新型复杂电磁结构理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型电磁结构和材料是当前研究的热点,在微波、毫米波领域具有巨大的应用潜力。但是,新型电磁材料的理论和应用起步不久,在理论研究、数值仿真、实验测试和实际应用等方面还有待深入。有鉴于此,本文首先通过对新型电磁材料所具有特殊性质的分析,抓住Fermat原理,电磁能量和最小作用量原理等电动力学中的基本概念,推广和解决了新型电磁结构相关研究中的一些关键性理论问题。随后,本文并没有仅仅停留于单纯的理论分析,在后面的章节中对几种典型新型材料中的一些新特性进行了探索研究。以具有代表性的矩形栅格PBG周期阵列结构为研究对象,研究了线性和非线性Kerr型掺杂两大类媒质情况下主要的一些特性,对光子晶体的带隙特性、相干孤子特性以及耗散作用的影响进行了深入分析,并给出了计算实例。根据多种新型电磁材料和结构所具有的独特电磁性质的不同特点,对其中相应的结构模型分别进行了全波仿真和实验分析。本文的主要工作体现在以下几个方面:
     深入研究了左手媒质形成负折射的机理,提出了广义折射率的表示形式,从而对Fermat原理进行了推广。对Fermat原理与最小作用量原理的进行了对比分析,并通过路径积分运算,使两者在宏观层面上得到了一定的统一。进而揭示了相位在作用量原理中的重要作用。
     对新型电磁材料中有关电磁能量的一些问题进行了论述。在Englman等人工作的基础上,发展了电磁作用量以及作用量原理的形式。在引入分数微分的基础上,给出耗散电磁媒质中的Lagrange量,并通过推导相应的Euler-Lagrange方程获得了时域形式的Lorentz媒质模型。重新考虑了Hamilton量,系统时间变换不变量和能量间的关系,由此得到了与近期文献工作中相符合的电磁能量形式。讨论了基于Lorentz媒质模型的色散媒质中的Foster定理。以路模型的形式对电磁能量的进行了分析,在理论上建立了Tretyakov和Boardman各自所定义的电磁能量形式之间的联系。
     分别研究了线性媒质和非线性媒质光子晶体周期结构。应用平面波展开法分析了线性媒质光子晶体的带隙结构。通过提出的作用量形式,采用变分方法分析了二维矩形栅格光子晶体X点孤子的相干耦合特性。考虑到耗散效应的普遍性,通过有耗作用量原理对于相应模型中耗散作用对孤子特性的影响进行了研究。
     对具有代表性的几种新型电磁媒质进行了仿真和实验研究,从而对新型材料所表现出的一些新现象进行了探索。对平板波导中加载不同分布组合的左、右手媒质块进行了等效媒质模拟,对平面微带复合传输阵列及其单元结构所具有的表面波和空间波特性进行了电路级和全波仿真分析,对在Matematerials阵列中凋落波特性进行了较为全面的比较分析。在EBG高阻表面加载实验测试方面,结合测试对象的具体情况对波导测量法进行了改进,对单向加载电阻元件的Mushroom型EBG结构进行了制作,并以此对样品的反射特性进行了测试,取得了初步的结果。
The attention of electromagnetic researchers is recently focused on new-type electromagnetic structures and materials, which have huge applications in microwave and millimeter wave fields. However, the study on the theory and application of new-type electromagnetic structures and materials is at the initial stage. Lots of efforts should be put into the research on its related theory, numerical simulation, experimental measurement and actual applications. Therefore, the analysis on the special properties of Left-Handed Materials and new-type electromagnetic medium is applied at first. Then, on the basis of basic concepts such as Fermat's principle, electromagnetic energy and least action principle and so on in electrodynamics, generalizing and solving some key theoretical problem in the researches related to new electromagnetic medium. In addition to the theoretical study, several novel properties of some representative electromagnetic or optical structures are studied in the following chapters. Taking typical photonic band-gap structure of square lattice as research model, certain main properties, such as band-gap, coherent solitons and dissipation in photonic critical with linear and non-linear Kerr type media, are investigated respectively. And the numerical example is also given out. Based on the consideration of the properties in several new electromagnetic materials and structures, some structure models are analyzed in full-wave simulation and experiment. The author's major contributions are listed as follows:
     After employing the further investigation on negative refraction in Left-handed, the generalized expression of refractive index is proposed and Fermat's principle is also generalized. Through comparing Fermat's principle and least action principle and using path integrals, the two principles are united in macroscopic level. The importance of phase in action principle is pointed out.
     The electromagnetic energy in new electromagnetic medium is investigated. Different expression of electromagnetic energy is proposed based on the early works of Englman et al. Lagrangian in dissipative electromagnetic material is proposed on the basis of the introduction of fractional derivative. Lorentz medium model is deduced from Euler-Lagrange equation related. Hamiltonian, invariance of time and energy are investigated, and electromagnetic energy obtained fits early work reported in literature. Foster's theory based on Lorentz model is investigated in dispersive medium. Through using circuit model, electromagnetic energy expressions defined by Tretyakov and Boardman is related theoretically.
     Photonic band-gap (PBG) structure in linear and non-linear media is study respectively. Band-gap property of linear photonic crystal is analysis by using plane wave method. Defining action and applying variational method, coherent effects of X-point solitons are investigated. Considering extensive existence of dissipation, the effect of dissipation on solitons is also investigation through introducing dissipative least action principle.
     In order to explore novel performance, numerical simulation and experiment is employed for several typical new-type electromagnetic. Left handed materials blocks lying in Planar waveguide with different spatial distribution is simulated. Surface and spatial wave in planar microstrip composite periodic structure and it unit are analyzed in circuit and full wave levels. Evanescent wave performance is study in different type matematerials. Applying improved waveguide measurement, Mushroom-like electromagnetic band-gap (EBG) structure loaded resisters in single direction is produced and its reflection is measured. Preliminary result has been obtained.
引文
[1]. J. B. Pendry, D. R. Smith, "Reversing light:negative refraction," Physics Today, Vol.57, No.2, pp.37-44,2004.
    [2]. R. Remski, B. Gray, L. Ma, "Frequency selective surfaces", www.ansoft.com,2002.
    [3]. E. Yablonovitch, "Inhibited spontaneous emission in soli-state physical and electronics," Phys. Rev. Lett, Vol.58, No.20, pp.2059-2062,1987.
    [4]. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol.58, pp.2486-2489,1987.
    [5].林为干,微波理论与技术,北京:科学出版社,1979.
    [6]. K. M. Leung, Y. F. Liu, "Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media," Phys. Rev. Lett., Vol.65, No.21, pp.2646-2649,1990.
    [7]. K. M. Ho, C. T. Chan, C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett., Vol.65, No.25, pp.3152-3155,1990.
    [8]. M. Plihal, A. A. Maradudin, "Photonic band structures for two dimensions:the triangular lattice," Phys. Rev. B, Vol.44, No.16, pp.8565-8571,1991.
    [9]. J. B. Pendry, A. Mackinnon, "Calculation of photon dispersion relations", Phys. Rev. Lett., Vol.69, No.19, pp.2772-2775,1992.
    [10]. J. B. Pendry, "Photonic band structures," Journal of Modern Optics, Vol.41, No.2 pp.209-229,1994.
    [11]. C. T. Chan, Q. L. Yu, K. M. Ho, "Order-N spectral medthod for electromagnetic waves," Phys. Rev. B, Vol.51, No.23, pp.16635-16642,1995.
    [12]. J. B. Pendry, "Calculating Photonic Band Structure," Journal of Physics: Condensed Matter, Vol.8,No.9, pp.1085-1108,1996.
    [13]. A Smerzi, A Trombettoni, PG Kevrekidis, AR Bishop, "Dynamical Superfluid-Insulator Transition in a Chain of Weakly Coupled Bose-Einstein Condensates," Phys. Rev. Lett., Vol.89, No.17, pp.170402,2002.
    [14]. J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature, Vol.422, No.6928, pp.147-150,2003.
    [15]. O. Cohen, T. Schwartz, J. W. Fleischer, M. Segev, D. Christodoulides, "Multiband Vector Lattice Solitons," Phys. Rev. Lett., Vol.90, No.11, pp.113901,2003.
    [16]. H. Kosaka, T. Kawashima, A. Tomita et al., "Superprism phenomena in photonic crystals:Toward microscale lightwave circuite," Journal of Light Wave Technology, Vol.17, No.11, pp.2032,1999.
    [17].唐海侠,王启明,“半导体光子晶体有源器件的研究进展”,微纳电子技术,Vol.43,No.2,pp.65-72,2006.
    [18]. N. Akozbek, S. John, "Optical solitary waves in two-and three-dimensional nonlinear photonic band-gap structures," Phys. Rev. E, Vol.57, No.2, pp.2287-2319, 1998.
    [19]. J. W. Fleischer, G. Bartal,O. Cohen et al., "Observation of Vortex-Ring "Discrete" Solitons in 2D Photonic Lattices," Phys. Rev. Lett., Vol.92, No.12, pp.123904, 2004.
    [20]. V. Radisic, Y. X. Qian, R. Cocioli, T. Itoh, "Novel 2-D photonic bandgap structure for microstrip lines," IEEE Microwave and guided wave letters, Vol.8, No.2, pp.69-71,1998.
    [21]. F. R. Yang, K. P. Ma, Y. X. Qian, T. Itoh, "A novel TEM waveguide using uniplanar compact photonic-bandgap structure," IEEE Trans Microwave Theory and Tech., Vol.47, No.11, pp.2092-2098,1999.
    [22]. Z. Li, Y. R. Samii, "PBG, PMC and PEC ground plane:a case study of dipole antennas," IEEE Antennas and Propagation Symposium, Vol.2, pp.674-677,2000.
    [23]. F. Yang, Y. R. Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Trans. Antennas Propagat., Vol.51, No.10,pp.2691-2703,2003.
    [24]. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexpolus, E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech.,Vol.47,pp.2059-2074,1999.
    [25]. D. Sievenpiper, "High-impedance electromagnetic sufaces," Ph. D. dissertation, Dep. Elect. Eng. Univ. California at Los Angeles, Los Angeles, CA,1999.
    [26]. C. R. Simovski, A. A. Sochava, S. A. Tretyakov, "New compact and wide-band high-impedance surface," IEEE Antennas and Propagation Symposium, Vol.1, pp.297-300,2005.
    [27]. C. R. Simovski, P. de Maagt, S. A. Tretyakov, M. Paquay, A. A. Sochava, "Angular stabilisation of resonant frequency of artificial magnetic conductors for TE-incidence," Electronic Letters, Vol.40, N6.1, pp.1-3,2004.
    [28].付云起,童创明,张国华,袁乃昌,“平面微波光子晶体的表面波带隙”,国防科技大学学报,Vol.25,No.2,pp.76-78,2003.
    [29].闫敦豹,付云起,张国华,高强,袁乃昌,“EBG结构在微带天线阵中的应用”,Vol.21,No.S1,pp.75-78,2005.
    [30]. GH.Zhang, N.C.Yuan,"Radiation characteristics improvement in waveguide-fed slot antenna with a high-impedance ground plane(HIGP)," Microwave Optical Technolgy Letters, Vol.45, No.2, pp.176-179,2005
    [31].李龙,“广义电磁谐振与EBG电磁局域谐振研究及应用”,西安电子科技大学博士论文,2005
    [32].李斌,李龙,梁昌洪,“EBG高阻表面结构的矩形波导宽边缝隙天线,”电子学报,Vol.34,No.3,pp.429-432,2006.
    [33]. Long Li, Bin Li, Hai-Xia Liu, Chang-Hong Liang, "Locally resonant cavity cell model for electromagnetic band gap structures," IEEE Trans. Antenna and Propagation, Vol.54, No.1, pp.90-100,2006.
    [34]. F. Auzanneau, R. W. Ziolkowski, "Microwave signal rectification using artificial composite materials composed of diode-loaded electrically small dipole antennas," IEEE Trans. Microwave Theory Tech., Vol.46, No.11, pp.1268-1637,1998.
    [35]. D. J. Kern, D. H. Werner, M. J. Wilhelm, "Active negative impedance loaded EBG structures for the realization of ultra-wideband artificial magnetic conductors," IEEE Antennas and Propagation Symposium, pp.427-430,2003.
    [36]. F. Auzanneau, R. W. Ziolkowski, "Artificial composite materials consisting of nonlinearly loaded electrically small antennas:operational-amplifier-based circuits with applications to smart skins," IEEE Trans. Antenna and Propagation, Vol.47, No.8,pp.1330-1339,1999.
    [37].高强,银燕,闫敦豹,袁乃昌,“基于光子晶体的电磁吸收材料”,红外与毫米波,Vol.25,No.2,pp.143-146,2006.
    [38]. V G. Veselago, "The electromagnetics of substances with simultaneously negative values of epsilon and mu," Soviet Physics USPEKHI, Vol.10, No.4, pp.509-514, 1968.
    [39]. J. B.Pendry, A. J. Holden, W. J. Stewart, I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett:, Vol.76, No.25, pp.4773-4776,1996.
    [40]. J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, "Low frequency plasmona in thin-wire structures," J. Phys. C, Vol.10, No.22, pp.4785-4809,1998.
    [41]. J. B. Pendry, A. J. Holden,D. J. Robbins, W. J. Stewart, "Magnetism from Conductors and Enhanced Nonlinear Phenomena," IEEE Trans. Microwave Theory Tech., Vol.47, No.11, pp.2075-2084,1999.
    [42]. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol.84,No.18, pp.4184-4187,2000.
    [43]. R. A. Shelby, D. R. Smith, S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol.292, No.6,'pp.77-79,2001.
    [44]. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol.85, No.18, pp.3966,2000.
    [45]. G. W.'t Hooft, "Comment on'Negative refraction makes a perfect lens'," Phys. Rev. Lett., Vol.87, No.24, pp.249701,2001 and J. B. Pendry, "Pendry replies," Phys. Rev. Lett., Vol.87, No.24, pp.249702,2001
    [46]. P. M. Valanju, R. M. Walser, A. P. Valanju, "Wave refraction in negative-index media:always positive and very inhomogeneous," Phys. Rev. Lett., Vol.88, No.18, pp.187401,2002.
    [47]. W. T. Lu, J. B. Sokoloff, S. Sridhar, "Comment on'Wave refraction in negative-index media:always positive and very inhomogeneous'," arXiv:cond-mat/0207689 at http://arXiv.org.
    [48]. J. B. Pendry, D. R. Smith, "Comment on'Wave refraction in negative-index media: always positive and very inhomogeneous'," Phys. Rev. Lett., Vol.90, No.2, pp.029703,2003.
    [49]. P. M. Valanju, R M. Walser, A. P. Valanju, "Reply to Pendry-Smith comment on 'Wave refraction in negative-index media:always positive and inhomogeneous'," Phys. Rev. Lett., Vol.90, No.2, pp.029704,2003.
    [50]. C. Caloz, T. Itoh, "Applicatoin of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line," In Proc. IEEE-AP-S USNC/URSI National Radio Science Meeting, Vol.2, pp.412-415, San Antonio, TX,2002.
    [51]. C. Caloz, T. Itoh, "Transmission line approach of left-handed (LH) structures and microstrip realization of a low-loss broadband LH filter," IEEE Trans. Antenna and Propagation, Vol.52, No.5, pp.1159-1166,2004.
    [52]. A. Grbic, G. V. Eleftheriades, "Growing evanescent waves in negatie-refracitve-index transmission-line media," Applied Physics Letters, Vol.82, No.12, pp.1815-1817,2003
    [53]. A. Grbic, G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett., Vol.92, No.11, pp.117403,2004.
    [54]. T. J. Cui, Q. Cheng, Z. Z. Huang, et al, "Transmission line design for energy location," Phys. Rev. B, Vol.72, No.3, pp.035112,2005.
    [55]. Q. Cheng, T. J. Cui, "High power generation and transmission using planar RH-LH waveguide,"Phys. Rev. B, Vol.72,No.11, pp.113112,2005.
    [56]. T. J. Cui, Q. Cheng, W. B. Lu et al., "Localization of electromagnetic energy using a left-handed-medium slab," Phys. Rev. B, Vol.71, No.4, pp.045114,2005.
    [57]. L. D. Landau, E. M. Lifshitz, L. P. Pitaevskii, Electrodynamics of Continuous Media 2nd edition, Oxford:Pergamon,1984.
    [58]. J. D. Jackson, Classical Electrodynamics 3rd edition, New York:Wiley,1999.
    [59]. P. H. Siegel, "Keynote speeches:Terahertz technology and applications," APMC'2005,苏州,中国.
    [60]. V. V. Cheianov, V. Fal'ko, B. L. Altshuler, "The focusing of electron flow and a veselago lens in grapheme p-n junctions," Science, Vol.315, pp.1252-1255,2007.
    [61]. I. I. Smolyaniov, Y. J. Hung, C. C. Davis, "Magnifying superlens in the visible frequency range," Science, Vol.315, pp.1699-1701,2007.
    [62].许良,为统一而生:哲人科学家——亥姆霍兹,厦门:福建教育出版社,1998.
    [63].许良,最小作用量原理与物理学的发展,成都:四川教育出版社,2001.
    [64].B.B.Py(梅凤翔译),“欧拉和力学的变分原理”,力学进展,Vol.23,No.1,pp86-104,1993.
    [65].M.波恩,E.沃尔夫(杨葭孙译),光学原理,北京:科学出版社,1978.
    [66].M.普朗克(钟间译),理论物理学导引(第四卷)光学,北京:高等教育出版社,1959.
    [67].汪茂光,几何绕射理论,西安:西安电子科技大学出版社,1994.
    [68].郭弘,邓锡铭,"Fermat原理及稳态光束传输的微分几何研究”,中国科学(A辑),Vol.25,No,3,pp.273-279,1995.
    [69].曹清,邓锡铭,郭弘,“对Fermat原理的一个推广”,中国科学(A辑),Vol.26,No.3,pp.437-442,1996.
    [70].余卫龙,吴深尚,郭弘,胡巍,"Fermat原理的进一步推广”,中国科学(A辑),Vol.29,No.7,pp.667-672,1999.
    [71]. R. Loudon, "The propagation of electromagnetic energy through an absorbing dielectric," J. Phys. A, Vol.3, pp.233-245,1970.
    [72]. R. Ruppin, "Electromagnetic energy density in a dispersive and absorptive material," Phys. Lett. A, Vol.299, pp.309-312,2002.
    [73]. R. Englman, A. Yahalom, "Energy density of a dissipative polarizable solid by a Lagrangean formalism," Phys. Lett. A,Vol.314 pp.367,2003.
    [74]. T. J. Cui, J. A. Kong, "Time domain electromagnetic energy in a frequency dispersive left-handed medium," Phys. Rev. B, Vol.70, No.20, pp.205106,2004.
    [75]. S. Tretyakov, "Electromagnetic field energy density in artificial microwave materials with negative parameters," Phys. Lett. A, Vol.343, No.1-3, pp.231-239, 2005.
    [76]. A. D. Boardman, "Electromagnetic energy in a dispersive metamaterial," Phys. Rev. B, Vol.73, No.16, pp.165110,2006.
    [77]. H. B. Lawrence, H. D. Harry, "Dynamical symmetries and the nonconservative classical system," Phys. Rev. D, Vol.11, No.2, pp.279-281,1975.
    [78].褚庆昕,梁昌洪,“广义Foster定理”,西安电子科技大学学报,Vol.22,No.4,pp.435-438,1995.
    [79]. A. O. Caldirola, A. J. Leggett, "Quantum tunneling in a dissipative system," Annals of Physics, Vol.149, No.4, pp.374-456,1983.
    [80]. U. Weiss, Quantum Dissipative System, Singapore:World Scientific,1993.
    [81].石顺祥,刘继芳,孙艳玲,光的电磁理论,西安:西安电子科技大学出版社,2006.
    [82].牛中奇,电磁场理论基础,北京:电子工业出版社,2001.
    [83]. F. A. Hope and G. I. Stegeman, Applied Classical Electrodynamic, New York: John Wiley & Sons,1985.
    [84]. V. G. Veselago, "About the wording of Fermat's principle for light propagation in media with negative refraction index," arXiv:cond-mat/0203451 at http://arXiv.org.
    [85].梁昌洪,电磁场理论基础内部讲稿,西安电子科技大学,2007.
    [86]. A. A. Houck, J. B. Brock, I L. Chuang, "Experimental observations of a left-handed materials that obeys snell's law," Phys. Rev. Lett., Vol.90, No.13, pp.137401, 2003.
    [87]. A. P. Kirilyuk, "75 Years of Matter Wave:Louis de Broglie and Renaissance of the Causally Complete Knowledge," arXiv:quant-ph/9911107 at http://arXiv.org.
    [88]. R. D. Guenther, Modern Optics, New York:John Wiley & Sons,1990.
    [89].曾谨言,量子力学(卷Ⅱ),北京:科学出版社,1995.
    [90].周世勋,量子力学教程,北京:人民教育出版社,1981.
    [91].曾谨言,量子力学(上册),北京:科学出版社,1981.
    [92], D. K. Cheng, Field and Wave Electromagnetics (Second Edition), Massachusetts: Addison-Wesley Publishing Company,1983.
    [93].R.F.哈林登(孟侃译),正弦电磁场,上海:上海科学技术出版社,1964.
    [94]. J. Neufeld, "Reformulation of the dielectric constant and of Ohm's law in an absorbing medium," Phys. Rev. Vol.152, No.2, pp.708-717,1966.
    [95]. H. Bateman, "On Dissipative Systems and Related Variational Principles," Phys. Rev. Vol.38, pp.815-819,1931.
    [96]. P. Caldirola, "Forze non conservative nella meccanica quantistica," Nuovo Cimento Vol.18, pp.393,1941.
    [97]. P. S. Bauer, "Dissipative dynamical system I," Proceedings of the National Academy of Sciences, Vol.17, No.5, pp.311-314,1931.
    [98]. J. R. Ray, "Lagrangians and systems they describe-how not to treat dissipation in quantum mechanics," Am. J. Phys., Vol.47, No.7, pp.626-629,1979.
    [99]. F. Riewe, "Nonconservative Lagrangian and Hamiltonian mechanics," Phys. Rev. E, Vol.53, No.2, pp.1890-1899,1996.
    [100]. F. Riewe, "Mechanics with fractional derivatives," Phys. Rev. E, Vol.55, No.3, pp.3581-3592,1997.
    [101]. N. Bliev, Generalized Analytic Functions in Fractional Spaces, London: Addison Wesley Longman,1997.
    [102]. A. Khare, Fractional Statistics and Quantum Theory, Singapore:World Scientific,1997.
    [103]. C. Broadbent, G. Hovhammisyan, J. Peatross, M. Clayton, S. Glasgow, arXiv, eprint arXiv:physics/0207117,2002.
    [104]. K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York:Wiley,1993.
    [105]. H. Goldstein, Classical Mechanics, MA:Addison-Wesley Reading,1950.
    [106]. R. M. Rosenberg, Analytical Dynamics of Discrete Systems, New York: Plenum Press,1977.
    [107]. L. Meirovitch, Methods of Analytical Dynamics, New York:McGraw-Hill, 1970.
    [108]. R. E. Collin, Foundation for Microwave Engineering, New York:McGraw-Hill, 1966.
    [109]. C. H. Liang, T. Su, "The generalized Foster theorem and network-Q," Microwave and Optical Technology Letters, Vol.37, No.1, pp40-45,2003.
    [110]. P. Markos, I. Rousochatzakis, C. M. Soukoulis, "Transmission losses in left-handed materials," Phys. Rev. E, Vol.66, pp.045601,2002.
    [111]. K. B. Tan, Z. L. Liu, L. Li, C. H. Liang, "Coherent analysis for electromagnetic solitons in PBG structure of square lattice," J. of Electromagn. Waves and Appl., Vol.20, No.14, pp.1903-1910,2006.
    [112].谭康伯,梁昌洪,“有耗孤子的最小作用量原理及其在二维光子带隙结构 中的应用"物理学报,Vol.56, No.5, pp.2704-2708,2007.
    [113]. A. Trombettoni, A. Smerzi, "Discrete solitons and breathers with dilute Bose-Einstein condensates," Phys. Rev. Lett., Vol.86,No.11, pp.2353-2356,2001.
    [114]. A. Hasegawa, F. Tappert, "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers," Appl. Phys. Lett., Vol.23, No.3, pp.142-144,1973.
    [115]. G. P. Agrawal, Nonlinear Fiber Optics, San Diego:Aacdemic Press,1989.
    [116].钟卫平,黄辉,“双芯耦合光纤中高阶色散对光孤子相互作用的影响”,光学学报,Vol.15,No.2,pp.202-205,1995.
    [117].江金环,李子平,“基于全息聚焦机理空间光孤子的相互作用势函数”,物理学报,Vol.53,No.9,pp.2991-2994,2004.
    [118].刘劲松,张都应,“损耗对屏蔽光伏空间孤子演化特性的影响”,物理学报,Vol.50,No.5,pp.880-885,2001.
    [119].蒲利春,林宗兵,张雪峰等,“非线性Schrodinger方程组的精确解组”,物理学报,Vol.54,No.10,pp.4472-4477,2005.
    [120].王竹溪,郭敦仁,特殊函数概论,北京:北京大学出版社,2000.
    [121]. N. Garcia and M. Nieto-Vesperinas, "Left-Handed Materials do not make a perfect lens," Phys. Rev. Lett., Vol.88, No.20, pp.207403,2002.
    [122]. Y. Jin, S. L. He, "Canalization for subwavelength focusing by a slab of dielectric photonic crystal," Phys. Rev. B, Vol.75, No.19, pp.195126,2007.
    [123]. C. Zhang, T. J. Cui, "Spatial dispersion and energy in strong chiral mediun," Optics Express, Vol.15, No.8, pp.5114-5119,2007.
    [124].武明峰,孟繁义,吴群,吴健,“基于左手介质后向波特性的微带天线小型化研究”,物理学报,Vol.55,No.12,pp.6368-6373,2006.
    [125].王素玲,张冶文,赫丽,李宏强,陈鸿,“可调谐一维特异材料(Metamaterial)的微波传输性质,”物理学报,Vol.55,No.1,pp226-229,2006.
    [126]. C. Caloz, C. C. Chang, T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configuration," Journal of Applied Physics, Vol.90, No.11, pp.5483-5486,2003.
    [127]. T. J. Cui, "Report on:Theoretical study, experimental verification, and actual application of Metamaterials,"CJAWAMT'2006, 西安,中国.
    [128]. B. I. Popa and S. A. Cummer, "Direct measurement of evanescent wave enhancement inside passive metamaterials," Phys. Rev. E, Vol.73, No.1, pp.016617, 2006.
    [129].甘本祓,微波传输线设计手册,西安:西北电讯工程学院,1978.
    [130].吴万春,梁昌洪,微波网络及其应用,北京:国防工业出版社,1980.
    [131].梁昌洪,谢拥军,官伯然,简明微波(第二版),北京:高等教育出版社,2007.
    [132].廖承恩,微波技术基础,西安:西安电子科技大学出版社,1994.
    [133]. C. Caloz, T. Itoh, Electromagnetic Metamaterials, New Jersy:John Wiley & Sons,2006.
    [134].张东科,张冶文,赫丽,李宏强,陈鸿,“利用集总L-C元件构造的一维metamaterials特性的实验研究”,物理学报,Vol.54,No.2,pp.768-772,2005.
    [135].褚庆昕,微波网络内部讲义,西安电子科技大学,2000.
    [136]. Q. Xue, K. M. Shum, C. H. Chan, "Novel 1-D microstrip PBG cells," IEEE Microwave and Guided Wave Letters, Vol.10, No.10, pp.403-405,2000.
    [137].顾建忠,林水洋,王闯,喻筱静,孙晓玮,“基于补偿型微带谐振单元的一维光子带隙结构”,物理学报,Vol.55,No.8,pp.4176-4180,2006.
    [138]. D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, R. M WeikleⅡ, "Resonant metal-mesh bandpass filters for the far infrared," Applied Optics, Vol.33, No.25, pp.6046-6052,1994.
    [139].黄昆,固体物理,北京:高等教育出版社,1988.