanca, P. Munoz, M. Orgado, N. Mendez, A. Aranda, T. Reuvers and H. Hooghuis. Determination of clenbuterol, ractopamine and zilpaterol in liver and urine by liquid chromatography tandem mass spectrometry [J]. Anal. Chim. Acta, 2005,529(1):199-205.
    [141]J. Martinez, F. Navarro. Food poisoning related to consumption of illicit beta-agonist in liver [J]. Lancet,1990,336(8726):1311-1315.
    [142]C. Pulce, D. Lamaison, G. Keck, C. Bostvironnois, J. Nicolas and J. Descotes Collective human food poisonings by clenbuterol residues in veal liver [J]. Vet. Human Toxicol.,1991,33(5):480-481.
    [143]林海丹,江庆娣,伍绍登.饲料中盐酸克伦特罗含量的检测[J].饲料工业,2000,21(1):25-26.
    [144]A. Posyniak, J. Zmudzki and J. Niedzielska. Screening procedures for clenbuterol residue determination in bovine urine and liver matrices using enzyme-linked immunosorbent assay and liquid chromatography [J]. Anal. Chim. Acta,2003,483(1):61-67.
    [145]G. A. Mitchell and G. Dunnavan. Illegal use of b-adrenergic agonists in the United States [J]. J. Anim. Sci.,1998,76(1):208-211.
    [146]J. M. Degroodt, D. Wyhowski, B. Bukankski, H. Beernaert. Clenbuterol residue analysis by HPLC-HPTLC in urine and animal tissues [J]. Z. Lebensmittel-Untersuch. Fors.,1989,189(2):128-131.
    [147]A. C. Fesser, L. C. Dickson, J. D. MacNeil. Determination of beta-agonists in liver and retina by liquid chromatography-tandem mass spectrometry [J]. J. AOAC. Int.,2005,88(1):61-69.
    [148]X. Z. Zhang, Y. R. Gan, F. N. Zhao. Determination of clenbuterol in pig liver by high-performance liquid chromatography with a coulometric electrode array system [J]. Anal. Chim. Acta,2003,489(1):95-101.
    [149]J. M. Degroodt, D. Wyhowski, B. Bukanski, J. Groof. Cimaterol and clenbuterol residue analysis by HPLC-HPTLC in liver [J]. Z. Lebensmittel-Untersuch Fors., 1991,192(5):430-432.
    [150]蒋红斌.高效液相色谱法检测肉类食品中盐酸克仑特罗含量.中国卫生监督杂志.2002,9(6):355-356.
    [151]李晓华,黄传峰,郭君.高效液相色谱法测定尿液中痕量盐酸克仑特罗.中华预防医学杂志.2005,39(3):202-209.
    [152]郑举,刘红云.饲料中盐酸克伦特罗的高效液相色谱法测定.兽药与饲料添 加剂.1999,4(6):10-11.
    [153]F. Ramos, A. Matos, A. Oliveira. Diphasic dialysis extraction technique for clenbuterol determination in bovine retina by gas chromatography-mass spectrometry [J]. Chromatographia,1999,50(2):118-120.
    [154]苗虹,吴永宁,赵京玲.气相色谱-质谱法测定动物性食品及生物材料中的克伦特罗残留.中国食品卫生杂志.2003,15(1):18-22.
    [155]许春光,杨克军.酶联免疫技术在生猪盐酸克伦特罗检测中的应用.现代仪器.2005,11(6):46-47.
    [156]陈继明,黄士新,陆承平.酶联免疫吸附测定法检测克伦特罗.中国兽药志.1999,33(2):19-22.
    [157]陈继明,龚晓明.兔异源蛋白与自身蛋白作为载体制备克伦特罗抗血清.南京农业大学学报.1998,21(3):84-88.
    [158]史建国,邵秀芝,韩庆慧.竞争酶联免疫吸附法测定猪肉中的瘦肉精.粮油食品科技.2005,13(3):47-48.
    [159]邓国东,林海丹,陈旭.盐酸克仑特罗ELISA检测假阳性的原因分析.广东畜牧兽医科技.2006,31(6):47-48.
    [160]张华.瘦肉精的危害及检测方法.贵州农业科学.2004,32(1):83-84.
    [161]Y. C. Chen, W. Wang, J. Duan, H. Chen and G. Chen. Separation and determination of clenbuterol, cimaterol and salbutamol by capillary electrophoresis with amperometric detection [J]. Electroanal.,2005,17(8): 706-712.
    [162]谢孟峡,刘媛,蒋敏.固相萃取-气相色谱-质谱分析肉样中盐酸克伦特罗的残留量.分析化学.2002,30(11):1308-1311.
    [163]苏晓鸥,沈建忠.用HPLC-MS/MS研究动物毛发中克伦特罗的残留及代谢规律.中国畜牧杂志.2008,44(11):41-46.
    [164]C. Katherine, R. Grabar, G. W. Freeman, B. Michael. Preparation and characterization of Au colloid monolayers [J]. Anal. Chem.,1995,67(4): 735-743.
    [165]L. Li, B. X. Li, D. Cheng, L. H. Mao. Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe [J]. Food Chem.,122(3):895-900.
    [166]L. M. He, Y. J. Su, Z. L. Zeng, Y. H. Liu and X. H. Huang. Determination of ractopamine and clenbuterol in feeds by gas chromatography-mass spectrometry [J]. Anim. Feed Sci. Tech.,2007,132(3):316-323.
    [167]张莹.凝血酶活性的检测及临床意义.微循环学杂质.2005,15(2):70-72.
    [168]M. L. Nierodzik and S. Karpatkin. Thrombin induces tumor growth, metastasis, and angiogenesis:Evidence for a thrombin-regulated dormant tumor phenotype [J]. Cancer. Cell.,2006,10(5):355-362.
    [169]雷丹青,刘绵林,周先丽.发色底物法测定注射用降纤酶中类凝血酶的含量.中国现代应用药学杂质.2005,22(6):482-485.
    [170]M. Bianchini, M. Radrizzani, M. G. Brocardo. Specific oligbodies against ERK-2 that recognize both the native and the denatured state of the pro tein [J]. J. Immunol. Method,2001,252(1):191-197.
    [171]徒永华,程圭芳,林莉,郑静,吴自荣,何品刚,方禹之.基于核算适配体的新型荧光纳米生物传感器用于凝血酶的测定.高等学校化学学报.2006,27(12):2266-2270.
    [172]梁红茹,杨松涛,张涛,胡桂秋,夏咸柱.核算适配体及其在病原微生物学中的应用.生物工程学报.2011,27(5):698-703.
    [173]J. Zheng, P. G. He, Y. Z. Fang. Apatamer-based biosensor [J]. Prog. Chem., 2009,21(4):732-738.
    [174]T. Hermann, J. P. Dinshaw. Adaptive recognition by nucleic acid aptamers [J]. Sci.,2000,287(5454):820-825.
    [175]S. L. Clark, V. T. Remcho. Aptamers as analytical reagents [J]. Electrophoresis, 2002,23(9):1335-1340.
    [176]N. B. Edward, G. Larry. Aptamers as therapeutic and diagnostic agents [J]. Mol. Biotechnol.,2000,74(1):5-13.
    [177]Y. X. Jiang, C. F. Zhu, L. S. Ling, L. J. Wan, X. H. Fang and C. L. Bai. Specific aptamer-protein interaction studied by atomic force microscopy [J]. Anal. Chen., 2003,75(9):2112-2116.
    [178]J. Zheng, G. F. Cheng, P. G. He, Y. Z. Fang. An aptamer-based assay for thrombin via structure switch based on gold nanoparticles and magnetic nanoparticles [J]. Talanta,2010,80(5):1868-1872.
    [179]L. Q. Wang, L. Y. Li, Y. Xu, G. F. Cheng, P. G. He, Y. Z. Fang. Simulaneously flurescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation [J]. Talanta,2009,79(3):557-561.
    [180]S. Centi, G. Messina, S. Tombelli, I. Palchetti, M. Mascini. Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads [J]. Biosens. Bioelectron.,2008,23(11):1602-1609.
    [181]Y. Kang, K. J. Feng, J. W. Chen, J. H. Jiang, G. L. Shen, R. Q. Yu. Electrochemical detection of thrombin by sandwich approach using antibody and aptamer [J]. Bioelectrochemistry,2008,73(1):76-81.
    [182]P. Valeri, Y. Xiao, S. Bella and W. Itamar. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin [J]. J. Am. Chem. Soc.,2004,126(38):11768-11769.
    [183]C. F. Ding, Y. Ge, J. M. Lin. Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles [J]. Biosens. Bioelectron.,2010,25(6):1290-1294.
    [184]C. K. Chen, C. C. Huang, H. T. Chang. Label-free colorim etric detection of picomolar thrombin in blood plasma using a gold nanoparticle-based assay [J]. Biosens. Bioelectron.,2010,25(8):1922-1927.
    [185]L. Michael, P. Birgit, W. Hans. An aptamer-based quartz crystal protein biosensor [J]. Anal. Chem.,2002,74(17):4488-4495.
    [186]H. A. Ho and M. Leclerc. Optical sensors based on hybrid aptamer/conjugated polymer complexes [J]. J. Am. Chem.,2004,126(5):1384-1387.
    [187]L. H. Wang, X. F. Liu, X. F. Hu, S. P. Song and C. H. Fan. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers [J]. Chem. Commun.,2006,26(5):3780-3782.
    [188]J. W. Liu and Y. Lu. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles [J]. J. Am. Chem.,2003,125(22):6642-6643.
    [189]M. N. Stojanovic and D. W. Landry. Aptamer-based colorimetric probe for cocaine [J]. J. Am. Chem.,2002,124(33):9678-9679.
    [190]J. W. Liu and Y. Lu. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles [J]. J. Am. Chem., 2006,118(1):96-100.
    [191]R. Cao, B. X. Li, Y. F. Zhang and Z. N. Zhang. Naked-eye sensitive detection of nuclease activity using positively-charged gold nanoparticles as colorimetric probes [J]. Chem. Commun.,2011,47(45):12301-12303.
    [192]D. M. Tasset, M. F. Kubik and W. Steiner. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes [J]. J. Mol. Biol.,1997,272(5):688-698.
    [193]H. Wei, B. L. Li, J. Li, E. K. Wang and S. J. Dong. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticleprobes [J]. Chem. Commun.,2007,22(5):3735-3737.
    [194]T. Niidome, K. Nakashima, H. Takahashi, Y. Niidome. Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells [J]. Chem. Commun.,2004, (17):1978-1979.