微通道板及其成像探测应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微通道板(Microchannel Plate, MCP)作为一种通道式电子倍增器阵列,具有维空间和时间分辨能力,以及对多种辐射物直接探测的能力,是集信号放大与成像探测等为一体的多功能探测器,因此具有广阔的应用前景和研究价值。
     本论文针对MCP玻璃材料设计和制作工艺以及基于MCP的成像探测器等方面进行了深入的研究,主要研究内容以及所完成的工作分为以下四个部分:
     1.针对应用于三代像增强器的MCP的玻璃成份优化以及制作工艺改进的研究,旨在提高MCP耐受真空烘烤和电子清刷能力,并增大MCP的开口面积比,以确保三代像增强器可靠性要求同时改善信噪比。
     研制了一种优化玻璃设计的25mm直径6μm孔径MCP,开口面积比达到68%,确保了三代像增强器5000小时以上的可靠性要求,同时MCP噪声因子降低到1.8,使三代像增强器的信噪比达到25:1。针对研制过程中该MCP制作的像增强器出现的“记忆”现象,分析得出MCP通道内壁的导电层和发射层间存在的富硅层过厚而具有远较导电层要大的电阻,是导致像增强器出现“记忆”现象的原因,并通过严格控制MCP的制作过程,消除了“记忆”现象的出现。
     2.无膜或薄膜MCP三代像增强器的可行性及技术途径探究。完全除去离子阻挡膜可以最大化三代像增强器的光阴极效率的有效利用率,但增加了可靠性的风险,减小膜层厚度是一种更为灵活的途径。
     从理论上讲,将微通道阵列结构移植到体导电基体可使MCP免受离子反馈难题的困绕。研制了一种磷酸钒铁铅系统的体导电玻璃,完成了25mm直径10μm孔径60:1长径比体导电玻璃MCP样品的制作,但这种体导电玻璃MCP的增益较低,并且在机械强度上存在严重不足。
     通过MCP玻璃成份的再优化,减少MCP基体中形成离子反馈的有害物种总量,减薄离子阻挡膜,可在维持甚至提高三代像增强器可靠性的同时,进一步改善三代像增强器的信噪比。研制了一种玻璃成份和微结构再优化的25mm直径6μm孔径MCP,在三代像增强器上的试验证明其噪声因子降低到1.7,同时三代像增强器的工作寿命还得到了进一步的提高。
     3.应用于条纹相机和分幅相机的大面积低阻抗小孔径MCP研制,以及应用于瞬态光学成像的MCP的时间增益和动态特性的研究。
     研制了一种低阻抗MCP玻璃,将还原铅硅酸盐玻璃的最小表面电阻率调整到1012~1013Ω/□范围,满足了制作多种规格的低阻抗MCP的要求。同时,对MCP的饱和效应对条纹相机的动态范围的影响,以及X射线分幅相机超高速脉冲电压选通MCP增益的时间和动态特性的限定因素进行了分析和研究。
     4.采用在MCP玻璃中引入中子灵敏核素,如10B或155,157Gd,使MCP具备对中子探测能力,将MCP的应用拓展到以中子为探针的成像探测。
     完成了掺10mol%natB2O3、掺3mole%natGd2O3和3mole%natGd2O3+10mol%natB2O3的50mm直径10μm孔径的MCP制作,实验得出3mole%natGd2O3玻璃的MCP能够达到对热中子成像的35%的探测效率,通过理论模型预示掺3mole%natGd2O3的MCP对热中子的探测效率相当于甚至优于掺20mole%的10B203的MCP,并且通过MCP几何结构的优化,掺3mole%natGd2O3的MCP的探测效率还具有相当程度提高的潜力。
As a channel electron multiplier array with two-dimensional spatial and temporal resolution, as well as the direct detection ability for several of radiations, Microchannel Plate (MCP) is a powerful multifunctional detector, so it has broad application prospects and scientific value.
     This dissertation is focus on the research of MCP glass material design, fabrication process, as well as MCP based imaging detector, there are four main research topics and achievements in this dissertation:
     1. The research of MCP with glass composition optimized and fabrication process improved specially for generation third (Gen. Ⅲ) image intensifier, providing which can be impose to a higher temperature bake and exceeding intensive electron scrubbing, and an larger open area ratio (OAR), to ensure the reliability while achieve an improved signal to noise ratio (SNR) of Gen.Ⅲ image intensifier.
     A25mm diameter6μm pore size format MCP with optimized glass composition was developed, the OAR of this MCP is up to68%, the mean time to failure (MTTF) of this MCP assembled Gen. Ⅲ image intensifier was achieved excess5,000hours, and noise factor is decreased to1.8, SNR is up to25:1. As a strange "memory" phenomenon was occurred on this MCP assumed image intensifiers, an attempt to explain the formation mechanism of this phenomenon was made and concluded conclusion that "memory" phenomenon of image intensifiers were the results of a thicker silicon-rich layer, which existed between emission layer and conduction layer of channel inner wall of this MCP, having much higher resistance compare with conduction layer, and this phenomenon was eliminated through a strictly controlled MCP manufacture process.
     2. Exploring the feasibility and approach for unfilmed or thin film MCP based Gen. Ⅲ image intensifiers. Completely removal of ion barrier film (IBF) can maximize the effective availability of photocathode quantum efficiency of Gen. Ⅲ image intensifiers, but increasing the risk of reliability, thinning the thickness of film is a more flexible approach.
     Theoretically, extension of MCP to a bulk conductive substrate was considered to be an effective approach to eliminate ion feedback problem, so a vanadium iron lead alumina phosphate glass was developed, although it was succeed in fabricating some experimental samples of25mm diameter rimless format MCP with10μm pore diameter and60:1length to diameter (L/D) ratio, but its gain is lower, and its mechanical strength is insufficient.
     Though further reformulation of MCP glass composition, to restrict ion poisoning resource formation within the substrate of MCP, making it possible for thinning the thickness of IBF, would further improve the SNR while maintain even enhance the reliability of Gen. Ⅲ image intensifier. A25mm diameter6μm pore size format MCP with reformulation of composition and devitrification remodification of microstructure was developed, this MCP assembled Gen.Ⅲ image intensifier demonstrated a noise factor of1.69, while the MTTF is also further improved.
     3. Development of lager area format low resistance small pore size MCP for steak camera and frame camera, and research of the temporal gain and dynamic property of MCP applied to instantaneous phenomenon imaging detection.
     A low resistance MCP glass was developed, this reduced lead silicate glass was tailored to have a minimum surface resistivity range of1012~1013Ω/□, and meet the technical details requirement of several of geometry specification low resistance MCP fabrication, at the same time, the influence of saturation effect of MCP on dynamic range of streak cameras, as well as the temporal gain and dynamic character of ultra-high speed gated MCP applied for X-ray framing camera were analyzed and investigated.
     4. Making MCP sensitive to neutrons, by direct addition of neutron-absorbing atoms into MCP glass, such as10B and155,157Gd, and thus extending the application of MCP to the field of imaging detection which use neutron as probe.
     A50mm diameter rimless10μm pore size format MCP doped with10mol%natB2O3,3mole%natGd2O3and3mole%natGd2O3+10mol%natB2O3, respectively, were fabricated, experimental tests proved the MCP doped with3mole%natGd2O3is capable of imaging thermal neutrons with35%detection efficiency. Theoretical modeling prediction that the detection efficiency of a MCP doped with3mole%of natGd2O3is equivalent even superior to a MCP doped with20mole%of10B2O3, and a potential of enhancement on detection efficiency of this MCP doped with3mole%natGd2O3can also be achieved through a geometry structure optimization.
引文
1. 向世明,倪国强.光电子成像器件原理.北京:国防工业出版社,1999
    2. C. Loty, Saturation effects in channel electron multipliers[J], Acta Electronica,1971,14(l):107-119
    3. O. H. W. Siegmund, J. Vallerga, and B. Wargelin, Background events in microchannel plates, IEEE Trans. Nucl. Sci. NS-35(1988)524-528
    4. Wiza, J. L. Microchannel Plate Detector, Nucl. Instr. and Meth.,1979,162:587-601
    5. A. S. Tremsin, G. V. Lebedev, O. H. W. Siegmund, et al., High spatial and temporal resolution photon/electron counting detector for synchrotron radiation research, Nucl. Instr. Meth. A, 2007,580:853-857.
    6. A. S. Tremsin, O. H. W. Siegmund, J. S. Hull, et al., High resolution photon counting detection system for advanced inelastic X-ray scattering studies, IEEE Trans. Nucl. Sci.,1007,54(4):706-709.
    7. D. K. Bradley, P. M. Bell, O. L. Landen, et 1., Development and characterization of a pair of 30-40 ps x-ray framing cameras, Rev. Sci. Instrum.,1995,66:716-718.
    8. J. Liu, L. Niu, W. Peng, F. Zhang, et al., Application of a fast electrical pulse in gated multichannel plate camera, Rev. Sci. Instr.,2007,78:Art. N 055104.
    9. J.J. Scholtz, D. Dijkkamp, R.W.A. Schmitz, Secondary Electron Emission Properties, Philips J. Res. 1996,50:375-389
    10. J. R. M. Vaughan, A New Formula for Secondary Emission Yield[J], IEEE Transactions on Electron Devices,1989,36(9):1963-1967
    11. P. Schagen, in Advances in Image Pickup and Display, edited by B. Kazan, Academic, New York, Vol. 1, Chap.2.1974
    12. A. Authinarayanan and R. W. Dudding, Changes in secondary electron yield from reduced lead glasses[J], Adv. Electron. Electron Phys. A,1976,40:167.
    13. J. J. Scholtz, D. Dijkkamp, and R. W. A. Schmitz, Secondary electron properties, Philips. J. Res. 1996,50:375.
    14. G.E.Hill, Secondary electron emission and compositional studies on channel-plate glass surface, Adv. Electron Phys,1976,40A:153-165
    15. A.M. Then, C. G. Pantano, Formation and Behavior of Surface Layers on Electron Emission Glasses, J. Non-Cryst Solids.1990,120:178-187
    16. Kulov, S. K., Kesaev, S. A., Bugulova, I. R., et al., Quality of mcirochannel plates working surface. Proc. SPIE.5834:203-206,2005
    17. E. Gatti, K. Oba, P. Rehak, Study of the Electric Field Inside MicroChannel Plate Multipliers, Nuclear Science, IEEE Transactions on,1983,30 (1):461-468
    18. E. H. Eberhardt, Gain Model for Microchannel Plate, Appl. Opt.1979,18(9):1418-1423
    19. P.M.Shikhaliev, Saturation model for secondary electron multiplier detector[J], Nucl Instrum Meth A 1999,420:202-212
    20. A.J. Guest, A computer model of channel multiplier plate performance, Acta Electron., 1971,14:79-97
    21. H.W.Jensen, F.Durand, M.Stark, et.al., A Physically-Based Night Sky Model, Proceedings of ACM SIGGRAPH 2001,2001, Computer Graphics Proceedings, Annual Conference Series:399-408
    22. M.Vastsia, U.Stich, D. Dunlap, Night-Sky Radiant Sterance From 450 to 2000 Nanometers, NTIS, 1972
    23. C.Smith, Detection of Special Operations Forces Using Night Vision Devices, ORNL/TM-2001/172, 2001, www.osti.gov/bridge/product.biblio.jsp
    24. J. P. Estrera, M. R. Saldana, Gated Power Supple Technologies for Advanced Image Intensifiers, Proc. of SPIE,4796:60-70,2003
    25. J. P. Estrer, T. Ostromek, A. Bacarella, Advanced Image Intensifier Night Vision System Technologies: Status and Summary 2002, Proc. of SPIE.4796,49-59,2003
    26. R. Floryan, N. Devoe, T. Peck, New Image Intensifier Family for Military and Homeland Defense, Proc. of SPIE.5071:397-501,2003
    27. J.G.Timothy, Preliminary Results with Saturable Microchannel Array Plate, Rev. Sci. Instrum.1974, 45(6):834-837
    28. H. J. L. Trap, Electronic conductivity in oxide glasses, Acta Electronica,1971,14(1):41-77
    29. J.J.L.Yi, K.M.Yu, Surface Studies of Semiconducting Glass Using Ion Beam Methods, Journal of Non-Crystalline Solids,2000,263&264:416-421
    30.易家良,牛丽红,阔晓悔,等人,半导体玻璃微通板的研制,应用光学,2007,28(2):121-125
    31. T. W. Sinor, E. J. Bender, T. Chau, et al., New Frontiers in 21st Century Microchannel Plate (MCP) Technology:Bulk Conductive MCP Based image intensifier, Proc. of SPIE,4128:5-13,2000
    32. Hamamatch Photonics K. K., Guide to Streak Cameras [EB/OL], Hamamatch Photonics K. K., 2006-09-21/[2009-8-11], http://www.hamamatsu.com/assets/pdf/catsandguides/e_streakh.pdf
    33.胡昕,刘慎业,丁永坤,等,神光Ⅲ主机X射线条纹相机设计,光学学报,2009,29(10):2871-2875
    34.袁永腾,郝轶聃,赵宗清,等人,空间电荷效应对X射线条纹相机动态范围影响的研究,物理学报,2010,59(10):6963-6968
    35. C.Bonte, M.Harmand, F.Dorchies, et.al., High Dynamic Range Streak Camera for Subpicosecond Time-Resolved X-Ray Spectroscopy, Rev. Sci. Instrum.2007,78:043503
    36. Ke-Xun Sun, William Nishimura, A Second-Generation X-Ray Streak Camera with True Large Format, High Dynamic Range, and High Reliability, Proc. of SPIE,5920:5920008,2005
    37.卢宗贵,夏彦文,刘华等,条纹相机动态范围的标定,应用光学,2010,32(5):768-771
    38. Chang, Zenghu, Shan, Bing, Liu, Xiouqin, et al., Picosecond x-ray framing camera using gated MCP. Rev. Sci. Instrum,2003,74 (3):2191-2193,
    39. J.D. Kilkenny, High Speed Proximity Focused x-ray Cameras. Laser and Particle Beams, 1991,9(1):49-69
    40. CAO Zhu-Rong, LIU Shen-Ye, ZHANG Hai-Ying, et.al. Shen-guang III core X-ray framing cameras. Acta Photonica Sinica,2009.38 (8):1181-1185
    41. R.E.Turner, P.Bell, Hank, et al., Time Response of Fast-Gated Microchannel Plates Used as X-ray Detectors. Presented at the 32nd Annual Meeting of the American Physical Society-Division of Plasma Physics, Cincinnati, OH,12-16 Nov.1990
    42. J.A.Oertel, T.N.Archultra, L.S.Schrank, The Large Format X-ray Imager, Rev. Sci. Instru. 2001,72(1):701-704
    43. R.Cooper. Alternatives to 3He Detectors for Neutron Scattering Instruments.2009 IEEE NSS/MIC workshop 29 Oct.2009.
    44. R. Cooper, B.Guerard, K. Soyama, et al., The 3Helium supply crisis and alternative techniques to 3Helium based neutron detectors for neutron scattering applications, Report on the meeting of dectector experts held at FRM II on July 7-8,2009
    45. R.Cooper, I.Anderson, C.Britton, et al., A Program for Neutron Detector Research and Development. A white paper based on a workshop held at Oak Ridge National Laboratory, July 12-13,2002
    46. Graham C. Smith. Neutron Image, Radiography and Tomography. Brookhaven National Laboratory, Upton, NY. March,2002
    47. J.L.Wiza. Microchannle Plate Detectors, Nucl. Instru. and Meth.1979,162:587-601
    48. G.W. Fraser, J.F. Pearson, The direct detection of thermal-neutrons by imaging microchannel-plate detectors, Nucl. Instr. And Meth. A,1990,293:569
    49. G.W.Fraser, J.F.Pearson, W.B.Feller, et. al., Thermal neutron imaging using microchannel plates, Proc. SPIE.1993,1737:298
    50. G. W. Fraser, Thermal neutron imaging, Proc. SPIE,1995,2339:287-301,.
    51. W.B.Feller, R.GDowning, P.L.White, Neturon field imaging with microchannel plates, Proc. SPIE. 4141:291-302,2000
    52. L.V.Groshev, et al, Gamma-ray and Conversion Electron from the (n,γ) Reaction on Gadolinium Isotopes. Bull. Acad. Sci. USSR Phys Ser.1967,26:1127-1146
    53. R.C.Greenwood, C.W.Reich, H.A.Baader, et al., Collective and two-quasiparticle states in 158Gd observed through study of radiative neutron capture in 157Gd, Nucl. Phys. A 304 (1978) 327.
    54. J.Haruna, J.H.Kaneko, M.Higuchi, et. al., Response function measurement of Gd2Si2O5 scintillator for neutrons. In:Proc.IEEE Nuclear Science Symp. Conf. Rec.,1421-1425,2007
    55. A.S.Tremsin, W.B.Feller, R.G. Downing, et. al., Efficiency optimization of microchannel plate (MCP) Nneutron imaging detectors.I.Square channel with 10B doping. Nucl. Instr. Meth. A,2005,539: 278-311
    56. A.S.Tremsin, J.V.Vallerga, J.B.McPhate, et.al, On the possibility to image thermal and cold neutron with sub-15μm spatial resolution, Nucl. Instr. and Meth. A,2008,592:374-384
    57. A.S.Tremsin, W.B.Feller, R.G.Downing,et.al., The Efficiency of Thermal Neutron Detection and Collimation with Microchannel Plates of Square and Circular Geometry, Nuclear Science Symposium Conference Record,2004 IEEE,2004,1:340-344
    58. W.B.Feller, A.S.Tremsin, Thermal and cold neutron counting with microchannel plates." Invited talk, American Nuclear Society,2009 Annual Meeting, Atlanta GA, June 2009.
    59. A.S.Tremsin, J.B.McPhate, J.V.Vallerga, et.al. Detection efficiency, spatial and timing resolution of thermal and cold neutron counting MCP detectors. Nucl. Instr. and Meth. A,2009,604:140-143.
    60. A.S.Tremsin,W.B.Feller,O.H.W.Siegmund. A new concept of thermal neutron counting with sub-microsecond timing resolution. IEEE Transactions on Nuclear Science,2008,55:1664-1669.
    61. A.S.Tremsin,J.B.McPhate,J.V.Vallerga, et al., Detection efficiency, spatial and timing resolution of thermal and cold neutron counting MCP detectors, Nucl. Instr.Meth. A,2009,604:140-143
    62. A.S.Treemsin, J.B.McPhate, J.V.Vallerga, et. al., Improved Efficiency of High Resolutioon Thermal and Cold Neutron Imaging, Nucl. Instr. and Meth. A,2011,628:415-418.
    1. L.Bosch, Image Intensifier Tube Performance Is What Matters, Proc.SPIE,2000,4128:65-78.
    2. Performance Specification Image Intensifier Assembly,18mm Microchannel Wafer High Performance Tube, MX-10160 GS, Naval Surface Warfare Center Crane Division Electro-optic Technology Division (CODE JXQ) Crane Division, Crane, Indiana 47522-5001, PS/09/jxqr/078,30 Nov.2009, Rev:A. http://aunv.blackice.com.au/userfiles/david-mx_10160_milspec_2009_MX-10160-GS_TUBE_SPEC .pdf
    3. Delft Instruments Company. The delft electronic products guide to:image intensifiers, digitised image intensifiers, intensified CCD's, photon counters [EB/OL].2004-09-21/[2004-10-11]. http://www/dep.nl
    4. 周立伟,微光成像技术的进展与展望,激光与光电子学进展,1995,32(4):37-43
    5. J.P.Estrera, E.J.Bender, A.Giordana, et.al., Long Life Generation IV Image Intensifiers with Unfilmed Microchannel Plate, Proc. SPIE,4128:46-53,2000
    6. B.N.Laprade, S.T.Reinhart, Maureen Wheeler, A Low Noise Figure Microchannel Plate Optimized for Gen III Image Intensification Systems, Proc. of SPIE.1990,1243:162-172
    7. A.M.Then, C.G.Pantano, Formation and Behavior of Surface Layers on Electron Emission Glasses, Journal of Nano-Crystalline Solides,1990,120:178-187
    8. P.T.Fransworth, Electron Multiplier, U.S.Patent No.1969,399,1930
    9. P.K.Oschepkov, B.N.Skvortsov, B.A.Osanov,et.al., Application of a continuous secondary multiplication for amplifying small current, Pribory I Teck.1960,4:
    10. GW.Goodrich, W.C.Wiley, Continuous Channel Electron Multiplier, Rev. Sci. Instrum. 1962,33(7):761
    11. J.Adams, B.W.Manley, The Channel Electron Multiplier, Electron Eng.,1965,37:180
    12. J.Adams, B.W.Manley, The Mechanism of Channel Electron Multiplication, IEEE Trans. Nucl. Sci. 1966,NS13:88-99
    13. H.J.L.Trap, Electronic Conductivity in Oxide Glass, Acta Electronica,197114(1):41-77
    14. T. J. Loretz. A Glass Composition [P].UK Patent Application:GB 2,120,232,17, May.1982
    15. W.J.S.Zhang, Jhon A.Williams. Glass Composition and Method for Manufacturing a High Performance Microchannel Plate[P]. U.S.Patent No.5,015,909,May 14,1991
    16. M.J.Iosue. Night Vision Device and Method[P]. U.S.Patent No.:6,198,090 B1 Mar.6,2001
    17. J.F.Pearson, A.N.Brunton, A.P.Martin, et al., Characteristics of Photonis 6μm pore Microchannel Plates, Proceedings of SPIE.4140:217-228,2000
    18. O.H.W.Siegmund, D.Mash, J.Stock, et.al., Characteristics of Squre Pore and Low Noise Microchannel Plate Stackks, EUV, and Gamma-Ray Instrumentation of Astronomy Ⅲ, Proc. of SPIE. 1743:274-272,1992
    19. N. B. Leonov, A. M. Tyutikov, Formation of "Memory" Phenomena of Microchannel Plate, Sov. J. Opt.Technol.1980,47(8):482-484.
    20.王益军,严诚,邓广绪,等,三代微通道板记忆效应研究,半导体技术,2007,32(7):598-601
    21. L. Giudicotti, M. Bassan, R. Pasqualotto, et.al., Simple Analytical Model of Gain Saturation in Microchannel Plate Devices, Rev. Sci. Instrum.,1994,65(1):247-258
    22. A. B. Berkin, V. V. Vasil'ev, How The Interaction of The Channel of a Microchannel Plate Affect The Image Contrast, J. Opt. Technol.2008,75(5):328-330.
    23. G. E.Hill, Secondary electron emission and compositional studies on channel-plate glass surface. Adv. Electron. Phys.1976.40A:153-165,
    24. E.Gatti, K.Oba, P. Rehak, Study of the Electric Field Inside Microchannel Plate Multipliers, IEEE Trans. Nucl. Sci.1983,NS-30:461,
    25. E. H. Eberhardt, Gain Model for Microchannel Plate, Appl. Opt.18(9), (1979),1418-1423
    26. Y. S. Choi, J. M. Kim, Monte Carlo simulations for tilted-channel electron multipliers, IEEE Transactionn on Electron Devices,2000,47(6):1293-12-96.
    27. J. L.Wiza, Microchannel Plate Detector, Nucl. Instr. and Meth,A.,1979,162:587-601
    1. J.P.Estrer, T.Ostromek, A.Bacarella, Advanced Image Intensifier Night Vision System Technologies: Status and Summary 2002, Proc. of SPIE,4796:49-59,2003
    2. J.P.Estrera, E.J.Bender, Adriana, et.al., Long Life Generation IV Image Intensifiers with Unfilmed MicroChannel Plate, Proc. of SPIE,4128:46-53,2000
    3. R.Floryan, N.Devoe, T.Peck, New Image Intensifier Family for Military and Homeland Defense, Proc. of SPIE,5071:397-501,2003
    4. B.N.Laprade, S.T.Reinhart, Maureen Wheeler, A Low Noise Figure Microchannel Plate Optimized for Gen III Image Intensification Systems, Proc. of SPIE,1243:162-172,1990
    5. T.W.Sinor, J.P.Estera, An analysis of electron scattering in thin dielectric films used as ion barriers in generation III image tubes, Proc. of SPIE.,4796:23-32,2003
    6. ITT Specialty Image Intensifiers, http://www.nightvision.com/products/specialty_products/documents/SpecialtyTube.pdf
    7. XR-5TM Technology Image Intensifier,18 millimeter Auto-gating XX2540 http://www.lahouxoptics.ru/_files/editor/file/info/184-3089al.pdf
    8. DOD Interface Standard, Lighting, Aircraft, Night Vision Imaging System (NVIS) Compatible[S], MIL-STD-3009, Superseding MIL-L-85762A,2 February 2001
    9. XD-4TM Technology Image Intensifiers, http://www.isuzuoptics.com.tw/data/product/photonis/xd4_product_sheet.pdf
    10. E. H. Eberhardt, Gain Model for Microchannel Plate, Appl. Opt.1979,18(9):1418-1423
    11. A.M.Then, C.G.Pantano, Formation and Behavior of Surface Layers on Electron Emission Glasses, Journal ofNano-Crystalline Solides,1990,120:178-187
    12. S.K.Kulov, S.A.Kesaev, I.R.Bugulova, et al., Quality of mcirochannel plates working surface. Proc.of SPIE.5834:203-206,2005
    13. G. E.Hill, Secondary electron emission and compositional studies on channel-plate glass surface. Adv. Electron. Phys.1976,40A:153-165,
    14. E.Gatti, K.Oba, P. Rehak, Study of the Electric Field Inside Microchannel Plate Multipliers, IEEE Trans. Nucl. Sci. NS-30,1983,461,
    15. J.G.Timothy, Preliminary Results with Saturable Microchannel Array Plate, Rev. Sci. Instrum. 1974,45(6):834-837,
    16. H. J. L. Trap, Electronic conductivity in oxide glassesv, Acta Electronica,1971,14(1):41-77
    17. T. W. Sinor, E. J. Bender, T. Chau, et al., New Frontiers in 21st Century Microchannel Plate (MCP) Technology:Bulk Conductive MCP Based image intensifier, Proc. of SPIE,4128:5-1,2000
    18. N.F.Mott and E.A.Davis, Electronic processes in non-crystalline materials, Clarendon Press, Oxford, 1971, Section 6.8,369,
    19. J.J.L.Yi, K.M.Yu, Surface Studies of Semiconducting Glass Using Ion Beam Methods, Journal of Non-Crystalline Solids,2000,263&264:416-421
    20.易家良,牛丽红,阔晓梅,等人,半导体玻璃微通道板的研制,应用光学,2007,28(2):121-125
    21. J. D. Mackenzie, Modern Aspects of The Vitreous State, Vol.Ⅲ, Butterworths, London,1964
    22. V.I.Loltionov, R.I.Bagduew. High science technology of final screen-body assembly (SBA) cleaning of proximately focused image intensifiers tubes (I2). Proc. of SPIE.5834:159-168,2005
    1. 胡昕,刘慎业,丁永坤,等,神光Ⅲ主机X射线条纹相机设计,光学学报,2009,29(10):2871-2875
    2. Hamamatch Photonics K. K., Guide to Streak Cameras [EB/OL], Hamamatch Photonics K. K., 2006-09-21/[2009-8-11], http://www.hamamatsu.com/assets/pdf/catsandguides/e_streakh.pdf
    3. 袁永腾,郝轶聃,赵宗清,等人,空间电荷效应对X射线条纹相机动态范围影响的研究,物理学报,2010,59(10):6963-6968
    4. C.Bonte, M.Harmand, F.Dorchies, et.al., High Dynamic Range Streak Camera for Subpicosecond Time-Resolved X-Ray Spectroscopy, Rev. Sci. Instrum.2007,78:043503
    5. Ke-Xun Sun, William Nishimura, A Second-Generation X-Ray Streak Camera with True Large Format, High Dynamic Range, and High Reliability, Proc. of SPIE,2005,5920:5920008,
    6. J.D.Wiedwald, R.A.Lerche, Streak camera dynamic range optimization, Proc. of SPIE,1987,832: 2275-282.
    7. R.A.Lerche, J.W.McDonald, R.L.Griffith,et.al., Preliminary Performance Measurements for a Streak Camera with a Large-Format direct-Coupled Charged-Coupled Device Readout, Review of Sci. Instrum.,2004,75(10):4042
    8. 田进寿,赵宝升,灵建军,等人,飞秒电子衍射系统中调制传递函数的理论计算,物理学报,2006,55(7):3368-3374
    9. D.J.Bradley,A.G.Roddie,W.Sibbett,et.al, Picosecond x-ray chronoscopy, Opt. Comms.1975,15:231
    10. B.Henke,J.Liesegang, S.Smith, Soft-x-rayinduced secondary-electron emission from semiconductors and insulators:models and measurements, Phys. Rev.1979, B 19:3004.
    11. B.Henke, J.Knauer, K. Premaratne, The Characterization of X-Ray Photocathodes in the 0.1-10-keV Energy Region, J. Appl. Phys.1981,52:1509
    12. B.Boutry, C.Cavailler, N. Fleurot, P600/650 X-ray streak camera with optimized spatio-temporal re solution, Proc. of SPIE,348:766,1982
    13. Z.Chang, A.Rundquist, J.Zhou, et. al., Demonstration of a sub-picosecond X-ray streak camera, Appl.Phys.Lett.1996,69(1):133-135
    14. R.T.Eagleton, S.F.James, Dynamic Range Measure on Streak Image Tubes with Internal and External Microchannel Plate Image Amplification, Rev. Sci. Inatrum,2003,74(3):2215-2220
    15.卢宗贵,夏彦文,刘华等,条纹相机动态范围的标定,应用光学,2010,32(5):768-771
    16. E.D.Eberhardt, Gain Model for Microchannel Plate, Applied Optics,1979,18(9):1418-1423
    17. L. Giudicotti, M. Bassan, R. Pasqualotto, et.al., Simple Analytical Model of Gain Saturation in MicroChannel Plate Devices, Rev. Sci. Instrum.,65 (1):247-258,1994
    18. O.L.Landen, P.M.Bell, J.A.Oertel, et.al. Gain Uniformity, Linearity, Saturation and Depletion in Gated Microchannel-Plate X-Ray Framing Camera, Proc of SPIE.2002:2-13,1993
    19. P. Schagen, in Advances in Image Pickup and Display, edited by B. Kazan, Academic, New York, Vol.1, Chap.2.1974
    20. CAO Zhu-Rong, LIU Shen-Ye, ZHANG Hai-Ying, et.al., Shen-guang Ⅲ core X-ray framing cameras. Acta Photonica Sinica,38 (8):1181-1185,2009
    21. Wen Shu Huai, Cheng Jinxiu, Yang Cunbang, et al., Application of an x-ray framing camera in ICF diagnostic. Proc. of SPIE,4424:187-189,2001
    22. Chang Zenghu, Shan Bing, Liu Xiouqin, et al., Picosecond x-ray framing camera using gated MCP. Rev. Sci. Instr.2003,74 (3):2191-2193
    23. J.D.Kilkenny, High Speed Proximity Focused X-ray Cameras. Laser and Particle Beams,1991,9(1): 49-69
    24. R.E.Turner, P.Bell, Hanks, et al., Time Response of Fast-Gated Microchannel Plates Used as X-ray Detectors. Presented at the 32nd Annual Meeting of the American Physical Society-Division of Plasma Physics, Cincinnati, OH,12-16 Nov.1990
    25. G.A.Rochau, J.E.Bailey, G.A.Chandler, et al., Energy Dependent Sensitivity of Microchannel Plate Detectors, Rev. Sci. Instrum.2006,77:10E323
    26.常增虎,微通道板皮秒选通特性的数值模拟,光子学报,1995,24(4):347-352.
    27. G.W. Fraser, The gain, temporal resolution and magnetic-field immunity, Nucl. Instr. Meth. A,1990, 291:595-606.
    28. G.W. Fraser, J.F. Pearson, J.E. Lees, et. al., Advances in Microchannel Plate Detectors, Proc. SPIE. 982:98-107,1988,
    29.蔡厚智,刘进元,牛丽红,等人,微通道板中电子倍增时间特性的数值模拟,强激光与粒子束,2009,21(10):1542-1547
    30. J.A.Oertel, T.N.Archultra, L.S.Schrank, The Large Format X-ray Imager, Rev. Sci. Instru.2001, 72(1):701-704
    31. C. Kruschwitz, M. Wu, K. Moy, Monte Carlo Simulations of High-speed, Time-gated MCP-based X-ray Detectors:Saturation Effects in DC and Pulsed Modes and detectors Dynamic Range, Rev Sci Instrum.2008,79(10):10E911
    32. GW.Fraser, The Ion Detection Efficiency of Microchannel Plates(MCPs), International Journal of Mass Spectrometry,2002,215:13-30
    33. H.Bruining, Physics and Applications of Secondary Electron Emission (Pergamon Press, Ltd., London,1954).
    34. G.W.Fraser, The characterisation of soft X-ray photocathodes in the wavelength band 1-300 A, Nucl. Instrum. Meth. A,1983,206:251
    35. G.W.Fraser, M.T.Pain, J.E.Lees, C. R. Binns, J. F. Pearson, and P. R. Houghton, Nucl. Instrum. Methods Phys. Res. A,1992,321:385
    36. A.Authinarayanan, R. W. Dudding, Changes in secondary electron yield from reduced lead glasses Adv. Electron. Electron Phys. A,1976,40:167
    37. J.J. Scholtz, D. Dijkkamp, R.W.A. Schmitz, Secondary Electron Emission Properties. Philips J. Res. 1996,50:375-389
    38. G.E.Hill, Secondary electron emission and compositional studies on channel-plate glass surface"', Adv. Electron Phys,1976,40A:153-165
    39. G.A.Rochau, J.E.Bailey, G.A.Chandler, et al., Energy dependent sensitivity of microchannel plate detectors. Rev. Sci. Instrum.2006,77:10E323
    40. G.A.Rochau, M.Wu. C.Kruschwitz, et.al., Meausrement and Modeling of Pulsed Microchannel Plate Operation, Rev. Sci. Instrum,2008,79:10E902
    41. E.Gatti, K.Oba, P.Rehak, Study of the electric field inside microchannel plate multipliers, IEEE Trans. Nucl. Sci.1983,NS-30:461
    42. Y. S. Choi, J. M. Kim, Monte Carlo Simulations for Tilted-channel Electron Multipliers, IEEE Trans, on Electron Devices,2000,47:1293-1296.
    43. C. Loty, Saturation Effects in Channel Electron Multipliers, Acta Electronica,1971,14:107-109
    44. Wenzheng Yang, Yonglin Bai, Xiaohong Bai,et.al., Optimal design of temporal resolution of soft X-ray picosecond framing cameras based on micro-channel plate, COL,2011,9:S10301
    45. Houzhi Cai, Jinyuan Liu, Lihong Niu,et.al., Monte Carlo simulation for microchannel plate framing camera, Optical Engineering,2010,49(8):080502-1
    1. R. Cooper, I. Anderson, C. Britton, et.al., A Program for Neutron Detector Research and Development. A white paper based on a workshop held at Oak Ridge National Laboratory, July 12-13,2002
    2. G. C. Smith, Neutron Image, Radiography and Tomography, Brookhaven National Laboratory, Upton, NY, March,2002
    3. G. W. Fraser, J. F. Peason, The Direct Detection of Thermal-neutrons by Imaging Microchannel-Plate Detectors, Nucl. Instr. and Meth, A,1990,293:569
    4. G. W. Fraser, J. F. Pearson, W. B. Feller, et.al., Thermal Neutron Imaging Using Microchannel Plates, Proc.SPIE,1737:298,1993
    5. Anton S. Tremsin, W. Bruce Feller, R. Gregory Downing, et.al., The Efficiency of Thermal Neutron Detection and Collimation with Microchannel Plates of Square and Circular Geometry, Nuclear Science Symposium Conference Record,2004 IEEE,1:340-344
    6. A.S.Tremsin, W.B.Feller, The theory of compact and efficient circular-pore MCP neutron collimators, Nuclear Instrum. and Meth. in Phys. Research A,2006,556:556-564
    7. O.H.W.Siegmunda, J.V.Vallergaa, A.Martina, et.al., A high spatial resolution event counting neutron detector using microchannel plates and cross delay line readout, Nuclear Instr. and Meth. in Phys Research A,2007,579:188-191
    8. A.S.Tremsin, J.B.McPhate, J.V.Vallerga, et. al., Detection Efficiency, Spatial and Timing Resolution of Thermal and Cold Neutron Counting MCP Detectors, Nuclear Instru. and Meth. in Phys. Research A,2009,604:140-143,
    9. A.S.Tremsin, J.B.McPhate, J.V.Vallerga, et.al., Improved efficiency of high resolution thermal and cold neutron imaging, Nuclear Instru. and Meth. in Phys. Research A,2001,628(1):415-418
    10. A.S.Tremsi, W.B.Feller, R.G. Downing, Efficiency optimization of microchannel plate (MCP) neutron imaging detectors. I. Square channels with B doping, Nuclear Instr. and Meth. in Phys Research A, 2005,539:278-311
    11. L.V.Groshev et al, Gamma-ray and Conversion Electron from the (n,y) Reaction on Gadolinium Isotopes. Bull. Acad. Sci. USSR Phys Ser. 26:1127-1146
    12. R.C.Greenwood, C.W.Reich, H.A.Baader et al., Collective and two-quasiparticle states of 158Gd observed through study of radiative neutron capture in 157Gd, Nucl. Phys. A,1978,304:327.
    13. J.Haruna, J.H.Kaneko, M.Higuchi, et al., Response function measurement of Gd2Si205 scintillator for neutrons. In:Proc.IEEE Nuclear Science Symp. Conf. Rec.,2007,1421-1425.
    14. O.H.W.Siegmund, M.A.Gummin, T.Sasseen, et al., Microchannel plates for the UVCS and SUMER instruments on the SOHO satellite, Proc. of SPIE,1995,2518:344-355,
    15.张兴华,赵宝升,刘永安,等人,紫外单光子成像增益特性研究,物理学报,2009,58(3):1770-06
    16.尼启良,刘世界,陈波,极紫外位置灵敏阳极光子计数成像探测器研究,·中国光学与应用光学,2010,2(1):36-40
    17.何玲平,尼启良,李敏,等人,楔条形阳极光子计数探测器成像性能的检测,光学精密工程2009,17(11):2699-2704
    18.刘永安,赵宝升,朱香平,等人,楔条形阳极探测器的性能测试与分忻,光子学报,2009,28(4):751-757
    19.田阳,基于中子敏感微通道板的中子事件计数探测器:[博士学位论文],北京,清华大学,2013