等离子体X射线球面弯曲晶体成像关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
惯性约束聚变(Inertial Confinement Fusion,ICF)可以提供取之不尽、用之不竭无污染的清洁能源,其内爆过程中某些物理现象与氢弹内爆及天体物理过程很相似。所以,研究ICF对我国能源的可持续发展、国防安全和天体物理研究等具有重要的意义。
     物理实验和诊断是目前ICF研究中非常重要的内容。由于现阶段ICF研究中存在理论分析和数值模拟不完善、制靶技术和工艺不理想、高功率激光器输出功率有限等问题,发展ICF的诊断技术对完善ICF研究具有重要的科学意义和突出的现实意义。以球面弯曲晶体为核心元件的成像系统,可以得到ICF内爆过程中高温等离子体X射线能谱信息,从而可以揭示靶等离子体的特征和行为,深入了解激光束能量吸收机制,进而为驱动器与靶丸的最佳耦合设计提供依据。球面弯曲晶体成像系统也可以得到靶丸内爆单色X射线二维空间分辨信息,评估激光辐射驱动的对称性和均匀性,分析内爆靶丸推进层的运动过程,建立ICF辐射驱动的相关理论模型。在国家自然科学基金项目(NSAF, No.10976033)的资助下,对球面弯曲晶体成像系统进行了较深入的研究,在国内率先研制了应用于ICF装置的球面弯曲晶体成像系统,在ICF装置上进行了等离子体X射线能谱成像和单色X射线背光成像诊断实验。本文的主要研究工作包括:
     1)根据X射线布拉格衍射和罗兰圆结构理论,对约翰光谱成像仪进行了理论分析。在约翰光谱成像仪的基础上,进一步研究了球面弯曲晶体成像的基本理论。分析了球面弯曲晶体近正入射成像结构和非正入射成像结构的背光成像原理和性质。基于晶体X射线衍射理论,根据弯曲晶体的布拉格角偏差原理,推导并分析了光源在罗兰圆上和不在罗兰圆上两种情况球面弯曲晶体的反射能量与成像系统参数间的关系。为球面弯曲晶体成像研究提供理论基础。
     2)利用光线追踪软件SHADOW建立了球面弯曲晶体成像模拟平台。对球面弯曲晶体非正入射成像结构的背光成像进行了模拟研究,验证非正入射成像结构背光成像的可行性。进一步研究了实验参量变化对系统成像质量和性能的影响,为球面弯曲晶体非正入射成像结构的实际应用提供参考和理论依据。
     3)研制了应用于ICF装置的球面弯曲晶体成像系统,分析了系统核心器件X射线源、球面弯曲晶体和探测器的性能特性。利用X射线衰减理论,研究了探测器滤光膜的透过率,并对Al,Be,Ti膜的透过率进行了分析比较。最后,针对神光III原型和Z箍缩等装置中成像系统探测器有效探测面积的大小,提出了两种实用可行的光路调准对中技术。
     4)利用球面弯曲晶体成像系统进行了X射线能谱成像实验。石英球面弯曲晶体成像系统得到的能谱分辨率(λ/Δλ)为1027,满足X射线能谱诊断的要求。在中国工程物理研究院“阳”加速器装置上利用该成像系统进行等离子体X射线能谱诊断实验,诊断结果表明成像系统的能谱分辨率(λ/Δλ)为1092,与能谱分辨率理论模型所得到的能谱分辨率基本吻合。
     5)搭建了球面弯曲晶体背光成像系统,进行了单色X射线背光成像实验。当X射线管的焦斑尺寸为500μm时,石英和云母球面弯曲晶体成像系统得到的空间分辨率分别为83μm和86μm,实验结果表明石英和云母球面弯曲晶体可用于X射线的背光成像诊断。在神光III原型装置上利用石英球面弯曲晶体近正入射结构进行了背光成像实验,激光束的聚焦焦斑尺寸为200μm,成像系统得到空间分辨率为5μm。在“阳”加速器装置上利用石英球面弯曲晶体非正入射结构进行了背光成像实验,得到空间分辨率为75μm。
It can be produced the inexhaustible and clean energy by Inertial confinementfusion (ICF), whose physical phenomena are similar to hydrogen bomb implosion andastrophysics. The research on ICF is important significance for our country energysustainable development, the defense security and astrophysics research.
     In the field of inertial confinement fusion, Physics experiments and Plasmasdiagnostics are very important research section. Since a large number of problems exit(i.e., the theoretical analysis and numberical simulation, technology of the targetfabrication and limited output power of the high power laser devices), the developmentof ICF diagnostic technology has more important scientific and outstanding practicalsignificance. It can be obtained X-ray spectral information of high-temperature plasmaand monochrome X-ray spatial information of ICF target implosion by the X-rayimaging system based on spherically bent crystal. These informations can reveal theplasma characteristics and behavior of ICF target, understand the energy absorptionmechanism of laser beam and provide the theory basis for the optimum coupling designof the drive and target. It can be used to evaluate the driven symmetry and uniformity oflaser radiation, analyse the promote layer motor process of target implosion andestablish the theoretical model of ICF radiation driven. The research of X-ray imagingsystem with spherically bent crystal is supported by the National Natural ScienceFoundation of China-NSAF (No:10976033). In the work, We researched the imagingtheory of spheically bent crystal; the imging system based on spheically bent crystalwas build up; the X-ray spectral imaging and monochrome X-ray backlight imagingexperiments were carried out. The main research content include:
     1) Using the X-ray Bragg diffraction theory and the Rowland circle property, thetheory of Johann spectrometer is analysed; Based on the theory of Johann spectrometer,the theory of the imaging based on spherically bent crystal is further studied. The X-raybacklight imaging theory and property of spherically bent crystal with the Bragg angleat normal incidence and far away normal incidence are analyzed. Using the diffractiontheory of crystal and the Bragg angle deviation, the relation of imaging systemparameters and the reflected energy of spherically bent crystal for the source on theRowland circle and the source positon not on Rowland circle are analyzed. Theseper-working establish the theoretical foundation for the investigation of spherically bent crytal system.
     2) When the X-ray arrives at the crystal surface, if the X-ray fulfill the Braggdiffraction and the Bragg angle inside the Darwin width, the crystal is considered as a“mirror-like”system, which means that the each ray is reflected at the crystal surfacefollowing the laws of specular reflection. Based on the imaging approximate, theimaging simulation platform for spherically bent crystal is established using the raytracing software SHADOW. The imaging simulation of the X-ray backlight imagingsystem based on spherically bent crystal with the Bragg angle far away normalincidence is studied with the imaging simulation platform to verify the imaging systemimaging. In addition, using the imaging simulation platform, the relationships betweensystem parameters and imaging performance are studied. These simulation worksprovide the theory and reference for the actual application of the X-ray system based onspherically bent crystal.
     3) The X-ray imaging system based on spherically bent crystal is developed,according to the imaging property of spherically bent crystal and experimental condition.The performances of imaging system key components are analyzed. Using the X-rayattenuation theory, the transmissivity of the filter is studied and the transmissivity of Al,Be and Ti filter are compared. According to the alignment of the crystal imaging systemand the effective detection area of different detectors, two practical alignmenttechnologies are proposed.
     4) The spectral imaging experiment is performed with the X-ray imaging systembased on spherically bent crystal to obtain the spectral resolution. The X-ray spectralimaging test experiment is carried out with spherically bent Quartz crystal. The resultindicates that the spectral resolution of the imaging system is1027; the imaging systemmeets the demand of spectrum diagnosis. The X-ray spectral imaging experiment ofhigh-temperature plasma is carried out on “yang” accelerator with spherically bentQuartz crystal. The diagnostic result shows that the spectral resolution of the imagingsystem is1092, which is consistent with the spectral resolution theoretical model.
     5) The monochrome X-ray backlight imaging experiment is carried out based onspherically bent crystal. In the X-ray backlight imaging test experiments, the imagingsystems with Quartz and Mica crystal are capable of the two-dimensional, spatially-resolved, monochromatic backlight mesh imaging. The experimental results show thatthe imaging systems provide83μm and86μm spatial resolutions respectively, whichare adequate for monochromatic X-ray backlighting imaging diagnosis. The X-ray backlight imaging experiments of high-temperature plasma using the imaging systemswith spherically bent Quartz crystal for the first time are performed on the SG-IIIprototype facility and on the “Yang” accelerator at the Chinese Academy of EngineeringPhysics. The diagnostic results demonstrate that the spatial resolution of the imagingsystem on “Yang” accelerator is75μm and on the SG-III prototype facility is5μm.
引文
[1] http://www.people.com.cn/GB/shizheng/1026/2134698.html.[EB/OL].
    [2]李连仲.我国的能源安全与可持续发展[J].宏观经济研究.2004,(10):10-14.
    [3] http://news.xinhuanet.com/world/2011-04/12/c_121292230.htm.[EB/OL].
    [4] http://news.sohu.com/s2011/2919/s279816921/.[EB/OL].
    [5] http://tech.ifeng.com/discovery/special/nuclear/.[EB/OL].
    [6]贺贤土.惯性约束聚变研究进展和展望[J].核科学与工程,2000,20(3):248-251.
    [7] D. Clery. Laser fusion energy poised to ignite [J]. Science,2010,328:808-809.
    [8] S. H. Glenzer, B. J. MacGowan, N. B. Meezan,et al. Demonstration of Ignition RadiationTemperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums [J]. Physical ReviewLetter.2011,106(8),085004.
    [9] Roadmap to the Future[A]. Lawrence Livermore National Laboratory,2009.05.
    [10] C. Yamanaka. The prospect of laser fusion in the21st century [J]. Laser and Particle Beams,2002,20:5-12.
    [11] Zhang Jie, Zhao Gang. Introduction to laboratory astrophysics [J]. Physics,2000,29(7):393-396.
    [12]李玉同.快点火激光核聚变和实验室天体物理中的几个前沿问题[J].激光与光电子学进展.2010,47:093202.
    [13] D. Ryutov, R. P. Drake, J. Kane,et al. similarity Criteria for the Laboratory Simulation ofSupernova Hydrodynamics[J].The Astrophysical Journal,1999,518(2):821-832.
    [14] J. Kane, D. Arnett, B.A. Remington,et al.Scaling supernova hydrodynamics to thelaboratory[J]. Physics of Plasmas,1999,6(5):2065-2071.
    [15]袁铮.门控分幅相机的能谱响应特性研究[D].重庆:重庆大学,2009.
    [16]郑志坚,丁永坤,丁耀南,等.激光惯性约束聚变综合诊断系统[J].强激光与粒子束,2003,15(11):1073-1078.
    [17] S. Pfalzner. An Introduction to Inertial Confinement Fusion [M].Taylor&Francis: CRC Press,2006.
    [18]孙景文.高温等离子体X射线谱学[M].北京:国防工业出版社,2003.
    [19] J. A. Koch, O. L. Landen, T. W. Barbee, et al. High-Energy X-ray Microscopy Techniques forLaser-Fusion Plasma Research at the National Ignition Facility [J].Applied Optics,1998,37(10):1784-1795.
    [20] J.Workman, S. Evans, and G.. A. Kyrala. One-dimensional x-ray imaging using a sphericallybent mica crystal at4.75keV [J]. Review of Scientific Instruments,2001,72(1):674-677.
    [21] G. R. Bennett, D. B. Sinars, D. F. Wenge, et al. High-brightness, high-spatial-resolution,6.151keV x-ray imaging of inertial confinement fusion capsule implosion and complexhydrodynamics experiments on Sandia’s Z accelerator [J]. Review of Scientific Instruments,2006,77(10):10E322.
    [22] D. B. Sinars, G. R. Bennett, D. F. Wenger, et al. Monochromatic x-ray imaging experiments onthe Sandia National Laboratories Z facility [J].Review of Scientific Instruments,2004,75(10):3672-3677.
    [23] I. Uschmann, K. Fujita, I. Niki, et al.Time-resolved ten-channel monochromatic imaging ofinertial confinement fusion plasmas[J]. Applied Optic,2000,39:5865–5871.
    [24] I. Golovkin, R. Mancini, S. Louis, et al. Spectroscopic determination of dynamic plasmagradients in implosion cores [J]. Physical Review Letter,2002,88:045002.
    [25] J. A. Koch, O. L. Landen, T. W. Barbee, et al. High-energy x-ray microscopy techniques forlaser-fusion plasma research at the National Ignition Facility[J]. Applied Optics,1998,37:1784–1795.
    [26] B. Yaakobi, R. S. Craxton, R. Epstein, et al. Areal-density Measurements of Laser TargetsUsing Absorption Lines Spectrosc[J]. Journal of Quantitative Spectroscopy and RadiativeTransfer,1997,58(1):75-83.
    [27] J. A. Koch, O. L. Landen, B. A. Hammel, et al. Recent progress in high-energy,high-resolution x-ray imaging techniques for application to the National Ignition Facility[J].Review of Scientific Instruments,1999,70(1):525-530.
    [28] Y. Aglitskiy,T. Lehecka, S. Obenschain et al. X-ray crystal imagers for inertial confinementfusion experiments[J]. Review of Scientific Instruments,1999,70(1):530-535.
    [29] Y. Aglitskiy, T. Lehecka, S. Obenschain, et al. High-resolution monochromatic x-ray imagingsystem based on spherically bent crystals[J]. Applied Optic,1998,37:5253–5261.
    [30] M. Bitter, K. W. Hill, B. Stratton, et al.Spatially resolved spectra from a new x-ray imagingcrystal spectrometer for measurements of ion and electron temperature profiles[J]. Review ofScientific Instruments,2004,75(10):3660-3665.
    [31] K. W. Hill, M. L. Bitter, S. D. Scott, et al. A spatially resolving x-ray crystal spectrometer formeasurementof ion-temperature and rotation-velocity profiles on the Alcator C-Mod tokamak[J]. Review of Scientific Instruments,2008,79(10):10E320.
    [32] K. W. Hill, M. L. Bitter, L. D. Aparicio, et al. Development of a spatially resolving x-raycrystal spectrometer for measurement of ion-temperature(Ti)and rotation-velocity(v) profilesin ITER[J]. Review of Scientific Instruments,2010,81(10):10E322.
    [33] M. Sanchez del Rio, L. Alianelli, A. Y. Faenov et al. X-ray Reflectivity of CurvedAlpha-Quartz Crystals[J]. Physica Scripta,2004,69:297-302.
    [34] I. Uschmann, E. Forster, H. Nishimura,et al. Temperature mapping of compressed fusionpellets obtained by monochromatic imaging[J]. Review of Scientific Instruments,1995,66(1):734-736.
    [35] E. Forster, K. Gabel, and I. Uschmann. X-ray microscopy of laser-produced plasmas with theuse of bent crystals[J].Laser Particle Beams,1991,9(1):135-148.
    [36] P. Monota, T. Augustea, S. Dobosz, et al. High-sensitivity, portable, tunable imaging X-rayspectrometer based on a spherical crystal and MCP[J].Nuclear Instruments and Methods inPhysics Research A,2002,484:299-311.
    [37] A. P. Shevelko, T. A. Kasyanov, O. F. Yakushev, et al. Compact focusing von hamosspectrometer for quantitative X-ray spectroscopy [J]. Review of Scientific Instruments,2002,73(10):3458-3463.
    [38] N. Nakamura, A. Ya. Faenov, T. A. Pikuz,et al. High-resolution x-ray spectromicroscopywith the Tokyo electron beam ion trap[J]. Review of Scientific Instruments,1999,70(3):1658-1664.
    [39] S. Morita and M. Goto. X-ray crystal spectrometer with a charge-coupled-device detector forion temperature measurements in the Large Helical Device[J].Review of ScientificInstruments,2003,74(4):2375-2377.
    [40] S. Fujioka, T. Fujiwara, M. Tanabe et al. Monochromatic x-ray radiography for areal-densitymeasurement of inertial fusion energy fuel in fast ignition experiment[J]. Review of ScientificInstruments,2010,81(10):10E529.
    [41] J. J. Duderstadt. Inertial Confinement Fusion [M]. New York: John wiley&sons,1982.
    [42] C. Yamanaka. Introduction to laser fusion [M]. Newark: Harwood Academic Publishers,1991.
    [43]常铁强,张钧,张家泰等.激光等离子体相互作用于激光聚变[M].长沙:湖南科学技术出版社,1991.
    [44] S. C. Wilks and W. L.Kruer. Absorption of ultrashort, ultra-intense laser light by solids andoverdense plasmas[J].IEEE Journal of Quantum Electron,1997,33(11):1954-1968.
    [45]陶祖聪,杜祥琬,彭翰生等.激光驱动的ICF物理研究[J].物理,1991,08:467-472.
    [46]王淦昌,袁之尚.惯性约束核聚变[M].北京:原子能出版社.2005.
    [47] Y. T. Li, J. Zhang, L. M. Chen, et al. Hot electrons in the interaction of femtosecond laserpulses with foil targets at a moderate laser intensity[J]. Physical Review E,2001,64:046407.
    [48] S. Skupsky, K. Lee. Uniformity of energy deposition for laser-driven fusion [J]. Journal.Applied Physical,1983,54(7):3662-3671.
    [49] J. E. Rothenberg. Impact of beam smoothing method on direct-drive target performance forthe NIF [J]. Proceeding SPIE,1997,3047:736-747.
    [50] L. Spitzer. Physics of Fully Ionized Gases [M].New York:Wiley,1962.
    [51] J. M. Dawson and M. F. Uman. Heating a plasma by means of magnetic pumping[J]. NuclearFusion,1965,5(3):242-246.
    [52] G. C. Pomraning.The Equation of Radiation Hydrodynamics [M].Oxford: Pergamon Press,1973.
    [53] D. Mikaelian and B. W. Mihalas. Foundations of Radiation Hydrodynamics [M].Oxford:Oxford University Press,1984.
    [54] E. H. Beckner. Production and Diagnostic Measurements of Kilovolt High‐DensityDeuterium, Helium, and Neon Plasmas[J]. Journal of Applied Physics,1966,37(13):4944-4952.
    [55] D. J. Johnson. An X-ray spectral measurement system for nanosecond plasmas [J].Review ofScientific Instruments,1974,45(2):191-194.
    [56] H. R. Griem.Spectral Line Broadening in Plasm[M].London and New York:AcademicPress,1974.
    [57] A. V. Vinogradov, I. I. Sobel'man, et al. Spectroscopic methods for diagnostics of superdensehot plasma [J].Soviet Journal of Quantum Electronics,1974,4(2):149-154.
    [58] J. D. Lawson. some criteria for a power producing thermonuclear rector[J]. Proceedings of thePhysical Society,1957,70:6-10.
    [59] R. E. Kidder. Energy gain of laser-compressed pellets: a simple model calculation[J]. NuclearFusion,1976,16(3):405-410.
    [60] M. H. Key.Energy transport in laser produced plasmas [M]. Handbook of PlasmaPhysics.Elsevier Science,1991.
    [61] C. E. Max,C. FMckee and W. C. Mead.A model for laser driven ablative implosions[J]. PhysicFluids,1981,23:1620-1625.
    [62] S. Y. Guskov and V. B. Rozanov. Interaction of laser radiation with a porous medium andformation of a nonequilibrium plasma[J]. Quantum Electron,1997,27(8):696-698.
    [63] V. Yu. Glebov, D. D. Meyerhofer, T. C. Sangster.et al. Development of nuclear diagnostics forthe National Ignition Facility[J]. Review of Scientific Instruments,2006,77(10):10E715.
    [64] J. D. Lind and W. C. Mead. Two-Dimensional Simulation of Fluid Instability in Laser-FusionPellets[J]. Physical Review Letters,1975,34(20):1273-1276.
    [65] C. E. Max, J. D. Lindl and W. C. Mead. Effect of symmetry requirements on the wavelengthscaling of directly driven laser fusion implosions [J].Nuclear Fusion,1983,25:131-145.
    [66] R. Mccrory, C. Verdon. In Inertial Confinement Fusion [M]. Compositor, Bologna. Italy:edited by A. Caruso and E. Sindoni,1989.
    [67]江少恩,丁永坤,刘慎业等.神光系列装置激光聚变实验与诊断技术研究进展[J].物理,2010,39(8):531-542.
    [68] G. P. Grim, G. L. Morgan, M. D. Wilke,et al. Progress on Neutron pinhole imaging forinertial-confinement-fusion experiments[J].Plasma Physics,2004,75(10):3572-3574.
    [69] D. Ress, R. A. Lerche, R. J. Ellis, et al. Neutron imaging of inertial confinement fusion targetsat Nova[J]. Review of Scientific Instruments,1988,59(8):1694-1696.
    [70]吕敏,王奎禄.核试验脉冲射线测量技术[M].北京:国防工业出版社,2006:352-415.
    [71] S. P. Regan, J. A. Delettrez, R. Epstein, Characterization of direct-drive-implosion coreconditions on OMEGA with time-resolved Ar K-shell spectroscopy[J]. Physics of Plasmas,2002,9(4):1357-1365.
    [72] P. Kirkpatrick, A.V..Baez. Formation of optical images by X-ray [J]. Journal of the OpticalSociety of A merica,1948,38(9):7662774.
    [73] R. Sarneuf, J. M. Salmasso, T. Jalinaud. Large-field high-resolution X-ray microscope forstudying laser plasmas [J]. Review of Scientific Instruments,1997,68(9):3412-3420.
    [74] R. Kodama, H. Shiraga, M. Miyanaga, et al. Study of laser-imploded core plasmas with anadvanced Kirkpatrick–Baez x-ray microscope [J]. Review of Scientific Instruments,1997,68(1):824-827.
    [75] H. Takano, A. Sadao, M. Kumegawa, et al. X-ray scattering microscope with a Wolter mirror[J]. Review of Scientific Instruments,2002,73(7):2629-2633.
    [76] A. Takeuchi, A. Sadao, et al. Full-field x-ray fluorescence imaging microscope with a Woltermirror [J]. Review of Scientific Instruments,2000,71(3):1279-1285.
    [77]李春芳.Wolter X射线成像系统设计及成像质量分析[D]:大连理工大学硕士学位论文,2007.
    [78]王英华. X光衍射技术基础[M].北京.原子能出版社,1993.
    [79] A. H. Compton and S. K. Allison, X-Rays in Theory and Experiment [M].New York: vanNostrand,1957.
    [80] D. C. Turner, L. V. Knight, A. R. Mena, et al. Focusing crystal von Hamos spectrometers forXRF applications [J]. Advances in X-ray Analysis,2001,44:329-335.
    [81] J. S. Ames. Henry Augustus Rowland [J].The Astrophysical Journal,1991,13:241-248.
    [82] M. Klein and T. Furtak. Optics [M]. New York: John Wiley and Sons,1986:314-317.
    [83] M. Born and E. Wolf. Principles of optics [M]. Oxford: Pergamon Press,1991:412-413.
    [84] H. H. Johann. Die Erzeugung lichtstarker Rontgenspektren mit hilfe von Konkavkristallen[J].Zeit. Physik.1931,69(3):185-206.
    [85] T. Tchen. On the theory of the Johann focusing spectrometer[J]. Technical Physics Letters,2002,28(4):303-304.
    [86] A. A. Petrunin, A. E. Sovestnov, A. V. Tyunis, et al. Johann crystal diffraction spectrometer formeasuring small chemical shifts of soft X-ray lines[J]. Technical Physics Letters,2009,35(1):73-75.
    [87] D. L. Robbins, H. Chen, P. Beiersdorfer,et al. High-resolution compact Johann crystalspectrometer with the Livermore electron beam ion trap[J].Review of Scientific Instruments,2004,75(10):3717-3719.
    [88] S. A. Pikuz, T. A. Shelkovenko, D. A. Hammer, et al. Monochromatic x-ray probing of anultradense plasma [J]. Letters to Jounal of Experimental and Theoretical Physics,1995,61:638-644.
    [89] T. Lehecka, A.Deniz, J. Hardgrove, et al. X-ray spectroscopy of plasmas created by theNike KrF laser [J]. Review of Scientific Instruments,1997,68(1):806-809.
    [90] I. B. Borovskii. Physical Basis of X-Ray Spectroscopic Investigations [M]. Moscow: MoscowState University,1956.
    [91] L. M. Belyaev, A. B. Gil'varg, Y. A. Mikhailov, et al. High-luminosity x-ray spectrograph witha spherically bent crystal analyzer, designed for laser plasma diagnostics [J].QuantumElectronics,1977,7(1):67-70.
    [92] M. Sanchez del Rio, A. Ya. Faenov, V. M. Dyakin, et al. Ray-tracing for a monochromaticx-ray backlighting scheme based on spherically bent crystal [J]. Physica Scripta,1997,55(6):735-740.
    [93] E. J. Gamboa, D. S. Montgomery, I. M. Hall, et al, Imaging X-ray crystal spectrometer forlaser-produced plasmas[J]. Journal of Instrumentation,2011,6:04004.
    [94] T. Pikuz, A. Faenov, I. Skobelev, et al. High efficient X-ray imaging and backlighting schemesbased on the spherically bent crystals[J]. Proceedings of SPIE,2004,5196:362-374.
    [95] G. R. Bennett, I. C. Smith, J. E. Shores,et al.2–20ns interframe time2-frame6.151keV x-rayimaging on the recently upgraded Z Accelerator: A progress report [J]. Review of ScientificInstruments,2008,79(10):10E914.
    [96] I. Uschmann, K. Fujita, I. Niki,et al. Time-resolved ten-channel monochromatic imaging ofinertial confinement fusion plasmas[J].Applied Optic,2000,39:5865-5871.
    [97] L. Journel, L. E. Khoury, T. Marin, et al. Performances of a bent-crystal spectrometer adaptedto resonant x-ray emission measurements on gas-phase samples [J]. Review of ScientificInstruments,2009,80(09):093105.
    [98] F. Flora, S. Bollanti, A. Lai, et al. A novel portable, high-luminosity monochromaticallytuneable X-ray microscope [J]. Proceedings of SPIE,2001,4504:240-252.
    [99] T. A. Pikuz, A. Y. Faenov, M. Fraenkel, et al. Shadow monochromatic backlighting:Large-field high resolution X-ray shadowgraphy with improved spectral tenability [J]. Laserand Particle Beams,2001,19:285–293.
    [100] V. F. Sears. Bragg Reflection in Mosaic Crystals. I. General Solution of the DarwinEquations[J]. Acta Crystallographica Section A: Foundations of Crystallography,1997,53:35-45.
    [101] S. L. Chang. X-Ray Multiple-Wave Diffraction: Theory and Application [M]. German Berlin:Springer Press,2004.
    [102] B. L. Henke, E. M. Gullikson and J. C. Davis. X-ray interactions: photoabsorption, scattering,transmission, and reflection at E=50-30000eV, Z=1-92Atomic Data and Nuclear DataTables,1993,54(2):181-342.
    [103]卢焕明,赵轶,叶志镇.高精度X射线双晶体衍射仪的原理及其应用[J].材料科学与工程.1997,15(4):51-53.
    [104] I. Uschmann, E. Forster, K. Gabel, et al.X-ray reflection properties of elastically bent perfectcrystals in Bragg geometry[J]. Journal of Applied Crystallography,1993,26,405-412.
    [105] T. Missalla, I. Uschmann, and E. Forster. Monochromatic focusing of subpicosecond x-raypulses in the keV range [J]. Review of Scientific Instruments,1999,70(2):1288-1299.
    [106]赵玲玲.KBAX射线显微镜研究[D].大连:大连理工大学,2006.
    [107]胡家升.光学工程导论(第二版)[M].大连:大连理工大学出版社,2005.
    [108]李全臣,蒋月娟.光谱仪器原理[M].北京:北京理工大学出版社,1999.
    [109] M. J. Kidger. Fundamental optical design[M]. Bellingham, WA:SPIE Press,2001.
    [110] S. Holler, Y. Pan, R. K. Chang, et al. Two-dimensional angular optical scattering for thecharacterization of airborne microparticles [J]. Optics Letters,1998,23(18):1489-1491.
    [111] M. Bitter, K. W. Hill, S. Scott, et al. Wide-angle point-to-point x-ray imaging with almostarbitrarily large angles of incidence[J]. Review of Scientific Instruments,2008,79(10):10E927.
    [112]唐荣锡,汪嘉业,彭群生.计算机图形学教程[M].北京:科学出版社,1999:367-370.
    [113] G. H. Spencer and M. V. R. K. Murty. General Ray-Tracing Procedure [J]. Journal of theOptical Society of America A,1962,52:672-676.
    [114] http://www.nanotech.wisc.edu/shadow/shadow.html.[EB/OL].
    [115] http://www.esrf.fr/computing/scientific/raytracing/[EB/OL].
    [116] C. Welnak, G. J. Chen, and F. Cerrina. SHADOW: s synchrotron radiation and X-ray opticssimulation tool[J]. Nuclear Instruments and Methods in Physics Research A,1994,347:338–343.
    [117] D. Attwood. Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications [M].Cambridge: Cambridge University Press,1999.
    [118] M. Sanchez del Rio and R. J. Dejus. XOP: Recent developments [J]. Proceeding SPIE,1998,3448:340-345.
    [119] M. Sanchez del Rio and R. J. Dejus. XOP: A Multiplatform Graphical User Interface forSynchrotron Radiation Spectral and Optics Calculations [J]. Proceeding SPIE,1997,3152:148-157.
    [120] M. Sanchez del Rio and R. J. Dejus. Status of XOP: an x-ray optics software toolkit [J].Advances in Computational Methods for X-Ray and Neutron Optics,2004,5536:171-174.
    [121] M. Born and E. Wolf. Principles of optics[M]. Cambridge: Cambridge University Press,2003.
    [122] B. K. Tanner. X-ray Diffraction topography[M]. Oxford: Pergamon Press,1976.
    [123]姜晓明,黎刚,陈志华等.X射线衍射增强成像中得折射衬度[J].高能物理与核物理.2004,28(12):1282-1290.
    [124] A. Nucara, P. Calvani, A. Marcelli, et al. The Φ‐factory DAΦNE as a source of infraredradiation: An estimate of source size and brilliance[J]. Review of Scientific Instruments,1995,66(2):1934-1936.
    [125] A. Lipson, S. G. Lipson and H. Lipson. Optical Physics(4th edition)[M]. Cambridge:Cambridge University Press,2010.
    [126] I. S. McLean. Electronic Imaging in Astronomy: Detectors and Instrumentation[M].Chichester, UK: Praxis Publishing Ltd,2008.
    [127]王瑞荣,肖沙里,钱家渝等.高分辨椭圆弯晶谱仪在激光等离子体实验中的应用[J].强激光与粒子束,2007.19(7):1163-1166.
    [128] Shi Jun,Xiao Shali,Wang Hongjian, et al. Curved crystal spectrometer for the measurement ofX-ray lines from laser-produced plasmas [J]. Optoelectronics Letters,2008,4(4):299-301.
    [129] J. Shi, S. L. Xiao, H. J. Wang, et al. Detection of the X-ray spectra of imploding neon Z-pinchwith elliptically bent mica crystal spectrometer[J]. Chinese Optics Letters,2008,6(8):622-624.
    [130] S. L. Xiao, H. J. Wang, J. Shi, et al. High resolution X-ray spherically bent crystalspectrometer for laser-produced plasma diagnostics [J]. Chinese Optics Letters,2009,7(1):92-94.
    [131]姚实颖.基于620-6200eV能区X射线探测的双通道椭圆弯晶谱仪的研究[D].重庆大学,2003.
    [132]熊先才.双通道椭圆弯晶谱仪的基础理论及实验研究[D].重庆大学,2004.
    [133]高洁.双通道椭圆弯晶谱仪的设计及实验研究[D].重庆大学,2004.
    [134]朱岗.双通道椭圆弯晶谱仪摄谱技术与实验研究[D].重庆大学,2006.
    [135]施军,肖沙里,王洪建等.Z箍缩等离子体X射线极化研究[J].光电工程,2008,35(10):32-36.
    [136]施军,肖沙里,王洪建等.用极化晶体谱仪探测X射线极化度[J].光子学报,2009,38(02):396-400.
    [137]王洪建,肖沙里,施军等.激光等离子体X射线极化光谱诊断[J].光学学报,2009,29(6):1710-1713.
    [138] http://www.oxfordxtg.com.[EB/OL].
    [139] U. W. Arndt, J. V. P. Long and P. Duncumb. A Microfocus X-ray Tube Used with FocusingCollimators[J].Journal of Applied Crystallography,1998,31:936-944.
    [140] M. Terasawa and M. Kihara.Basic characteristics of Synchrotron Radiation and its RelatedFacilities and Instrumentation[M].Amsterdam: Elsevier,1996.
    [141]肖沙里,施军,雷小明等.氟化锂椭圆弯晶分析器的特性及应用[J].光学精密工程,2007,15(6):824-828.
    [142] Lin Zunqi, Wang Shiji, Fan Dianyuan, et al. Successful operation of8beam SG-II laserfacility for both1ω0and3ω0output [J].High Power Laser and Particle Beams,2002,14(3):403-407.
    [143]方奇,于文涛.晶体学原理[M].北京:国防工业出版社,2002:228-233.
    [144] L. S.勃克斯.X射线光谱分析[M].北京:科学出版社,1973:95-97.
    [145] H. Goebel. X-Ray Diffractometer[P].American, ZL5373544,1994,12.13:1-6.
    [146] P. Kolodner, E. Yablonovitch. Proof of the resonant acceleration mechanism for fast electronsin gaseous laser targets[J]. Physical Review Letter,1976,37:1754-1757.
    [147] Y. T. Li, J. Zhang,Z. M. Sheng, et al. Spatial distribution of high-energy electron emissiongrom water plasmas produced by femtoecond laser pulses[J]. Physical Review Letter,2003,90:165002.
    [148] J. Miyahara, K. Takahashi. A new type of x-ray area detector utilizing laser stimulated luminescence[J]. Nuclear Instruments and Methods in Physics Research A,1986,246:572—578.
    [149] J. A. Rowlands.The physics of computed radiography[J]. Physics in Medicine and Biology,2002,47:123-166.
    [150] Y. Amemiya, J.Miyahara. Imaging plate illuminates many fields[J]. Nature,1988,336:89-90.
    [151] K. A. Tanaka, R. Kodama, H.Fujita,et al. Studies of ultra-intense laser plasma interactions forfast ignition[J]. Physics of Plasmas,2000,7:2014-2022.
    [152] K. A. Tanaka, Y. Toshinori, S.Takashi, et al.Calibration of imaging plate for high energyelectron spectrometer[J]. Review of Scientific Instruments,2005,76(1):013507.
    [153] Y. T. Li, X. H. Yuan, M. H. Xu, et al.Observation of a fast electron beam emitted along thesurface of a target irradiated by intense femtosecond laser pulses[J]. Physical ReviewLetter,2006,96:165003.
    [154] N. Izumi, R. Snavely, G. Gregori, et al.Application of imaging plates to x-ray imaging andspectroscopy in laser plasma experiments[J]. Review of Scientific Instruments,2006,77(10):10E325.
    [155] Y. Iwabuchi, N. Mori, K. Takahashi,et al. Mechanism of photostimulated luminescenceprocess in BaFBr:Eu2+phosphors[J].Japanese Journal of Applied Physics,1994,33:178-185.
    [156] S. G. Gales,C. D. Bentley. Image plates as x-ray detectors in plasma physics experiments [J].Review of Scientific Instruments,2004,75(10):4001-4003.
    [157] D. N. Hill, S. L. Allen and P. A. Pincosy. Neutral-beam performance analysis using a CCDcamera[J]. Review of Scientific Instruments,1986.57(8):2069-2071.
    [158] S. W. Wilkins, T. E. Gureyev, D. Gao et al. Phase-contrast imaging using polychromatic hardX-rays[J].Nature,1996,384(6607):335-338.
    [159] A. Pogany, D, Gao, S. W. Wilkins. Contrast and resolution in imaging with a microfocusX-ray source [J].Review of Scientific Instruments,1997.68(7):2774-2782.
    [160]彭晓世,王峰,刘慎业等.成像型任意反射面速度干涉仪研制[J].光学学报,2009,29(11):3207-3211.
    [161]王峰,彭晓世,刘慎业等.辐射驱动条件下冲击波诊断用透明窗口离化现象研究[J].光学学报,2011,31(3):0312002.
    [162] M. W. Tate, S. M. Gruner and E. F. Eikenberry. Coupling format variations in x-ray detectorsbased on charge coupled devices[J]. Review of Scientific Instruments,1997,68(1):47-54.
    [163] Bruker axs.SMART APEX CCD.http://www. bruker-axs.de [EB/OL].
    [164] J. C. Poggendorff. Determination of the absorption of red light in colored liquids[J]. Annalender Physik und Chemie,1852,86:78-88.
    [165] J. H. Lambert, Photometria sive de mensura et gradibus luminis, colorum et umbrae[M].Augsburg: Photometry, or, on the measure and gradations of light, colors, and shade,1760.
    [166]李超荣,麦振洪和崔树范.晶体表面偏角对摇摆曲线及其半峰宽的影响[J].物理学报,1992,41(4):603-608.
    [167] Z. G. Pinsker. Dynamical scattering of X-ray in crystal [M]. New york: spring verlag BerlinHeiddberg,1987.
    [168] M. Sanchez del Rio, M. Fraenkel, A. Zigler,et al.Collimation of plasma-produced x-rays byspherical crystals: Ray-tracing simulations and experimental results[J]. Review of ScientificInstruments,1999,70(3):1614-1620.
    [169] L. Willingale, G. M. Petrov, A. Maksimchuk, et al. Front versus rear side light-ion accelerationfrom high-intensity laser–solid interactions[J]. Plasma Physics and Controlled Fusion,2011,53(1):014011.
    [170]刘利锋,肖沙里,毋玉芬,等.球面晶体分析器在等离子体X射线诊断中的应用[J].光电子·激光,2011,22(5):669-672.
    [171]褚圣麟.原子物理学[M].北京:高等教育出版社,2002.
    [172]黄显宾,邓建军,杨礼兵,等.“阳”加速器上的Z箍缩诊断技术[J].强激光与粒子束,2010,22(4):870-874.
    [173]杨震华.“阳”加速器Z-pinch实验中负载方案的分析[J].强激光与粒子束,2001,13(2):209-212.
    [174]刘利锋,肖沙里,王洪建,等.球面弯晶在X射线诊断中的应用[J].强激光与粒子束,2010,22(10):2313-2316.
    [175] B. K. F. Young, A. L. Osterheld, D. F. Price, et al.High-resolution x-ray spectrometer basedon spherically bent crystals for investigations of femtosecond laser plasmas[J].Review ofScientific Instruments,1998,59(12):4049-4053.
    [176]叶凡,李正宏,薛飞彪等. Z箍缩等离子体高分辨X辐射谱诊断[J].强激光与粒子束,2009,21(2):307-310.
    [177]蒯斌,邱爱慈,曾正中,等.强光一号Z箍缩产生keV级特征X射线初步研究[J].强激光与粒子束,2007,19(6):981-986.
    [178] A. S. Shlyaptseva, D. A. Fedin, S. M. Hamasha, et al. X-ray spectroscopy andspectropolarimetry of high energy density plasma complemented by LLNL electron beam iontrap experiments[J]. Review of Scientific Instruments,2003,74(3):1947-1950.
    [179]朱宏权.γ射线针孔照相系统的图像复原研究[D].清华大学,2008.
    [180] B. J. Kima, C. Gyuseong. An X-ray imaging detector based on pixel structured scintillator[J].Radiation Measurements,2006,15(5):32-37.
    [181] F. J. Marshall, M. M. Allen, J. P. Knauer, et al. A high-resolution X-ray microscope forlaser-driven planar-foil experiments[J]. Physics of Plasmas,1998,5(4):1118-1124.
    [182] P. F. Knapp, S. A. Pikuz, T. A. Shelkovenko, et al, High resolution absorption spectroscopy ofexploding wire plasmas using an x-pinch x-ray source and spherically bent crystal[J].Reviewof Scientific Instrument,2011,82(6):063501.
    [183] P. F. Knapp, J. B. Greenly, P. A. Gourdain, et al. Quasimonochromatic x-ray backlighting onthe COrnell Beam Research Accelerator(COBRA) pulsed power generator[J].Review ofScientific Instrument,2010,81(10):10E501.
    [184] T. Harada and T. Kita.Mechanically ruled aberration corrected concave gratings[J]. AppliedOptics,1980,19:3987-3993.
    [185] D. B. Sinars,G. R. Bennett,D. F. Wenger,et al. Evaluation of bent-crystal x-ray backlightingand microscopy techniques for the Sandia Z machine[J]. Applied Optics,2003,42(19):4059-4071.
    [186]刘利锋,肖沙里,毋玉芬,等.球面弯曲晶体在X射线背光成像的应用[J].光学精密工程,2011,19(9):2023-2027.
    [187]刘利锋,肖沙里,毋玉芬,等.基于石英球面弯曲晶体的X射线成像研究[J].中国激光,2011,38(8):0815001.
    [188] X. M. Zhang, W. G. Zheng, X. F. Wei,et al. Preliminary Experimental Results of ShenguangIII Technical Integration Experiment Line[J].Proceeding of SPIE,2005,5627:6-12.
    [189]李三伟,易荣清,蒋小华,等.神光III原型1ns激光驱动黑腔辐射温度实验研究[J].物理学报,2009,58(5):3255-3261.
    [190]刘利锋,肖沙里,钱家渝,等.Z箍缩装置的单色背光成像[J].强激光与粒子束,2011,23(9):2275-2276.
    [191] L. F. Liu, S. L. Xiao, J. Y. Qian, et al. X-ray backlight imaging in Z-pinch [J]. Nuclearinstruments and methods in Physics Research section A,2012,684:93-96.