橡胶水封的变形计算理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水封止水元件的工作性能直接决定了闸门的止水效果,水封在大跨度和高压闸门的设计中占有重要地位。本文的主要工作围绕橡胶水封计算的客观性展开,努力寻找更优的算法以提高仿真的计算精度,力求更为客观地反映水封工作时的特征规律和评估封水效果。水封计算不能过分要求计算出的特征值是精确的,对于一个复杂的、受多种不可模拟因素困扰的系统,不可能得到一个精确的计算值。计算的客观性体现在对水封特征规律的把握程度,对封水效果评价的正确性和计算方法有无改进上。为提高水封仿真计算的精度,一方面希望通过完善水封计算理论得以实现,另一方面希望通过改进水封计算方法使计算精度提高。
     本文首先对水封大变形的空间描述进行了探讨,研究了几何非线性大应变的度量方法、应力度量方法及应变张量、应力张量之间的严格关系,并通过变分原理建立有限元方程。详述了大变形计算的基本理论和非线性的处理方法,并通过仿真计算与模型试验的对比,提出针对不同工况和精度要求选择水封材料应变能函数的方法。
     以往水封大变形计算的数学理论基础需要进一步完善是本文的一个观点。虽然采用Green应变张量度量应变是力学界的主流,但本文提出当变形体同时具有大应变和大转动时,采用Green应变张量度量应变计算上会出现虚假应变值,是不准确的,而采用陈至达的变形梯度和分解(F=St+R)的方法可避免这种偏差。以往我们对大变形体的仿真计算可能存在一些缺陷,笔者认为一方面原因是度量变形的方式失误,长久以来人们习惯采用Green应变张量度量应变,对于水封这类同时具有大应变和大转角的变形体,用Green应变张量度量应变不准确。
     水封大变形往往伴随着大转动。基于“和分解”,本文论证了大变形的应变和转动是耦联关系,大变形并非是应变与刚体转动的叠加。当度量应变的方式改变,本构关系的描述也相应变化。本文分析和探讨了“和分解”形式对水封材料本构关系描述的影响(即对应变能函数显化为应力应变关系的影响),导出了“和分解”下水封材料的切线模量(包含:①变形张量不变量表示的应变能函数模型,“和分解”下的切线模量通式,公式4-13、公式4-14、公式4-15、公式4-16;②Mooney-Rivlin应变能函数模型“和分解”下的切线模量,公式4-17、公式4-18、公式4-19、公式4-20;③Ogden应变能函数模型“和分解”下的切线模量,公式4-21、公式4-22、公式4-23、公式4-24),从而建立了“和分解”下严格的材料切线刚度矩阵,修改了有限元计算中增量法在T.L.格式下由变分原理表达的平衡方程,编制了基于“和分解”的水封有限元计算用户材料子程序,消除了用Green应变张量度量应变带来的计算误差,得出了较完善的水封非线性有限元计算理论和方法,这是本文的一个亮点。
     实践表明,仿真计算中由于无法完全真实的模拟实际工程中的所有因素和非线性计算的固有特性,造成无论如何计算出的结果仍与真实情况有偏差。本文采用响应面法构造了水封仿真逼近参数修正的数值模型,通过对材料参数的修正使仿真计算结果进一步逼近模型试验结果(工程真实的结果具有隐蔽性,尽管模型试验具有随机性,但人们认同模型试验结果能代替工程结果)。用含交叉项的二次函数响应面对水封仿真逼近的参数进行了反演,讨论了提高响应面精度的方法,用五次函数响应面对水封仿真逼近的参数进行了再次反演,在二次函数反演的基础上提高响应面精度,并通过试验验证了其有效性。
     基于精确的测微技术,提出利用度量张量和Christoffel符号进行仿真修正的构想。
     基于本文的研究,对长江三峡水利枢纽升船机下闸首工作门气压伸缩式止水水封进行了特征分析。三峡升船机闸门水封采用的是目前发现的封水性能最优的断面型式,具有典型性。
The work performance of water seal sealing up component directly decides the sealing up effectiveness of gates, thus water seal has an important position in large span and high pressure gate design.The article aims at the obiectivity of calculation of water seal, making effort to look for better arithmetic to enhance the accuracy of simulating calculation, striving to better reflect the characteristic rule while water seal is working and estimate the water sealing effect of water seal. It can not excessively require the accuracy for characteristic value of water seal calculation. Regarding a complex and fuzzy system which may be disturbed by many non-simulative factors, it is impossible to get an accurate calculation value. The obiectivity of calculation is mainly reflected in master degree of characteristic rule of water seal, correctness of water sealing effect evaluation of water seal, and whether the calculated method is improved. In order to improve the accuracy of the simulation calculation of water seal, on the one hand, we hope realize by to improve the calculation theory of water seal, on the other hand, we hope realize by improving calculation method.
     This article firstly has discussed the space description of large deformation of water seal, analyzed and researched the measurement method of geometric nonlinearity large strain, the stress measurement method and a strict relationship between strain tensor and stress tensor, and established a finite element equation through variational principle. Has described in detail the basic theory and nonlinear handling method of calculation of large deformation, and proposed a method of selecting water seal material strain energy function according to various working conditions and accuracy requirements through the contrast of simulating calculation and model experiment.
     The mathematical calculation theory of water seal before needs futher improvement, which is an opinion in this article. Although employ Green strain tensor to measure strain is a main trend in mechanics, this article proposes that employ Green strain tensor to measure strain will appear to a false strain value when deformation subject simultaneously has large strain and large twirl, which is not exact. While employ additive decomposition of deformation gradient from Cheng Zhida (F=St+R) to measure strain can avoid this deviation. The simulating calculation for large deformation subject was not accurate enough before, the writer thinks one of the reasons is the manner fault to measure deformation. People are used to employ Green strain tensor to measure strain for a long time, as for the deformation subject simultaneously having large strain and large twirl like water seal, however, strain measured by Green strain tensor is not enough accurate.
     Large deformation of water seal often is accompanied with large twirl. Based on "Additive Decomposition", this article has demonstrated that large strain and large twirl of large deformation is a coupling relation, and not a superposition of strain and rigid rotation. If the measurement method is changed, the description of constitutive relationship is corresponding changed. This article has analyzed and discussed the affection of "Additive Decomposition" to constitutive relation presentation of water seal material (i.e. the affection to manifest to stress-strain relationship according strain-energy function), has educed tangent modulus (includes①strain energy function models which are represented by strain tensor invariant, tangent modulus formulas under "additive decomposition":formula4-13, formula4-14, formula4-15, formula4-16;②Mooney-Rivlin strain energy function model, tangent modulus formulas under "additive decomposition":formula4-17, formula4-18, formula4-19, formula4-20,③Ogden strain energy function model, tangent modulus formulas under "additive decomposition":formula4-21, formula4-22, formula4-23, formula4-24) of water seal material under "Additive Decomposition", thus has established strict material stiffness matrix of finite element calculation of water seal under "Additive Decomposition", amended balance equation expressed by variational principle under T.L. format of incremental method in finite element calculation, prepared the user material subroutine of finite element calculation of water seal based on "Additive Decomposition", eliminated the water seal calculation error caused by using Green strain tensor to measure strain. The presentation of the more perfect nonlinear finite element calculation theory and method is the highlight of this paper.
     The practice shows that the simulating calculation cannot simulate all factors in an actual engineering completely in real and the inherent characteristics of nonlinear calculation, which results in a deviation between results figured out in any case and the actual situation. This article employs response surface method to constitute a numerical model of parameters modification of water seal simulation, the calculation result of simulation after modified to material parameters is further similar to the experiment result of model (the real result of engineering is elusive, although randomness exist in experiment, but people acknowledge the experiment result of model can replace engineering result). Has used response surface of quadratic function with a cross term to make an inversion to the material parameters, discussed the method to improve the accuracy of response surface; used response surface of five function to make an inversion again to the parameters, improved the accuracy of response surface based on the inversion of quadratic function, and verified its validity through experiments.
     Propose the idea that makes use of metric tensor and Christoffel sign to process a simulation correction based on accurate measuring technique.
     Based on the research of this article, has made a feature analysis for air pressure retractable sealing up water seal of working door of lock head under ship lift of the Three Gorges Dam. The water sealing performance of section type of gate water seal of ship lift of Three Gorges is optimal in all kinds of current water seals, the seal has typicalness.
引文
[1]符勇.危机逼近人类:对21世纪人类面临形势的观察和思考[M].北京:世界知识出版社,2008.
    [2]王英人.小浪底水利枢纽金属结构设计的特点[J].水电站设计,2002,18(4):74-78.
    [3]罗文波,谭江华.橡胶弹性材料的一种混合本构模型[J].固体力学学报,2008,29(3):277-281.
    [4]刘茂社,石春霞,章继光.高压闸门压紧式止水试验研究[J].陕西水力发电,1997,13(2):29-31.
    [5]石运深.三峡泄洪深孔弧形工作门结构及水封型式研究[J].中国三峡建设,2002,(11):37-38.
    [6]杨志伟,王先学,孟宁.闸门伸缩式止水结构的有限元仿真分析[J].贵州水力发电,2004,18(2):70-73.
    [7]徐锡荣,唐洪武,肖洋.充压伸缩式水封特性探讨[J].人民长江,2002,33(11):32-34.
    [8]李艳花,杨军,王雪飞.炭黑原位改性橡胶的研究进展[J].弹性体,2011,21(3):80-83.
    [9]方亮.基于硫磺改性橡胶的方法和机理研究.北京化工大学硕士学位论文,2007.
    [10]吴新国,解晓花,刘承刚.自润滑材料在低摩擦系数橡胶复合材料中的应用.2010年橡胶制品新技术交流暨信息发布会.
    [11]M.Mooney. J. Appl. Phys.,11,582 (1940).
    [12]R.S.Rivlin, in F.R.Eirich, Ed., Rheology, Theory and Applications, Vol.1, Academic Press, New York, 1956, Chapter 10.
    [13]Treloar,L.R. G Physics of rubber elasticity [M].3rd Edition, Oxford:Clarendon Press,1975.
    [14]R.D.Krieg, D.B.Krieg. Accuracies of Numerical Solution Methods for the Elastic-perfectly Plastic Model [J]. Journal of Pressure Vessel Technology,1977,510-515.
    [15]Bushnell,D. A Strategy for Solution of Problems Involving Large Deflections, Plasticity and Creep [J]. Int, J. Num. Meth. Engng.,1977,11,683-708.
    [16]黄克智,薛明德,陆明万.张量分析[M].第二版.北京:清华大学出版社,2002.
    [17]Bergan,P.G, Holand and Soreide, T. H. Use of Current Stiffness Parameter in Solution of Nonlinear Problem, Energy Methods in Finite Element Analysis [J]. John Wiley & Sons,1979,265-282.
    [18]Schreyer,H.L.,et al. Accurate Numerical Solution for Elastic-Plastic Models [J]. J. Pressure Vessel Technology,1979,101,226-234.
    [19]Ortiz,M. and Popov,E.P. Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations [J]. Int. J. Num. Math. Engng.,1985,21,1951~1957.
    [20]Hong,H.K., Lan,H.S., Liou,L.K. Study of Integration Strategy for Thermal-Elastic-Plastic Models [J]. J. of Pres. Ves. Tech.,1992,114,39-45.
    [21]Mondkar,D. P. and Powell,GH. Static and Dynamic Analysis of Nonlinear Structures. Report No. EERC 75-10, Earthquake Engineering Research Center. Univ. of California, Berkeley,1975.
    [22]Forde,B.W.R. and Stiemer,S.F. Improved Arc Length Orthogonally Methods for Nonlinear Finite Element Analysis [J]. Computer and Structures,1987,27,625-630.
    [23]Bathe,K.J.,et al. Static and Dynamic Geometric and Material Nonlinear Analysis [M]., PB231113,1974.
    [24]Bellini,P.X. and Chulya,A. An Improved Automatic Incremental Algorithm for the Efficient Solution of Nonlinear Finite Element Equations [J]. Computers and Structures,1987,26,99-110.
    [25]Surana,K.S. Geometrically Nonlinear Formulation for the Curved Shell Elements [J]. Inter. J. Numer. Meth. Eng,1983,19,581-615.
    [26]Crisfield,M.A. A Fast Incremental/Iterative Solution Procedure that Handles "Snap-thought" [J]. Computers and Structures,1981,13,55-62.
    [27]Bathe,K.L., Ramm,E., Wilson,E.L. Finite Element Formulations for Large Deformation Dynamic Analysis [J]. Int. J. Num, Meth, Engag 1975,9,353-386.
    [28]邵倩.橡胶类材料的非线性计算研究.武汉大学硕士学位论文.2011.
    [29]Chen,Y.C., Dui,GS. The derivative of isotropic tensor functions, elastic moduli and stress rate:I.Eigenvalues formulation [J]. Mathematics and Mechanics of Solids 2004,9:493-511.
    [30]Saleeb,A.F.,Chang,T.Y.P.,Arnold,S.M. On the development of explicit robust schemes for implementation of a class of hyperelastic models in large-strain analysis of rubbers[J]. International Journal for Numerical Methods in Engineering,1992,33:1237-1249.
    [31]Horgan, C.O.,Sacconmandi,G. Constitutive modeling of rubber-like and biological materials with limiting chain extensibility[J]. Mathematics and Mechanics of Solids,2002,7:353-371.
    [32]费康,张建伟.ABAQUS在岩土工程中的应用[M].中国水利水电出版社,2010.1.
    [33]郭仲衡.非线性弹性理论[M].科学出版社:北京,1980.
    [34]凌道盛,徐兴.非线性有限元及程序[M].浙江大学出版社,2004.8.
    [35]刘礼华.一种高水头橡胶水封止水效果试验装置(ZL200410061238.1),2008.6.
    [36]刘礼华,欧珠光等.中国水电顾问集团西北勘测设计研究院科技项目“水电水利工程闸门水封计算及试验”研究成果报告,2012.6.
    [37]陈启丙.高水头闸门止水橡皮的型式和材质的探讨[J].金属结构,1997(1):29-33.
    [38]陈五一,欧珠光,刘礼华,王蒂.闸门水封水密性规律及封水判据的研究[J].水力发电学报,2010,29,(5):232-236.
    [39]刘礼华,熊威,张宏志,张清江.基于三参流变模型的止水橡皮粘弹性研究[J].中国工程科学,2007,9,(8):69-71.
    [40]Alan,N.Gent., Robert,P. Engineering with Rubber:How to Design Rubber [M].Campion Hanser Publishers,2001.
    [41]F.D.Murnaghan. Finite Deformation of an Elastic Solid [J]. American Journal of Mathematics, 1937,59(2),235-260.
    [42]I.N.Sneddon, D.S.Berry. The Classical Theory of Elasticity [J].Encyclopedia of Physics,1958,3(6),1-126.
    [43]周益春.材料固体力学[M].科学出版社,2006.
    [44]陈明祥.弹塑性力学[M].科学出版社,2007.
    [45]陈至达.连续介质有限变形力学几何场论[J].力学学报,1979,11(2):107-117.
    [46]陈至达.连续介质有限变形力学几何场论(续)弹性有限变形能量原理[J].清华大学学报,1979,19(4):44-57.
    [47]梁浩云.关于有限变形的和分解[J].力学学报,1981,21(3):309-311.
    [48]郑泉水,熊祝华.讨论关于平面问题中变形梯度的分解[J].江西工业大学学报,1988,10(3):8-21.
    [49]C.Wang, Z.D.Chen. Micro rotation effect on material fracture and damage [J]. Engineering Fracture Mechanics,1991,38(2-3):147-155.
    [50]C.Wang, Z.D.Chen. Microrotation analysis applied to material cracking and toughness [J]. International Journal of Fracture,1992,54(4):359-369.
    [51]董毓利.用变形和分解原理求混凝土板的受拉薄膜效应[J].力学学报,2010,42(6):1180-1187.
    [52]尚勇,陈至达.带有摩擦的单边接触大变形问题的研究(Ⅱ)-非线性有限元解及应用[J].应用力学与数学,1990,11(1):1-11.
    [53]尚勇.带有接触摩擦边界弹塑性大变形问题的理论和有限元分析[D].徐州:中国矿业大学,1987.
    [54]P.Li. The updated co-moving coordinate formulation of continuum mechanics based on the S-R decomposition theorem [J]. Computer Methods in Applied Mechanics and Engineering, 1994,114(12):21-34.
    [55]李平.非线性大变形有限元分析的更新拖带坐标系及其应用[D].徐州:中国矿业大学,1991.
    [56]M.Li. The finite deformation theory for beam, plate and shell Part I. The two-dimensional beam theory [J]. Computer Methods in Applied Mechanics and Engineering,1997,146(1-2):53-63.
    [57]M.Li. The finite deformation theory for beam, plate and shell Part Ⅱ. The kinematics model and the Green-Lagrangian strains[J]. Computer Methods in Applied Mechanics and Engineering, 1998,156(1-4):247-257.
    [58]M.Li. The finite deformation theory for beam, plate and shell Part IV. The Fe formulation of Mindlin plate and shell based on Green-Lagrangian strains[J]. Computer Methods in Applied Mechanics and Engineering,2000,182(1-2):187-203.
    [59]谢和平,陈至达.非线性大变形边界元法探讨[J].中国矿业学院学报,1986,15(4):101-109.
    [60]谢和平.非线性大变形边界元法探讨[J].应用数学与力学,1988,9(12):1087-1096.
    [61]J.L.Synge, W.Z.Chien. The intrinsic theory of shells and plates [G]//Theodore von Karman, anniversary volume; (contributions to applied mechanics and related subjects by the friends of Theodore von Karman on his sixtieth birthday).Pasadena:California Institute of Technology,1941:103-120.
    [62]陈至达.理性力学[M].重庆出版社,2000.
    [63]王勇.橡胶类材料的分叉问题研究.哈尔滨工程大学博十学位论文.2008.
    [64]Mooney,M. A theory of large elastic deformation, J.Appl.Phys.,1940,11:582-592.
    [65]Hart-Smith,L.J. and Grisp, J.D.C. Large elastic deformation of thin rubber membrances, Int.J.Eng.Sci., 1967,5:1-24
    [66]Shield,R.T. An energy method for certain second-order effects with application to torsion of elatic bars under tension, ASME,J.Appl.Mech.,1980,47:75-81.
    [67]Gao,Y.C. Elastostatic crack tip behavior for a rubber-like material, Theor. Appl. Fract. Mech.,1990, 14:219-231.
    [68]刘礼华,王蒂,欧珠光,魏晓斌.橡胶类止水材料超弹性性能的研究与应用[J].四川大学学报(工程科学版),2011,(4):199-204.
    [69]O. H. Yeoh. Rubber Chem. Technol [J].63,792 1990.
    [70]O. H. Yeoh. Rubber Chem. Technol [J].66,754 1993.
    [71]Mary,C.Boyce; Ellen,M.Arrud. Constitutive models of rubber elasticity:A review [J]. Rubber Chemistry and Technology, Jul/Aug 2000; 73,3;ABI/INFORM Trade & Industry:511.
    [72]Ogden,R.W. Nearly isotropic elastic deformations:application to rubberlike solids[J]. Journal of the Mechanics and Physics of Solids,1978,26(1):37-57.
    [73]R.W.Ogden; G. Saccomandi;I.Sgura. Fitting hyper-elastic models to experimental data [J]. Computational Mechanics,2004 (34):486.
    [74]蒋友谅.非线性有限元法[M].北京市:北京理工大学出版社,1988:369.
    [75]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [76]Knothe, K.; Herrmann. Finite Element Method for Geometrically Nonlinear Calculation of the Plastic Limit Loads of Plane Frameworks. [J]. Stahlbau,1982(51):342-347.
    [77]蔡中义,李明哲,陈庆敏.大变形中摩擦问题的数值模拟及应用[J].应用力学学报,2002(2):1-4.
    [78]张建军,王守信.工程中弹性接触问题的数值计算[J].河北工业大学学报,1999(2)
    [79]胡志强,陈健云,陈万吉等.弹塑性接触问题的非光滑非线性方程组的方法[J].计算力学学报,2003(6):684-690.
    [80]陈万吉,李学文.二维摩擦接触问题迭代法与非线性互补算法的等价性[J].工程力学,2001(6):33-38.
    [81]张建军,王晓慧,王守信.工程接触问题的罚优化方法与罚因子的选取[J].河北工业大学学报,1999(6):76-80.
    [82]崔玉福,郑慕侨.负重轮实心橡胶轮胎滚动状态下接触三维有限元分析[J].轮胎工业,1998(5).
    [83]Johnsom, K.L. Contact mechanics[M]. Cambridge: Cambridge University Press,1985.
    [84]李翠华.高水头闸门的数值分析及其工程应用研究.武汉大学硕士学位论文,2005.
    [85]Dureli,A.J., Park,A.J., Feng,H. Experimental Mechanics of Large Strain Analysis[J]. Int J Non-Linear Mech,1967(2):387-404.
    [86]Dureli,A.J., Park,A.J., Lopardo.V.J. Stress and Finite Strains Around an Elliptic Hole in Finite Plates Subjected to Uniform Load[J]. Int J Non-Linear Mech,1970(5):397-411.
    [87]Dureli,A.J. Visual Representation of Kinematics of the Continuum. Second International Congress on Experimental Mechanics,1965.
    [88]Green,A.E., Wikes,E.W. Finite Plane Strain for Orthotropicbodies. [J]. J Rat Mech Analysis,1954(3): 329-337.
    [89]Green,A.E., Zema,W. Theoretical Elasticity[M].Oxford,1968.
    [90]黄兆芝,王当芳,单建阳,谭云.有限变形时橡胶材料力学特征研究[J].大庆石油学院学报,1989,13,(1):46-53.
    [91]Smith,M.J., Hutton,S.G Frequency modification using Newton's method and inverse iteration eigenvector updating. Journal AIAA.1990:353-361.
    [92]He,M.C, Gong,W.L., Li,D.J.,et al. Physical Modeling of Failure Process of the Excavation in Horizontal Strata Based on IR Thermography[J]. Mining Science and Technology,2009,19(6):689-698.
    [93]Carlson,D.E.,Hoger,A. The derivative of a tensor-valued function of a tensor[J]. Quarterly of Applied Mathematics,1986,44:409-423.
    [94]Miehe.C. Computation of isotropic tensor functions[J]. Communications in Numerical Methods in Engineering,1993,9:889-896.
    [95]陈祖芳,罗丹.基于R-S和分解定理的无网格Galerkin法求解几何非线性问题[J].湖南大学学报(自然科学版),2012,39(1):42-45.
    [96]佟晓丽,赵国藩.一种与结构可靠度分析几何法相结合的响应面方法[J].土木工程学报,1997,30(4):51-57.
    [97]张银龙,常大民.用响应面法分析装配式公路钢桥的结构响应[J].公路交通科技,2003,20:45-49.
    [98]杨成永,张弥.铁路明洞结构的可靠性设计方法[J].岩土力学与工程学报,1999,18(1):40-45.
    [99]熊俊涛.基于响应面方法的气动优化设计.西北工业大学硕士学位论文,2005.
    [100]Myers,R.H.,Montgomery,D.C. Response surface methodology:Process and Product Optimization using designed experiments.1995:1-78.
    [101]韩芳.复杂结构模型动力修正技术研究.武汉大学博士学位论文,2008.
    [102]赵洁,吕震宙.隐式极限状态方程可靠性分析的加权响应面法[J].机械强度,2006,28(4):512-516.
    [103]宏飞,吴剑国.可靠性改进的加权响应面法[J].浙江工业大学学报,2010,40(1):106-110.
    [104]钟宏林,吴剑国,王恒军.可靠性分析的双加权响应面法[J].浙江工业大学学报,2010,38(2):218-221.
    [105]吕震宇,杨子政,赵洁.基于加权线性响应面法的神经网络可靠性分析[J].航空学报,2006,27(6):1063-1067.
    [106]刘成立,吕震宇.结构可靠性分析中考虑高次项修正的组合响应面法[J].航空学报,2006,27(7):594-599.
    [107]中国长江三峡集团公司长江勘测规划设计研究有限责任公司,长江三峡水利枢纽升船机上、下闸首设备采购招标文件,2011.08.
    [108]王伟,邓涛,赵树高.橡胶Mooney--Rivlin模型中材料常数的确定[J],特种橡胶制品,2004,25(4):8-10.
    [109]乌江构皮滩水电站泄洪中孔弧形闸门充压伸缩式水封试验研究,武汉大学,2007.09.
    [110]洪家渡水电站放空洞弧门充压伸缩式水封非线性仿真计算研究,武汉大学,2003.06.
    [111]乌江洪家渡水电站泄洪洞弧形工作闸门伸缩式水封试验研究报告,成都市蜀都水利电力工程研究所,2003.10.
    [112]杨志伟,王先学,孟宁.闸门伸缩式止水结构的有限元仿真分析[J],贵州水力发电,2004.18(2):70-73.
    [113]蒋正鸿,曹以南.漫湾水电站深孔弧形闸门充压水封研究报告,中国水力发电工程学会水工金属结构设计专业97年学术年会,1997.
    [114]龙朝晖.溪洛渡水电站深孔事故闸门和工作闸门的设计[J],水电站设计,2003,19(1):12-18.
    [115]清江水布垭水利枢纽放空洞闸门水封型式研究,南京水利科学研究院,2001.07.
    [116]汪志龙,蒋正鸿.天生桥一级水电站放空洞高水头弧形闸门的设计研究[J],水力发电,1999.03.
    [117]汪志龙,蒋正鸿.天生桥一级水电站放空洞高水头弧形闸门的设计研究,南京水利科学研究院,2001.07.
    [118]高亚楠.基于有限变形理论的岩石变形与破坏问题研究.中国矿业大学博士学位论文,2012.
    [119]王金昌,陈页开ABAQUS在土木工程中的应用.浙江大学出版社,2006.11.
    [120]任九生,黄兴.变温下橡胶材料力学性能的实验分析.[J]实验力学,2007,22(6):612-616.
    [121]史守峡,杨嘉陵,刘建荣.混合法分析平而应变橡胶材料的大变形[J]应用力学学报,2000,17(1)141-145.
    [122]陈净莲,郭占起,金明.橡胶类材料本构关系与DIANA接口的研究.[J]北京交通大学学报,2001,25(1):36-38.
    [123]刘占芳,励凌峰,胡文军,蒋荣峰.泡沫硅橡胶的多孔超弹性模型.[J]重庆大学学报(自然科学版),2001,24(4):12-16.
    [124]林玉亮,卢芳云,卢力.高应变率下硅橡胶的本构行为研究.[J]高压物理学报,2007,21(3):289294.
    [125]安群力,危银涛,杨挺青.一种适合橡胶类材料的非线性粘弹性本构模型.[J]应用力学学报,2001,18(4):37-41.
    [126]刘峰,朱艳峰,李丽娟,黄小清.橡胶类材料大应变硬化的本构模型.[J]华南理工大学学报(自然科学版),2006,34(4):10-12.
    [127]高光发,李永池,李建阳,王道荣,蒋东.真空橡胶的动静态力学性能及本构关系的研究.[J]功能材料,2010,41(9):1647-1654.
    [128]林永静,袁驷.张量积形式的三维延展Kantorovich法[J].工程力学,2012,(5):8-12.
    [129]杨杰.橡胶超大变形非接触测试方法研究.东南大学硕士学位论文,2004.